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Abstract
We introduce three mathematical models of increasing complexity for designing 
liner shipping services that guarantee the punctual arrival of vessels at a specified 
service level. On-time reliability is an important performance indicator for many 
liner carriers, but current approaches for creating new routes in liner shipping net-
works do not consider data-driven uncertainty. We perform an empirical analysis 
of vessel travel times in a real liner shipping network to develop probability dis-
tributions that we use within novel, chance-constrained mathematical models for 
liner shipping service design. Our models are also the first to support variable vessel 
speeds for service design. In our experiments, we use real-world data from 22 liner 
shipping routes and evaluate the designed services using a simulation procedure that 
demonstrates the effectiveness of our approach for reducing lateness. We show that 
our models can be effectively used for decision support at a tactical level not only 
for designing services, but also potentially for negotiating maximum demand transit 
times and prices with customers.
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1 Introduction

The liner shipping industry is situated at the center of global trade, providing effi-
cient and secure freight transportation on over 5000 seagoing vessels  (United 
Nations Conference on Trade and Development (UNCTAD) 2015). Each year, more 
and more freight is transported with standardized steel containers in liner shipping 
networks. In 2015, over 171 million TEU1 of freight was carried across the oceans, 
representing over 1.6 billion tons of goods (United Nations Conference on Trade and 
Development (UNCTAD) 2015).

Liner shipping differentiates itself from other forms of maritime transportation, 
such as tramp or industrial shipping, due to the periodic and cyclical nature of the 
routes in liner shipping networks. In liner shipping, these routes, called services, 
visit a sequence of ports within specified time windows on a periodic (usually 
weekly) basis. Once a vessel reaches the last port in the sequence, it travels to the 
first port in the sequence and starts again. As it may take more than a week to finish 
a round-trip, it is often necessary to deploy more than one vessel to fulfill the peri-
odicity at the ports. The periodicity and reliability of liner shipping services have 
become key selling points, resulting in liner shipping services forming the back-
bone of many modern supply chains (Notteboom and Rodrigue 2008). However, the 
planning of efficient and reliable liner shipping services is challenging, as there are 
many sources of delay that can send a vessel off-schedule, which can have expensive 
repercussions throughout the supply chain (Notteboom 2006). Sources of delays for 
vessels include, for example, bad weather, port congestion, equipment breakdowns, 
labor disputes and medical emergencies. These can cause a vessel to be late for its 
weekly time window or even have to cancel its stop at a particular port. Moreo-
ver, it is not only important that vessels arrive at ports when scheduled, but that 
the shipped containers (demands) reach their destination in the time period that was 
guaranteed by the liner carriers, as arrival uncertainty causes extra costs in the sup-
ply chain (Vernimmen et al. 2007).

Due to the periodicity and cyclical nature of liner shipping services, there are 
interdependencies between the expected travel times of a service, the number of ves-
sels assigned to a service, and the resulting reliability of a service. When design-
ing services for their networks, liner carriers often add buffer time before each port 
call to reduce the effect of such delays and increase the reliability of schedules. The 
amount of buffer is usually determined based on the experience of planners or sim-
ple rules of thumb. Liner carriers often have no analytical basis in the historical 
data for each port for decision making, nor is the order of the service optimized to 
provide a certain amount of reliability. Analytical tools are missing that allow for an 
exploration of costs and reliability of liner shipping services considering the specific 
structure of the schedules and the complex trade-offs.

This paper focuses on the planning of a single service within a liner shipping net-
work that explicitly incorporates uncertainty in travel times. The ports that should be 

1 A single twenty foot equivalent unit (TEU) represents one twenty foot container, with two TEU repre-
senting the commonly found forty foot container.
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visited and the berthing windows identifying when they should be visited are given 
as inputs for all models. In addition to optimizing the route a service takes to ports, 
we also consider the number of vessels necessary for running the service in con-
junction with the planned speed of the vessels. Our models provide an arrival time 
service level to planners in a similar fashion to the service levels in Ehmke et  al. 
(2015) for the well known vehicle routing problem with time windows, with one 
key difference. In Ehmke et al. (2015), lateness accumulates over the course of each 
vehicle’s tour. In the case of liner shipping service design, during the execution of a 
route, planners have a range of actions they can take to get a vessel back on schedule 
(see Brouer et al. 2013b). We do not explicitly model recourse actions in our tactical 
model, but assume that they can be taken to avoid propagation of lateness. How-
ever, we analyze the impact that propagation can have on the reliability of a service 
through simulation.

We present three mathematical models of increasing complexity for planning 
liner shipping services to understand how different features influence the results. To 
establish these models, we begin with a data-driven investigation into the distribu-
tion of travel times between different kinds of ports in liner shipping (see Sect. 3). 
This provides an analytical background for how we model uncertainty in liner 
shipping. In Sect. 4, we present the mathematical models and how they are able to 
accommodate the derived travel time distributions. In Sect. 4.1, we start with ana-
lyzing the impact of different service level guarantees on the arrival time at different 
ports on the design of cost-minimizing services, assuming the vessels plan to travel 
at their design speed. This helps us quantify the impact of modeling uncertainty. 
In Sect. 4.2, we expand the first model to explicitly consider the impact of varying 
speed levels on the number of required vessels and the resulting arrival time ser-
vice levels. Contrasting the model of Sect. 4.1, we can now trade a smaller number 
of vessels for higher speeds in service execution or vice versa. In order to provide 
acceptable service levels with regard to port time windows, our first two models 
often create large buffers in the services’ schedules. Thus, they ignore delivery time 
guarantees on freight. Our third model, in Sect. 4.3, alleviates these limitations and 
helps us understand how different levels of delivery time guarantees can impact the 
amount of freight that can be carried when there are limitations on maximum con-
tainer transit times.

In Sect. 5, we experiment with the use of the presented mathematical models in a 
series of computational experiments. To this end, we apply the presented travel time 
distributions to instances based on data from the well-known LINERLIB  (Brouer 
et al. 2013a) and compute the optimal solutions for the different models. Consider-
ing different service levels through chance constraints in our optimization models, 
we analyze the trade-off between a larger fleet of vessels and adaptations of speed 
levels from a tactical network design perspective. Then, we assess the operational 
performance of these optimized services with a discrete-event simulation. The 
simulation evaluates the optimized services by imitating individual service runs to 
determine the “actual” realized cost and quality of a service, analysing the impact of 
propagation of lateness in the course of a round-trip. We provide a set of managerial 
insights based on these results in Sect. 6.

In summary, our paper provides the following contributions:
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1. a data-driven investigation of distributions of travel time for liner shipping ser-
vices,

2. the modeling of service guarantees on arrival times through chance constraints 
for service design,

3. a model for service routing optimization with variable vessel speed (tactical per-
spective),

4. and a simulation study to evaluate the effectiveness of the models (operational 
perspective) and the impact of lateness propragation when executing the services.

In the following section, we delineate our modeling approach from related literature 
in this field.

2  Literature review

The liner shipping service design problem with arrival time service levels has con-
nections to a number of different problem domains, including the areas of vehicle 
routing, tramp shipping, and liner shipping. We now discuss the similarities and dif-
ferences of this work with related work in the literature, referring to Christiansen 
et al. (2004, 2013) for an overview of the entire area of maritime transportation and 
Brouer et al. (2017) for an overview of liner shipping optimization. A bibliometric 
overview is given in Lau et al. (2017).

2.1  Liner shipping

We divide our discussion of related work within the area of liner shipping into two 
subsections. First, we discuss related problems such as network design and fleet 
deployment and then move into work addressing single service scheduling and rout-
ing. Given the prevalence of delays in maritime applications due to storms, labor 
disputes, and breakdowns, considering uncertainty is a natural extension to opera-
tions research models for tramp, industrial and liner shipping. Nonetheless, there is 
little literature considering stochastic elements in these problems.

2.1.1  Related liner shipping problems

Liner shipping single service design can be considered a subproblem of the over-
all network design problem and is considered a tactical problem in Meng et  al. 
(2013). The network design problem is very difficult to solve with exact solution 
approaches (Agarwal and Ergun 2008; Álvarez 2009; Brouer et al. 2013a) and even 
for heuristics  (Brouer et  al. 2014). Due to its difficulty, network design problems 
usually leave out or abstract a number of important side constraints that we are able 
to include, such as the handling of container transit times. We note that to the best 
of our knowledge, there has not been any work on combining uncertainty with liner 
shipping network design models.
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Fleet deployment models are also related (see, e.g., Powell and Perakis 1997), 
as these assign a heterogeneous fleet of vessels to a set of services. In contrast to 
these models, we do not try to size the vessel to the service we are designing. In 
our approach, the vessel class is an input parameter. Fleet deployment models are 
subject to different types of uncertainty than service/network design problems. A 
key source of uncertainty for these types of problems is the amount of demand that 
is shipped each week on each service. A chance-constrained model takes this into 
consideration in Meng and Wang (2010), finding a minimal cost allocation of ves-
sels to services. We do not take demand uncertainty into account in our model, but 
this would be a logical extension of our work. Transit time restrictions for demands 
were recently considered in terms of the cargo allocation problem, which assigns 
containers to routes in a network in Guericke and Tierney (2015), as well as for a 
time-constrained multicommodity flow problem in Karsten et al. (2015). We solve a 
simplified version of this problem as a part of our single service design. We do not 
consider transshipments, making our cargo allocation easier in comparison.

2.1.2  Single service scheduling

Several papers determine vessel speeds and schedules for one (or more) service(s) 
under uncertainty given a pre-defined port sequence. The key difference between 
these works and our model is that we determine both the port sequence and the 
schedule. Delays at ports are considered in Qi and Song (2012), in which delayed 
arrivals are penalized in the objective function, reflecting a potential loss of good-
will. The authors discuss how to compute the service level at each customer, 
acknowledging that prior delays can accumulate. Furthermore, the paper focuses on 
special cases, such as with 100% service levels for all customers. A drawback of 
this work is that the authors do not use real data for their port time distributions, 
instead assuming uniform and normal distributions. In a parallel work, Wang and 
Meng (2012a), the authors also seek vessel speeds and a schedule under uncertainty 
for a new liner shipping service. They create a mixed-integer non-linear stochastic 
programming model for the problem that minimizes ship and fuel costs while main-
taining a given service level. The problem is solved using a cutting-plane algorithm.

The most relevant work in the area of liner shipping in terms of focusing on 
delays is Lee et  al. (2015). The paper assumes the routes are given and looks at 
the impact of different steaming speeds for executing the route, given the stochastic 
nature of port operations. Buffers are planned into liner shipping schedules in order 
to maintain a specified arrival service level. In contrast, not only do we perform 
route planning, we also do not limit ourselves to only considering port delay. While 
port delays make up a large percentage of the sources of delay (Notteboom 2006), a 
number of other sources exist that we are able to account for in our model.

A feeder network design problem is presented in Santini et al. (2017) that routes 
and schedules several services within a geographically limited area. The authors 
use an expanded time space graph so that vessel speeds can be precomputed and 
assigned as costs directly to the arcs. The number of vessels used on the routes if 
fixed to a value K, meaning the set of speeds for vessels and amount of buffer that 
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can be inserted into the schedule, is limited. Thus, Santini et al. (2017) does not con-
sider arrival time service levels.

The paper that motivates the basic form of our model is Plum et al. (2014). The 
goal in this work is to design a single service given a set of ports that must be vis-
ited. A set of container demands between ports must be satisfied while taking into 
account the capacity restrictions of the vessels. Our first deterministic model (Phase 
1) resembles this work very closely, adding only the optimization of the number of 
ships on the service. Furthermore, our models extend the work of Plum et al. (2014) 
with variable vessel speed and arrival time guarantees, which represent important 
characteristics for the liner shipping industry. A summary of the features of our 
models in relation to the literature is given in Table 1.

2.2  Handling delays in related routing problems

There are several related problems in which delays have been considered. Ehmke 
et al. (2015) is among the most recent; they explicitly consider the interplay of sto-
chastic travel times and time windows in the vehicle routing problem, ensuring ser-
vice levels in routing through chance constraints. For them, the largest challenge 
stems from the computation of the combined arrival time distribution along a route, 
which we ignore in our approach since we assume statistical independence between 
the individual sequences on a route.

Tramp and industrial shipping involve the transportation of bulk or liquefied 
goods (but rarely containers) in a vehicle routing-like fashion. Tramp/industrial 
shipping problems differ greatly from liner shipping problems in terms of the sched-
ule structure. Whereas liner shipping has a periodic, fixed schedule like a public bus 
network, tramp/industrial shipping more resembles taxis, in which ships sail wher-
ever there is a demand to be satisfied. However, despite their differences, all of these 
types of shipping involve vessels that can be delayed in the same way, as well as 
have similar cost profiles for sailing. Speed optimization has become a standard fea-
ture of tramp shipping models (Norstad et al. 2011).

Table 1  A categorization of related work within the area of liner shipping service/schedule design

Article Routing Lateness dist. Speed opt. Method

Wang and Meng (2012a) ✗ Any truncated Non-linear Non-lin. stoch. prog.
Wang and Meng (2012b) ✗ Uniform & normal Non-linear Non-lin. stoch. prog.
Qi and Song (2012) ✗ Uniform/normal Non-linear Sim. stoch. approx.
Song and Dong (2013) ✓ ✗ Non-linear Heuristic decomposition
Plum et al. (2014) ✓ ✗ ✗ Branch-cut-and-price
Lee et al. (2015) ✗ Normal/any Non-linear Markov chains
Song et al. (2015) ✗ Trunc. normal Non-linear NSGA-II (Deb et al. 2002)
Reinhardt et al. (2016) ✗ ✗ Disc. secants MILP
Wang and Wang (2016) ✗ ✗ Non-linear Polynomial time algorithm
Santini et al. (2017) ✓ ✗ Disc. graph Branch and price
This paper ✓ Log-logistic 3P Disc. secants MILP
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The most recent work in this area is Agra et al. (2015), which considers a mari-
time inventory routing problem for liquefied natural gas with stochastic sailing and 
port times. The authors determine routes and the quantity of gas to load/unload a 
priori and model the problem as a stochastic program with recourse using scenarios. 
In contrast, we compute distributions over the arrival times of vessels at ports. In 
Agra et al. (2016), this work is extended to use a log-logistic distribution to model 
delays as in our work. Uncertain sailing times are considered in Halvorsen-Weare 
and Fagerholt (2013), motivated by a real energy company, as well as uncertain pro-
duction rates for a natural gas provider. In Halvorsen-Weare et al. (2013), the same 
problem is solved as in Halvorsen-Weare and Fagerholt (2013), but with robustness 
strategies added. The sailing times are fitted to a log-logistic probability distribution, 
based on information gathered for a gas tanker in Kauczynski (1994).

A method for creating replenishment schedules for offshore installations is pro-
posed in Halvorsen-Weare and Fagerholt (2011). The paper defines four weather 
states and their impact on sailing speed and service time in ports at an offshore 
delivery location. A key difference with our work is that the authors assume a set of 
routes already exist, and they must choose which routes to use.

3  Data exploration

A key challenge that arises in guaranteeing arrival time service levels for a liner 
shipping service is determining what distribution underlies the travel time of the 
vessels. As discussed in the previous section, the maritime literature has several sug-
gestions on appropriate travel time distributions, including the log-logistic distribu-
tion (Halvorsen-Weare et al. 2013). However, it is not clear a priori that this distribu-
tion is the best fit for travel times of liner shipping services, and furthermore, it is 
not clear that this distribution is appropriate for trips between all ports worldwide. 
To this end, we gathered data from operating liner shipping service routes, including 
profiles of the vessels used and the actual transit times of the vessels between ports. 
We first describe the data we use for distribution fitting in more detail, including a 
frank discussion of the strengths and weaknesses of our dataset, and finish with a 
presentation of the distributions we found.

3.1  Data sources and integration

We have taken care to make our dataset as realistic as possible. To do this, we use 
service information from the liner carrier COSCO and combine this with AIS (posi-
tioning) data from MarineTraffic regarding the vessels on 25 selected liner shipping 
services. We note that we have no relationship with COSCO and use data regarding 
their network because they offer detailed arrival time information for their services. 
We gathered positioning data from the vessels’ transponders for the year 2014 and 
use this data to check whether the vessels are on time or not by comparing it with 
the planned schedule from COSCO  (COSCO Shipping Lines 2017). In total, our 
dataset contains 40 ports, 118 vessels, 125 port to port connections, and records for 
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1872 transits between ports. This provides us with a list of transits between the ports 
visited by the 25 services and an indication of how late (or early) the vessel was as 
compared to the planned travel time.

Figure  1 shows three sample transits and their associated histograms, chosen 
because they represent a range of connection types: an intra-region connection (a), 
a Pacific Ocean connection (b) and an Indian Ocean connection (c). While it is not 
possible to generalize from the data of only a few connections, it is clear that even 
on short connections, such as crossing the English channel, significant delays above 
the scheduled sailing time are possible. Furthermore, we can see that some sched-
ules are planned with enough buffer that even delays of a couple of days do not 
cause lateness, as in the case of the backhaul from Long Beach to Ningbo. Finally, 
some schedules are tightly planned, as in the case of sailing from Singapore to the 
southern side of the Suez canal. Here, significant delays of up to almost five days 
can occur. We note that it is not unusual for connections to be assigned a speed faster 
than the vessel’s design speed as in Fig. 1a, c. These are likely connections where 
shippers wish to have fast transit times and the carrier must meet these requests to 
carry shipper’s cargo.

The data we use from the AIS transponders is the best data we can obtain, as car-
riers we have spoken to do not keep track of more accurate statistics regarding travel 
time. There are, however, weaknesses that we want to outline. An obvious issue is 
that we do not know what recourse actions were taken to avoid or reduce lateness 
during operations. In particular, if a vessel is running late, a carrier may instruct 
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Fig. 1  Histograms of travel times (in hours) of several port to port pairs. The x-axis shows the varying 
travel times in hours between the ports. The y-axis gives the frequency of a particular travel time. The 
scheduled transit time is shown with a dashed red line and the travel time at the vessel’s design speed 
with a solid magenta line. a Rotterdam, NL to Le Havre, FR, b Long Beach, US to Ningbo, CN, c Singa-
pore, SG to Suez, EG
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the captain to speed up to stay on schedule. We note that AIS data does include the 
speed of the vessel, but even with the speed, we cannot assess whether a speed-up 
was part of the original service schedule or not. Another source of error in our data 
is that extremely late vessels may simply skip port calls to save time, meaning we do 
not end up knowing how late they actually were. Furthermore, if no vessel performs 
a particular port to port transit, we will have no data for it, and this makes it difficult 
to know what distribution to use to model travel time for such a connection when 
considering the creation of a new service. We attempt to counteract some of the 
weaknesses in our approach by clustering the port to port connections and by com-
puting distributions between regions rather than individual ports. This alleviates the 
problem for many connections.

3.2  Distribution fitting

We compute distributions based on intra and inter-region transit times, normalized 
according to the average travel time for each region-to-region pair. To create distri-
butions for any pair of ports worldwide, we aggregate and generalize the operational 
data as follows. First, to generalize the port-to-port observations, we follow a com-
mon idea in the network design literature (e.g. Mulder and Dekker 2014) and cluster 
ports into 16 regions with the well known k-means algorithm, adjusting the ports 
between some regions slightly by hand. The resulting clusters provide the input for 
our distribution fitting. Second, between two regions or within a single region, for 
each pair of ports, we normalize the travel times based on the mean empirical travel 
time between (or within) the regions containing the ports. That is, given ports i and 
j from regions r and s, we compute the average travel time between the regions and 
divide the travel time between i and j by this value. Since not every pair of regions 
has sufficient data to allow for an empirical fit of a distribution, we also compute a 
distribution across all data that can be used for such port pairs.

We use the software EasyFit (MathWave Technologies 2016) to generate a list of 
distributions for each inter and intra region pair to narrow down the type of distribu-
tion to use across our data. In 17 out of 28 pairs with enough port to port transfers to 
fit a distribution, the three-parameter log-logistic (ll3p) distribution is one of the top 
three best fitting distributions, and in all other cases was still one of the best fitting 
distributions. Other good fits included the Cauchy distribution and the four-parame-
ter Burr distribution. Given the previous use of the ll3p distribution in the literature, 
we select it for the remainder of this work.

Figure 2 shows histograms and the best fitting normal and log-logistic probabil-
ity distribution functions for several region-to-region pairs. The x-axis provides the 
normalized travel time, with the y-axis reflecting the frequency of a particular value. 
There is a clear trend across all of the regions we consider. The normal distribution 
has less probability mass than the ll3p distribution around on-time transits at time 0, 
which is a good indicator of why the log-logistic distribution is often the one with 
the best fit. In many cases, the log-logistic distribution puts more mass near on-time 
arrivals and is skewed to the right, reflecting a large number of vessels arrive late 
and across a wide range of values. For a few region-to-region pairs, the log-logistic 
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distribution looks almost like the normal distribution, as is the case in Fig. 2b, and 
this further emphasizes the importance of fitting specific parameters for different 
parts of the world, instead of only one set of parameters.

4  Mathematical models

We construct an arc flow model that extends the one presented in Plum et al. (2014) 
to find a cyclical route through ports given fixed port time windows. We decompose 
the modeling of the extended problem into three phases, each one with added com-
plexity. This helps us understand the impact of different problem features and also 
their impact on the solution time. Unlike in Plum et  al. (2014), all of our models 
contain chance constraints requiring vessels arrive at ports on-time with a specified 
arrival time service level. In the first phase, we address the basic liner shipping ser-
vice design problem, requiring all demand to be transported without the maximum 
transit times on vessels sailing at their design speeds used in Plum et al. (2014). The 
design speed is used to provide schedules that can serve as a reasonable baseline for 
Phase 2 and Phase 3. In the second phase, we relax the fixed sailing speed require-
ment and allow the vessel to vary its speed, taking this into account in the objective 
function. In the third phase, we impose maximum container transit times, but allow 
demand to be rejected if it is not possible to meet the transit time limitations. The 
objective function in this phase switches to profit maximization from cost minimiza-
tion in Phases 1 and 2. As mentioned in Sect. 1, our models do not consider propa-
gation of lateness over the course of the service. This is because route planners have 
a range of actions they can take to get a vessel back on schedule (see Brouer et al. 

(a) (b) (c)

(f)(e)(d)

Fig. 2  Histogram and probability distribution functions for several region-to-region pairs. Blue bars 
show the histogram, a solid red line shows the fit of the ll3p distribution, and the dashed green line the 
fit of a normal distribution. a Intra Europe, b China/Japan to Southern Mediterranean, c Intra Western 
North America, d Western North America to China/Japan, e Central/South America to North America, f 
Indian Ocean to Southern Mediterranean
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2013b) if needed, including skipping ports, negotiating new time windows, etc. We 
do not explicitly model these recourse actions in our tactical model, because we do 
not know which ones could be negotiated in each case. We assume, though, that 
such actions can be taken to avoid propagation of lateness, but also create expenses 
that a company would want to avoid if possible through on-time arrivals.

4.1  Phase 1: design speed model

In Phase 1, we impose the following assumptions:

 1. All ports are assigned a fixed port time window per week in which they are 
called. The vessel must arrive before the port time window starts (planned 
arrival) and may not leave until the window ends (planned departure).

 2. Vessels must wait until the start of their time window if they arrive early at a port.
 3. Time windows must be satisfied with a confidence level of � (arrival time service 

level). For example, � may be a value such as 75% or 90%.
 4. Travel times between ports are statistically independent.
 5. All vessels must plan on traveling at their design speed between ports.
 6. All pickups and deliveries of demand must be served, assuming that the vessel 

capacities are sufficiently large.
 7. Forty foot containers are broken down into two twenty foot containers, and their 

flow can be modeled in a continuous fashion.
 8. All ports must be called exactly once.
 9. The objective is to minimize the cost of the single route and the number of ves-

sels required.
 10. The service frequency is weekly.

Note that the requirement that all ports must be called exactly once means we cannot 
design butterfly or conveyor belt style routes. We note our model can be adjusted to 
create such routes and in its current form can support having a port specified mul-
tiple times. According to Song and Dong (2013), cycle routes (i.e., those where all 
ports are visited once) are the most common topological structure and can be found 
in about 45% of services. We assume that one of the ports is arbitrarily identified as 
the start port for the service, and it is also the end port since the route is cyclical. 
The starting port is assumed, without loss of generality, to be a port that has a time 
window that is fully contained during the week, i.e., the time window does not inter-
sect with Monday at 12:00 AM. We further note that delays have some correlation 
with the amount of loaded cargo (Hasheminia and Jiang 2017) and we do not take 
this into account in this model.
We now define the mixed-integer linear program for the Phase 1 model.
Parameters

P = {1,… , p, p + 1}  Set of ports to call; ports 1 and p + 1 represent the initial port 
(and its return)
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A  Set of arcs (i,  j); we assume that the network is complete, 
with no arcs into the initial port or out of the ending port

A′  All of the arcs of A with the addition of a single arc connect-
ing the ending port to the initial port

K  Set of demands
ok  Origin of demand k ∈ K

dk  Destination of demand k ∈ K

ak  Amount of cargo of demand k ∈ K

u  Capacity of a vessel in TEU
ts
i
, te
i
  Time window start and end (respectively) within a week for 

port i ∈ P , where time 0 is Monday at 12:00 AM. The values 
for the time window start and end time represent hours. The 
latest arrival time has a domain ts

i
∈ {0,… , 167} , whereas 

the earliest departure time te
i
∈ {ts

i
,… , 335} . This allows 

port time windows to start and end in consecutive weeks.
c
f

ij
  Fixed sailing cost for arc (i, j) ∈ A

t�
ij
  Time for sailing arc (i, j) ∈ A at the vessel’s design speed to 

provide a service level of �
cv  Charter cost per vessel per week

Variables

wi  Service week at port i ∈ P , where w1 = 0

xij  Indicates whether arc (i, j) ∈ A is included in the service
�s
i
  Start service time of a vessel at port i ∈ P (hours from beginning of service)

�e
i
  End service time of a vessel at port i ∈ P (hours from beginning of service)

�a
i
  Arrival time at port i ∈ P (hours from beginning of service)

fkij  Flow of demand k ∈ K on arc (i, j) ∈ A

Objective and constraints

(1)min cvwp+1 +
∑

(i,j)∈A

c
f

ij
xij

(2)subject to
∑

(i,j)∈A

xij = 1 ∀j ∈ P⧵{1}

(3)
∑

(i,j)∈A

xij = 1 ∀i ∈ P⧵{p + 1}
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The objective function (1) includes the cost for vessels and the sailing cost for the 
complete service. The variable wp+1 contains the week of the last port visit. Since we 
are assuming a weekly service frequency, the last week also specifies the number of 
vessels. Constraints (2) and (3) require that the service enters and leaves each port 
exactly once, except for the initial and ending port. The time the vessel starts and 
ends its visit at each port is determined in Constraints (4) and (5). The term 168wi 
converts the week selected for customer i to the appropriate hour from the start of 
service. Constraints (6) restrict the arrival time to be before the start of the visit at a 
port.

(4)�s
i
= ts

i
+ 168wi ∀i ∈ P

(5)�e
i
= te

i
+ 168wi ∀i ∈ P

(6)�a
i
≤ �s

i
∀i ∈ P

(7)�e
i
+ t�

ij
≤ �a

j
+M(1 − xij) ∀(i, j) ∈ A

(8)w1 = 0

(9)
∑

j∈P⧵{ok}

fkokj = ak ∀k ∈ K

(10)
∑

j∈P⧵{dk}

fkjdk = ak ∀k ∈ K

(11)
∑

(j,i)∈A�

fkji =
∑

(i,j)∈A�

fkij ∀k ∈ K, i ∈ P⧵{ok, dk}

(12)
∑

k∈K

fkij ≤ uxij ∀(i, j) ∈ A�

(13)xp+1,1 = 1

(14)xij ∈ {0, 1} ∀(i, j) ∈ A�

(15)�a
i
, �s

i
, �e

i
≥ 0 ∀i ∈ P

(16)fkij ≥ 0 ∀(i, j) ∈ A�, k ∈ K

(17)wi ∈ ℤ
+ ∀i ∈ P⧵{1}
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We use a chance constraint to ensure that the service route has enough buffer at 
each port to achieve the level of punctuality requested. Constraints (7) model a gen-
eral constraint that can be used with any probability distribution in which the inverse 
CDF can be computed. These constraints force the arrival time at the next port to 
always be greater than the departure time at the previous port plus the travel time 
with an adequate buffer. We compute a bound for M as follows. First, we compute a 
maximum path length (worst case tour) traveling salesman problem (TSP) through 
all of the ports.2 Given this “slow” TSP path, we then add extra buffer based on our 
service level formulas to the path if required to reach a particular service level, and 
further add buffer that considers when the vessel arrives at a port and how long it 
must wait until the port is available.

To compute the value of t�
ij
 , consider, for example, the case of the normal distribu-

tion where we want to guarantee a confidence level of � that we arrive on time. 
Assume we have a parameter z� that provides the number of standard deviations 
associated with a service level of � . We can then set t�

ij
 to be the mean travel time 

between i and j plus z� times the standard deviation. Consider now the case of a non-
normal distribution such as the three-parameter log-logistic distribution. Given the 
scale parameter � , shape parameter � and location parameter � , we want to find the 
value of t�

ij
 providing the minimum required travel time between i and j enabling a 

service level � . We can compute this from the inverse CDF as follows:

If we are interested in comparing the results with a deterministic model, as we do in 
our experiments, we can simply set t�

ij
 to a fixed value tij representing the travel time 

at the design speed with no added buffer.
The visit to the initial port is specified to be in the initial week by Constraints (8). 

Constraints  (9), (10), and (11) are used to handle the flow of demands between 
their supply and destination points as well as between transhipment points. These 
are modeled in a similar way to Plum et al. (2014), but adapted to require that all 
demand is served. The capacity of the vessel is enforced by Constraints (12) on each 
arc, but only if a vessel is sailing on the arc. Should an arc not be used in the vessel 
path, the flow capacity is set to zero. Constraint  (13) connects the last port to the 
first port, ensuring that the service’s route is complete. Lastly, Constraints (14), (15), 
(16), and (17) define the variables appropriately.

F−1(�;�, �,�) =
(

1

�
− 1

)−1∕�
(

� + �

(

1

�
− 1

)1∕�
)

.

2 First, we note that this version of the TSP is NP-complete, but since our problems do not contain many 
ports, it is easy to solve. Second, in later phases when speed can be adjusted we use the slowest vessel 
speed allowed.
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4.2  Phase 2: optimized speed model

While the Phase 1 model covers a number of basic properties of liner shipping ser-
vice design, in practice, planners can adjust the speed of the vessels to reduce sailing 
costs or increase the probability of meeting tight deadlines. Hence, we adjust the fourth 
assumption to the following:

4. Vessels may sail between their minimum and maximum speed, and the cost of 
doing so will be reflected in the objective function.

We implement variable vessel speeds with several new sets of variables and param-
eters. Since the distance between all ports is known in advance, the model can simply 
decide the sailing duration for each leg of the service and the speed is known (duration/
distance). The duration is used in a piecewise linearization to determine the approxi-
mate bunker costs. Three new sets of variables are required:

�ij  The cost of sailing between i and j for arc (i, j) ∈ A

�ij  The duration for sailing between ports i and j for arc (i, j) ∈ A

��
ij
  The amount of buffer added into the schedule between ports i and j for arc 

(i, j) ∈ A to enforce a service level �

We also need to add further parameters:

�              The speed of a vessel
�∗  The design speed of a vessel
cB  Cost per ton of bunker fuel
�
g

ij
  Slope of secant g of the bunker consumption cost function approximation 

for arc (i, j) ∈ A

�
g

ij
  y-intercept of secant g of the bunker consumption cost function approxi-

mation for arc (i, j) ∈ A

tij  The sailing time at the vessel’s design speed between i and j for arc 
(i, j) ∈ A

tMin
ij

, tMax
ij

  The minimum or maximum sailing time between i and j for arc (i, j) ∈ A

Since the fuel consumption function of vessels is roughly cubic (Brouer et al. 2013a), 
we use a piecewise linearization of the function in our Phase 2 model. One approxima-
tion for the non-linear bunker consumption function (Brouer et al. 2013a) is given by

B(�) =
(

�

�∗

)3

B(�∗),
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where � is the vessel’s speed, �∗ is the vessel’s design speed and B(�∗) is the bun-
ker consumption in tons of fuel per hour at the design speed. We use the secant 
approximation presented in Reinhardt et al. (2016) to linearize this function and note 
that, due to the convexity of the function, no binary variables are necessary. We now 
show their approximation, adjusting the notation to fit our model. First, we modify 
the bunker consumption function to accept a travel duration between two ports with

where �ij is the travel duration, tij is the sailing time at the vessel’s design speed as 
previously defined, and cB is the cost per ton of bunker fuel. This function can be 
approximated with a given number of secants, � . Each secant g is defined with the 
function

where �g

ij
 is the slope of the secant and �g

ij
 is the y-intercept. Then, we can add the 

following linear constraints to our model for computing the sailing cost:

Since the variables xij indicate whether an arc is being used or not, we ensure that 
the sailing costs on the arc are only constrained when the arc is being used. Further-
more, we replace the objective function (1) with the following:

To handle the arrival time service levels with varying speeds, we modify Con-
straints (7) to include the decision variable �ij:

In other words, the travel time from Phase 1 is replaced with the variable specifying 
the travel duration on the arc, if the arc is used. We then require constraints ensuring 
that the minimum duration according to the chosen service level ��

ij
 is enforced:

For a deterministic model, the term ��
ij
 can be set to zero. We then constrain the 

minimum and maximum duration of the voyage using the parameters tMin
ij

 and tMax
ij

 
with the following constraint:

B̂(𝜌ij) =

(

tij

𝜌ij

)3

B(𝛿∗)cB,

ĉij(𝜌ij) = 𝜙
g

ij
𝜌ij + 𝜔

g

ij
,

(18)𝛾ij ≥ 𝜙
g

ij
𝜌ij + 𝜔

g

ij
xij ∀(i, j) ∈ A, 0 ≤ g < 𝜃.

(19)min cvwp+1 +
∑

(i,j)∈A

�ij.

(20)�e
i
+ �ij + ��

ij
≤ �a

j
+M(1 − xij) ∀(i, j) ∈ A.

(21)�ij + ��
ij
≥ t�

ij
xij ∀(i, j) ∈ A.
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These constraints ensure that vessels do not sail faster or slower than is allowed 
should the arc be chosen. Finally, we impose bounds on the travel time, travel costs, 
and buffer variables:

4.3  Phase 3: optimized speed with maximum transit times model

For our Phase 3 model, we require that demands are not carried for longer than their 
maximum transit time. Requiring that all demand be served in combination with 
transit times limitations can lead to infeasibility, especially when a high level of 
on-time arrival is desired. A further assumption of our Phase  3 model is that the 
demands at a port are the same each week. This is, of course, not the case in prac-
tice, but it is sufficient for tactical level planning. In Phase 1 and 2, we wanted to see 
the impact of service levels and speed optimization on serving the same demands, 
so we relaxed this transit time requirement. Here, to enforce the maximum tran-
sit times, we will relax the fifth assumption of Phase 1, namely that all demands 
must be carried. We now have the following assumptions in addition to the Phase 2 
assumptions (minus assumption 5 from Phase 1):

 10. All demands have a maximum transit time. This is a common assumption in 
practice.

 11. Demands can be rejected if their maximum transit times cannot be met.
 12. The objective is to maximize the profit, i.e. the revenue from carrying cargo 

minus the cost of sailing and cost of vessels.

These changes require two new variables:

yk  This equals 1 if demand k is transported or 0 if it is not transported for k ∈ K

�k  This equals 0 when the service start time of the destination is greater than the 
end service time of the cargo source for demand k for k ∈ K . However, due to 
the cyclical structure of liner shipping routes, it is possible that the start service 
time of the destination is actually less than the end service time of the source 
if the path of the cargo crosses the (arbitrary) “end” of the service. When this 
occurs, this variable will be 1.

We also need to add further parameters:

rk  The revenue of delivering a demand k
lk  The maximum transit time of a demand k

(22)tMin
ij

xij ≤ �ij ≤ tMax
ij

xij ∀(i, j) ∈ A.

(23)�ij ≥ 0, �ij ≥ 0, ��
ij
≥ 0 ∀(i, j) ∈ A.
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For our new profit maximizing objective, we add the revenue of delivering a 
demand, rk , to the objective function, and subtract the vessel and sailing costs from 
it:

We next replace Constraints (9) and (10), which control the start and end of the flow 
of demand k, with the following:

Constraints (25) and (26) set the amount of containers to be carried for a particular 
demand to 0 when yk is 0, ensuring that the demand is either taken in its entirety or 
not at all.

Given the maximum transit time of a demand k, lk , we use the following con-
straints to restrict the transit time:

Constraints (27) and (28) set the value of �k depending on the schedule of the ves-
sel. When �k = 0 (the “normal” case), the destination of demand k is scheduled later 
than the origin. However, when �k = 1 , the destination comes after the “end” of the 
service, meaning the scheduled time of the origin is actually later than the destina-
tion in the model. Constraints (29) and (30) set the transit time limitation depending 
on the value of �k . We then add one more set of constraints to the model to connect 
the flow of each demand to its corresponding 0/1 variable:

Finally, we add bounds constraints for the new variables:

(24)max
∑

k∈K

rkyk − cvwp+1 −
∑

(i,j)∈A

�ij.

(25)
∑

j∈P⧵{ok}

fkokj = akyk ∀k ∈ K

(26)
∑

j∈P⧵{dk}

fkjdk = akyk ∀k ∈ K.

(27)�s
dk
≥ �e

ok
−M�k ∀k ∈ K

(28)�s
ok
≥ �e

dk
−M(1 − �k) ∀k ∈ K

(29)�s
dk
− �e

ok
≤ lk +M�k +M(1 − yk) ∀k ∈ K

(30)�s
dk
− �e

ok
+ 168wp+1 ≤ lk +M(1 − �k) +M(1 − yk) ∀k ∈ K

(31)fkij ≤ akyk ∀k ∈ K, (i, j) ∈ A.

(32)yk ∈ {0, 1} ∀k ∈ K

(33)�k ∈ {0, 1} ∀k ∈ K.
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5  Computational experiments

We will first describe how we create our instances and experimental design in 
Sect.  5.1. For our Phase 1 and 2 models, we simulate operations of the created 
schedules to evaluate their performance with regard to cost and service quality. We 
describe our simulation in Sect. 5.2. Then, we present our results of tactical plan-
ning for the three models in Sect. 5.3. Finally in Sect. 5.4, we present sample sched-
ules generated by our different models.

5.1  Instances

For our experiments, we want to compare the results from deterministic and sto-
chastic variants (with different service levels) of each model across a variety of 
instances. This will help us understand the impact of different service levels, the 
ability to optimize speed in the planning phase, and the impact of the maximum 
transit times. We also want to understand how the underlying features of the created 
services, such as the locations of the ports being considered, impact the results.

The instances are constructed using real demand data and vessel information 
from the LINERLIB (Brouer et al. 2013a), which we combine with empirical travel 
time distributions constructed from COSCO liner shipping services (as discussed 
in Sect. 3). We build 44 instances based on 22 existing COSCO services as follows. 
For each COSCO service, we make a “standard” instance and a “tight” instance 
using the service’s port calls. The standard instance matches the time windows from 
the COSCO data, while the tight instance modifies the time windows to provide a 
schedule with time windows as close together as possible. That is, all buffer between 
ports i and j in the service’s port sequence is removed such that a vessel would have 
to sail at maximum speed to be on time. However, we are only able to remove buffer 
time up to a certain point, because the sum of all travel and port times has to be 
divisible by the number of hours in a week. We therefore remove all buffers between 
all port calls except for the return trip of the vessel to the origin port. For each 
instance, we extract relevant demands from the LINERLIB, including the amount 
of containers and the maximum transit time. For Phase 3, we also create a “relaxed” 
version that allows the cargo to be delivered up to 1.5 times later than the original 
transit time. This creates a total of 88 instances for Phase 3.

Since the LINERLIB data has been designed for the liner shipping network 
design problem, i.e., for problems that may contain several services, it is not per-
fectly suited towards single service design. This is because a significant amount 
of cargo is transported through hubs rather than along direct routes. To ensure our 
instances have a realistic amount of cargo, we aggregate ports into 25 clusters (simi-
lar to the aggregation performed in Mulder and Dekker 2014). We then assume each 
of those clusters has some feeder services that will carry cargo to and from ports on 
the service we are designing. In some cases, especially with cargo originating from 
Asia, this can result in too much demand for any vessel to carry. We then randomly 



639

1 3

Liner shipping single service design problem with arrival…

reduce the size of the demands. We subtract the amount of time required to carry the 
cargo to the hub from the transit time limit, along with three days for transshipment 
as done in Guericke and Tierney (2015).

An overview of our instances3 is given in Table 2. The service name corresponds 
to the COSCO service name. Note that our services in some cases do not exactly 
correspond with the original services since we remove duplicate port calls. In addi-
tion to the number of ports and port-to-port demands, we compute the minimum 
number of vessels necessary to sail on the service using the original schedule and 
provide the number of vessels the carrier assigned to each service. The vessel type 
dictates the design speed, the minimum and maximum speed, as well as the (fixed) 
bunker costs in tons per day at design speed (which we get from LINERLIB). For 
vessels of the Post Panamax and Super Panamax classes, these values are as follows: 
design speed 16.5/17.0  knots, minimum speed 12 knots, maximum speed 23/22 
knots, bunker costs 82.2/126.9  tons/day. We also assume a fuel price of $400 per 
ton.

Table 2  Instance properties for the instances tested in this work. We note that on psw5, the vessels 
from the carrier are slightly faster than the vessel we use from the LINERLIB, hence one less vessel is 
required

Service Ports Demands Minimum 
vessels

Service vessels Vessel type

abx 9 13 7 8 Post Panamax
aesa 12 14 10 13 Super Panamax
awe1 7 20 8 10 Super Panamax
awe2 7 12 9 10 Super Panamax
awe3 10 37 8 10 Super Panamax
awe4 7 18 9 11 Super Panamax
awe8 9 33 9 11 Super Panamax
cen 7 8 6 7 Super Panamax
ces 9 27 9 10 Super Panamax
ese 11 18 7 8 Super Panamax
fal1 11 18 9 11 Super Panamax
fax 5 6 7 7 Super Panamax
fwas 9 19 9 12 Super Panamax
fwax 10 22 12 12 Super Panamax
ne2 10 31 9 10 Super Panamax
ne6 11 29 10 11 Super Panamax
ne7 10 28 9 10 Super Panamax
psw1 4 6 5 6 Super Panamax
psw5 6 8 7 6 Super Panamax
tas1 7 16 4 4 Super Panamax
wsa 10 34 9 10 Super Panamax
wsa2 11 30 9 10 Super Panamax

3 We provide instance data at the following repository: https ://bitbu cket.org/dotbi elefe ld/lsssd _insta nces.

https://bitbucket.org/dotbielefeld/lsssd_instances
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We solve all instances with Gurobi version 7.0.2 (Gurobi Optimization 2015) on 
eight Intel Xeon E5506 CPUs at 2.13 GHz with a maximum runtime of 24 h. For 
each instance, we solve all of the models in Sect. 4. We experiment with modeling 
the underlying travel time data as a normal distribution and as an ll3p distribution 
we identified to be a better fit. We experiment with both to see if modeling travel 
time data with a normal distribution, which is easy to use and fit, offers a similar 
quality performance as the more accurate distribution. For both distributions, we 
experiment with service levels of 70 and 90%, and, for the ll3p distribution, also 
for a service level of 95% because of its long tail. We also test a deterministic ver-
sion with no added buffer. This yields 8 runs for each instance and for each model. 
The output of each run is an optimized schedule that contains the ordering of ports 
of a service (a service design), the associated number of vessels that minimize the 
particular objective, the optimized objective value, and the scheduled arrival and 
departure times at ports. In Phase 2 and Phase 3, the optimized speed level between 
each pair of ports is also reported. We note that Gurobi is able to solve most of our 
models in relatively little CPU time, although some are not solved after 24  h. A 
detailed look at the runtime is provided in the “Runtime” section of the Appendix.

5.2  Simulation

For each service that is created by Phase 1 and 2 models, we simulate the resulting 
schedule to evaluate the impact of the varying service levels on “actual” costs and 
reliability, imitating operations of individual service runs. The purpose of the simu-
lation is to analyze the impact of the stochastic travel time information and the pos-
sibility of adapting speeds to fulfill service levels in liner shipping network design. 
From a tactical perspective, the optimization models can create liner shipping ser-
vices considering uncertainty through chance constraints as presented in Sect.  4. 
From an operational perspective, the simulation now tries to realize the optimal 
plans from the tactical level. We imitate that by drawing random travel times as an 
input for the realization of a service. We let the simulation react with speed adapta-
tion according to the same degrees of freedom and cost parameters as our math-
ematical models, which causes differences to the planned speeds and to the planned 
variable sailing costs. Then, we can directly compare the planned costs (from opti-
mization) with the “actual” realized costs (from simulation) for the different optimi-
zation models.

To create this simulation, for each arc of a service, we sample the travel time 
between ports using the ll3p distribution that has been fit to the particular OD pair 
as discussed in Sect. 3. If the sampled travel time for an arc would cause a delay at 
the destination port, the simulation increases the speed of the vessel (and reduces 
the travel time) to make up for the delay, inducing higher sailing costs. If the sam-
pled travel time is less than what is required to arrive at the destination port on time, 
the simulation decreases the speed (and increases the travel time) to reduce fuel 
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consumption and save money. Following the degrees of freedom of our optimization 
model in Phase 2, the simulated speed and travel times are limited by the minimum 
and maximum speeds as defined by the vessel type from the LINERLIB. As a con-
sequence, in case of speed ups, the simulated vessel may not be able to make up for 
all of the delay at the destination port. The remaining lateness is then propagated 
to the next arc until the service terminates. We propagate lateness in the simulation 
because, as mentioned earlier, it is hard to anticipate which recourse action would be 
taken at each port where lateness might occur. By letting it accumulate in the simu-
lation, we can easily evaluate the quality of the tactical planning and get an idea of 
the worst case performance of the service.

More formally, the simulation creates individual services runs from an opti-
mized schedule (including order of ports, scheduled departure and arrival times at 
ports, and optimized speeds [only Phase 2]) as provided by Phase 1 and Phase 2 
optimization models. The discrete-event simulation process is as follows:

1. For each arc between ports i and j, a travel time trand
ij

 is sampled from the appropri-
ate travel time distribution. For the ll3p distribution, if trand

ij
> 10𝜇ij , where �ij is 

the empirical mean travel time from i to j, then trand
ij

 is set to 10�ij . We truncate 
the ll3p-generated travel times because the fitted ll3p distributions often yield a 
very long tail, inducing unrealistically long sampled travel times. Even if such a 
long travel time may occur in practice, e.g., due to a storm or a port strike, we 
would not be able to deal with these by means of a more reliable schedule or an 
adaption of speeds on a tactical planning level. In these cases, ports would need 
to be skipped and other significant changes would need to be made, which we do 
not want to consider here to allow for a fair comparison between tactical planning 
and operations.

2. The delay at port j when sailing from i to j is computed as eij ∶= −(ts
j
− trand

ij
− te

i
) , 

assuming that departure is at te
i
.

3. To determine the arc-specific speed �ij that a vessel would need to sail to arrive 
at port j on time, the simulation computes the sailing duration as follows: 

 Here, we assume that today’s sailing time between two ports i and j is random, 
but known when leaving port i so we can react with an optimized speed level. 
Implementing the idea of minimum and maximum sailing times from Con-
straints (22), the sailing duration is restricted by minimum and maximum sailing 
times: 

 Finally, the arc-specific speed can be derived from the distance between the 
ports Δij , resulting in 

�ij = ts
j
− (te

i
+ eij).

tMin
ij

≤ �ij ≤ tMax
ij

.
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4. In case of a large positive delay, the resulting speed up may still not be enough 
to achieve an on-time arrival, and the remaining delay will then be propagated to 
the next arc.

Let us look at a numerical example for a schedule with ts
j
= 1471.0 , te

i
= 918.0 and 

scheduled travel time of 549.71. The sample travel time from ll3p distribution is 
trand
ij

= 558.786. Next, eij = −(1471.0 − 558.786 − 918.0) = 5.786 . Last, 
�ij = 1471.0 − (918.0 + 5.786) = 547.214 , i.e. �ij = 9345.0∕547.214 = 17.08. The 
simulation is coded in Java 8 and run on a 64-bit Windows 10 machine. We run 
100,000 simulations per schedule.

5.3  Results

First, we present the results of computational experiments for Phase 1 and Phase 2 
models including the results of the simulation. We then provide the results from 
experiments with the Phase 3 model.

�ij = Δij∕�ij.
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5.3.1  Phase 1 and 2 results

Figure 3 presents the simulation results for Phases 1 and 2. Detailed results concern-
ing variable and fixed costs are provided in the “Detailed Phase 1 and 2 simulation 
results” section of the Appendix. Figure 3a compares the average optimal number of 
vessels for the different instances and phases. For the standard instances, the num-
ber of vessels required for ll3p with 95% service level is almost double the num-
ber in the deterministic results (17.64 vs. 9.73). For the tight instances, the vessels 
required for ll3p with 95% service level are slightly more than double the number in 
the deterministic results (17.86 vs. 8.68). The average number of vessels is slightly 
larger for the tight instances than for the standard instances except when service lev-
els are considered. This indicates the deterministic solutions do not have many natu-
ral buffers in the solutions.

Figure 3b displays the results of the simulations with the different travel time dis-
tributions with regard to average hours of lateness at ports. It is obvious that plan-
ning in a deterministic way leads to a significant amount of lateness on average, 
especially for the tight instances (up to 43 h in Phase 1 and up to 32 h in Phase 2). 
Interestingly, optimizing for speed levels (Phase  2) produces schedules that help 
reduce the average amount of lateness. However, the best option to reduce lateness is 
the inclusion of buffers. With norm 0.7 or ll3p 0.7 optimized schedules, lateness can 
be reduced significantly. Considering the long tail of the ll3p distribution, planning 
with a buffer based on ll3p 0.9 makes lateness almost disappear, of course at the cost 
of a large number of required vessels. Here, the value of the more realistic distribu-
tion, especially its long tail, comes into play for all instances and phases.

Finally, Fig. 3c visualizes the total simulated costs, which include variable costs 
arising from realizing schedules by simulation and fixed vessel costs provided by 
optimization. This metric yields the operational costs and should match the total 
costs of tactical planning in an idealized setting. The total costs increase by 49% for 
the standard and 61% for the tight instances. For almost all instances and phases, a 
higher service quality comes at a higher total cost, mainly due to the larger number 
of required vessels. For Phase 2, the variable sailing costs decrease for all instance 
types, and the number of vessels remains close to the values found in the Phase 
1 optimization results. The average planned tactial speed level drops from 16.5 or 
17 knots in Phase 1 to as low as 12.46 knots with the ll3p 0.95 service level. Inter-
estingly, for standard instances in Phase 1, including buffers based on ll3p 0.7 can 
reduce total simulated costs a bit compared with the deterministic schedule. Enforc-
ing a high service level based on ll3p 0.95 increases total costs greatly, though.

5.3.2  Phase 3 results

The main difference between Phase 3 and Phase 2 is the inclusion of revenue gen-
eration and transit time limitations for container demands. For our experiments, 
we focus on how much demand is carried under different service guarantees with 
these new limitations. Table 3 shows the percentage of total available demand car-
ried for various ll3p service levels, along with the average increase in port-to-port 
travel time over the deterministic Phase 3 model solution. We provide results for 
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Table 3  The percentage of total cargo carried in the Phase 3 model and increase in port-to-port transit 
times over the deterministic solution for several service levels using the ll3p distribution

Service Cat. Cargo carried (%) Transit time increase (%)

LL LL 1.5 LL LL 1.5

Det 0.7 0.9 0.95 Det 0.7 0.9 0.95 0.7 0.9 0.95 0.7 0.9 0.95

abx S 93 86 70 69 100 97 80 76 11 956 1446 9 854 1173
T 97 81 73 73 99 97 80 76 93 133 237 125 1132 289

aesa S 78 32 22 20 97 78 38 36 44 102 163 21 109 161
T 78 22 22 22 97 78 36 32 74 134 187 37 111 179

awe1 S 39 15 14 14 79 40 39 22 42 107 149 102 169 188
T 39 16 16 15 42 39 26 26 26 45 96 162 206 253

awe2 S 15 15 15 13 29 16 16 15 12 − 1 35 30 38 69
T 15 15 15 13 36 18 16 15 11 − 1 32 34 56 70

awe3 S 19 11 6 6 36 19 15 10 67 125 192 47 75 132
T 18 10 8 8 38 16 13 10 103 136 167 68 102 158

awe4 S 31 11 8 8 38 31 21 21 63 173 278 128 134 197
T 21 20 12 8 36 31 21 19 13 93 257 76 109 202

awe8 S 11 8 8 2 34 10 11 8 252 307 422 148 201 271
T 11 6 5 2 35 18 12 10 238 122 473 51 99 143

cen S 79 16 7 7 100 72 65 58 68 90 144 20 55 93
T 72 11 11 7 100 69 62 40 99 134 145 36 76 200

ces S 90 47 45 43 93 83 65 59 161 201 247 73 176 150
T 62 28 6 6 93 76 72 69 55 143 192 30 51 78

ese S 70 15 14 10 85 85 42 28 33 87 98 0 42 57
T 63 18 14 14 85 68 61 60 122 153 172 54 63 91

fal1 S 88 44 44 7 100 83 77 47 75 109 193 33 75 145
T 79 28 18 18 100 77 67 45 86 113 212 31 78 160

fax S 99 35 33 33 100 99 67 64 28 123 260 52 111 226
T 100 33 33 1 100 99 67 34 74 107 196 40 115 165

fwas S 98 69 35 15 99 99 74 57 19 210 328 5 68 100
T 98 76 36 11 99 100 74 57 37 105 332 140 256 375

fwax S 60 30 20 12 81 79 57 39 72 94 188 71 329 357
T 61 30 20 12 81 80 73 73 86 76 154 37 166 266

ne2 S 81 41 38 38 98 87 74 60 155 207 268 34 150 230
T 83 47 45 38 97 83 75 59 35 215 188 25 138 173

ne6 S 77 12 8 7 98 97 70 53 79 179 213 41 232 391
T 76 27 20 7 98 83 71 53 58 83 186 47 242 401

ne7 S 82 47 58 38 98 84 77 63 30 245 215 28 109 208
T 83 37 28 28 98 86 67 63 71 96 128 26 166 208

psw1 S 45 1 1 0 100 40 40 39 49 76 92 27 43 60
T 40 1 1 1 100 40 39 32 76 93 93 42 59 79

psw5 S 64 22 22 2 96 74 64 62 66 114 138 45 89 145
T 29 2 2 2 94 33 25 24 209 340 528 61 125 181
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two different settings of maximum transit times. The “LL” results use the maximum 
transit time for container demands as listed in the LINERLIB, whereas “LL 1.5” 
uses the LINERLIB maximum transit times multiplied by 1.5. As in Phases 1 and 
2, we evaluate each service with a standard (S) and a tight (T) instance. We provide 
these longer durations because the ones in the LINERLIB are tailored to Maersk 
Line’s network, which is somewhat different than COSCO’s network. The longer 
durations also show how much more demand can be carried when the restrictions 
are relaxed.

Our results show that when using the transit times in the LINERLIB, even a ser-
vice guarantee of 0.7 results in less than half of the containers of the deterministic 
solution being carried on 12 services. The increase in transit times between ports to 
achieve service levels is why cargo is not being carried, as in many cases the transit 
time is over 50% higher for a service level of 0.7. Raising the maximum transit times 
by 50% allows significantly more containers to be transported, resulting in only one 
service where both the S and T variants at the 0.7 service level carry less than half 
of the containers of the deterministic version. We note that in the case of awe2 at 
service level 0.9, the average transit times slightly decrease over the deterministic 
solution due to the selection of a different route.

The message for carriers from these results is clear: implementing a punctuality 
guarantee requires them to either charge higher freight rates to shippers or to con-
vince shippers to accept higher maximum transit times. However, this work provides 
a mechanism for quantitatively assessing how much extra revenue or transit time 
would be necessary to run a profitable service. For example, on the abx service in 
the standard case, the carrier only needs to convince their customers to accept 11% 
longer transit times (on average around the service) for a 70% service guarantee. 
Our model is particularly useful in this respect in comparison to models that do not 
optimize the vessel route, as such models will not yield any insights when adjusting 
transit time limitations or cargo revenues.

Table 3  (continued)

Service Cat. Cargo carried (%) Transit time increase (%)

LL LL 1.5 LL LL 1.5

Det 0.7 0.9 0.95 Det 0.7 0.9 0.95 0.7 0.9 0.95 0.7 0.9 0.95

tas1 S 79 45 39 35 85 70 70 64 73 70 109 82 82 109
T 70 39 39 35 85 70 69 69 55 55 93 81 81 101

wsa S 94 39 37 37 97 86 69 44 163 268 284 50 143 228
T 94 20 17 4 98 86 65 43 169 207 514 43 214 350

wsa2 S 85 57 18 18 95 88 57 50 22 115 154 227 447 470
T 87 58 18 18 95 86 53 51 57 161 205 49 225 131
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5.4  Sample service plans

Depending on the optimization model of the particular phase, the resulting sched-
ules may differ significantly, even when total costs are similar. We present some of 
the created schedules to understand the impact of the different assumptions on them.

Figures 4a–d compare the optimal schedules for the different phases of service 
awe3 (standard). This service connects ports in North America with ports in East 
Asia. In Fig. 4, the dashed line reflects the result of the corresponding deterministic 
optimization, and the solid blue line shows a given service level. The sequence num-
ber for each port is shown in a box with a color matching either the deterministic or 
0.7/0.9/0.95 service level solution. For Phase 1 (see Fig. 4a), the optimal determinis-
tic port order is HKG–YTN–KHH–SHA–PUS–SAV–CHS–ILM–PCN–ZLO–HKG, 
requiring a total of 11 vessels and sailing costs of $2.871 million per rotation. 
Including buffers based on ll3p 0.9 completely changes the order of the ports in the 
optimal schedule, increasing the number of vessels to 16 and slightly reducing sail-
ing costs to $2.837 million per rotation. Simulation of these schedules reveals a sig-
nificant reduction of the speed ups required to ensure punctuality (from 40 to 4%). 
Interestingly, although a high service level means investing in a large number of ves-
sels, due to slow steaming, the simulated sailing cost is so small that the simulated 
total costs can be reduced a bit ($7.264 million for deterministic vs. $7.072 million 
for ll3p 0.9).

The results of optimization of this instance for Phase 2 can be seen in Fig. 4c. 
Both schedules are different from their Phase 1 counterparts in the order of port vis-
its, and the schedules operate in opposite directions. The number of vessels remains 
constant compared with Phase 1, but the optimized and realized speeds vary. For 
the deterministic solution, we have a planned average speed of 13.8 knots, and for 
the ll3p 0.9 based solution a value of 12.41 knots. When optimizing speed levels, 
required speed ups can be reduced from 24 to 3%, reducing planned and simulated 
variable sailing costs. However, due to the larger number of vessels, total simulated 
costs increase significantly from 65.14 to 77.35, which is accompanied by an aver-
age reduction of lateness from 2.7 to 0.2 ports per trip.

The Phase 3 solutions show the drop-off in cargo on the individual legs of the 
solution for the 0.9 service level. Both the fronthaul and backhaul see significant 
reductions in containers carried, with service level 0.9 taking 2.6× less cargo on the 
fronthaul and 7.8× less on the backhaul. While many carriers would likely be will-
ing to accept reductions in utilization on the backhaul in exchange for high punctual-
ity guarantees (90% on-time would lead the industry by a significant margin), reduc-
tions in fronthaul utilization are especially bad for a carrier’s profits.

6  Conclusions

We solved the liner shipping service design problem with arrival time service lev-
els. We showed that a three parameter log-logistic distribution fits the journeys of 
liner ships better than other distributions, such as the uniform or normal distribu-
tion, that were previously used in the literature. Our mathematical models of the 
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service design problem use chance constraints to ensure that vessels arrive on time 
from a tactical planning perspective. Simulation of schedule operations allows for 
the comparison of planned total costs with “actual” total costs. Despite modelling a 
realistic version of service design, the model is nonetheless computationally tracta-
ble with a state-of-the-art mixed-integer programming solver. Our results show that 
services can be designed with on-time guarantees and that the route a vessel takes 
heavily influences the service level required. Furthermore, our model allows carriers 
to quantitatively assess what level of service they wish to offer and can support them 
during negotiations with shippers over prices and container transit time limitations.

This model provides a basis for several directions of future work. First, more 
detailed disruption recovery actions could be considered not only in the simulation 
of the model solution, but also in the model itself. Actions such as skipping ports 
or not fully loading/unloading containers when severely delayed could be included, 
however these would likely make the model significantly harder to solve. Further-
more, faster solution techniques could be considered such as branch & price or heu-
ristic approaches. These would make the model more useful for operational decision 
support when negotiating berthing windows with terminals. Finally, time windows 
could be made optional, i.e., instead of a planner specifying time windows, the 
model could determine optimal time windows that the planner could then attempt to 
negotiate with a terminal.

Acknowledgements We thank the Paderborn Center for Parallel Computation (PC2) for the use of their 
high throughput cluster for the experiments in this work. We further thank Stefan Guericke for his advice 
and comments regarding this work.
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Appendix: Additional computational results

Runtime

Our mathematical model is solved in most cases relatively quickly using the Gurobi 
solver. Figure 5 shows the number of instances solved at each point in time over 24 h 
of runtime. In Phase 1, all 44 instances can be solved within a couple of hours, with 
the vast majority solved in only a few minutes. The inclusion of speed optimiza-
tion in Phase 2 increases the difficulty of the model, however we note that nearly 
all of our instances are solved within 10 h regardless of the service level desired. In 
Phase 3, the difficulty increases due to the extra freedom of the model to optimize 
the cargo intake. Here, we are able to solve over half of the instances within the first 
hour, with all but four instances solved before the timeout in the deterministic case, 
and all but two instances for ll3p 0.95. For planning services that have a lifespan of 
months or even years, a runtime of 24 h or more is acceptable.

Detailed Phase 1 and 2 simulation results

In Table  4, we present averaged results for Phase 1 and 2 models grouped by 
standard and tight instances. The first column is the service level and the second 
column specifies the group of instances. The next three columns present results 
from the Phase 1 optimization (tactical perspective). The column “Ves” repre-
sents the number of vessels required for a service, “Var” is the variable sailing 
cost, and “Total” gives the total costs including variable and vessel costs from the 
optimization. Recall that all Phase 1 optimization runs assume the vessel sails at 
the design speed. The next five columns represent the averaged results from the 
100,000 simulations of each schedule (operational perspective). This includes the 
variable sailing costs (“Var”), the number of late ports per service that remains 
in spite of speed ups (“# Late”), the average hours late per port when arrival to a 
port is late (“Late/p”), the percent of the time the vessel sailed above the design 
speed (“Faster”), and the average speed traveled in the simulation (“Spd”). The 
simulation assumes the use of the number of vessels selected by the optimiza-
tion, which is why the total cost in the simulation is not reported. For Phase 2, 
the same results are reported. For the optimization, the additional column “Spd” 
shows the average speed level chosen by the optimization, which allows for 
a comparison of tactical and operational speed levels. We report the full set of 
Phase 1 and Phase 2 results in the electronic appendix.
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