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Abstract
Intercontinental liner shipping services transport containers between two continents. 
This paper forecasts the number of containers to be transported through long-haul 
legs for the incoming trip of an intercontinental shipping service. Considering the 
clear and unique container slot booking patterns in the historical data, three differ-
ent forecasting models are developed, including piecewise linear regression model, 
autoregressive model, and artificial neural network model. These three models are 
further combined into an integrated model to simultaneously incorporate their mer-
its in formulating the container slot booking patterns. Test results show satisfactory 
forecasting precisions of the integrated forecasting model.

Keywords  Container slot booking · Demand forecasting · Liner shipping · 
Intercontinental shipping service

1  Introduction

The intercontinental container liner shipping service, also called the long-haul ser-
vice in some literature, is defined as the cyclic shipping route covering ports belong-
ing to more than one continent, with fixed port rotation and visiting schedule fol-
lowed by a series of similar container ships (Wang et al. 2018). Figure 1 depicts a 
typical example of the intercontinental service, CC1 from the former G6 Alliance. 
This service covers 4 Asian ports including Qingdao, Shanghai, Kwangyang and 
Pusan and 2 North American ports including Los Angeles and Oakland. Follow-
ing the traditions of the liner shipping industry, an intercontinental shipping service 
consists of two types of shipping legs, the “Intracontinental Port (IP)” leg with the 
departure and arrival ports within the same continent (e.g., the leg from Qingdao to 
Shanghai in CC1) and the “Long Haul (LH) leg” that connects two continents (e.g., 
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the leg from Pusan to Los Angeles in CC1). Despite the cyclic route for a service, a 
starting port (e.g., Qingdao in CC1) is often selected for the convenience of the ship-
ping company. Hence, the direction from the continent containing the starting port 
to the other continent is defined as “Head Haul (HH)” direction, while the reverse 
is defined as the “Back Haul (BH)” direction. The two LH legs are further classi-
fied as “HH leg” and “BH leg” depending on the directions they belong to. In addi-
tion, a complete round trip completed by a container ship in this service is called a 
“voyage”.

To satisfy the container shipping demand, before the start of each ship voyage, 
the liner shipping company usually opens available container slots of the ship for 
customers booking several weeks ahead. If a customer wants to transport his cargos 
to the destination port on the other continent by this ship voyage, he first contacts 
the company to book container slots for the containers. Then the shipping company 
accepts the booking, and lets the customer load his cargos into the containers and 
deliver them to the container yard before the gate-in time. Finally, after the gate-in 
time, the containers are loaded to the ship and are transported to the destination port 
for customer collection. The whole procedure can be intuitively shown in Fig. 2. We 
call the time interval between the booking opening day and the ship gate-in day the 
“booking period” of this voyage meaning that the shippers can freely book and can-
cel the container ship slots during this period; after this period, no bookings can be 
accepted or cancelled for this voyage. The length of the booking period varies from 
one to several months. The gate-in date is usually quite close to the ship departure 
date, usually 1 or 2 days before the ship departure.

During the booking period of each voyage, the shipping company would like to 
know the amount of containers transported by this voyage in an intercontinental ship-
ping service, which is often used to support many tactical/operational decisions in the 

Fig. 1   Service CC1 from G6 alliance
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decision support system of a shipping company, such as capacity exchange in alliance, 
empty container relocation between continents, and container freight rate adjustment, 
all of which are vital to the profitability of the shipping company. However, as the cus-
tomers can freely book and cancel the container slots during the booking period, this 
value fluctuates and is unknown until the gate-in time. Therefore, during the booking 
period, there remains a problem how to predict this finalized slot booking amount that 
will be transported by this incoming voyage. As the intercontinental service mainly 
transports containers across different continents, this problem can be also defined as: 
how to predict the realized shipping demand actually transported through the HH and 
BH legs respectively, based on the currently arrived booking information during the 
booking period. Note that here we actually aggregate the ports in the same continent 
and assume the same booking period for these ports. This is reasonable because the 
sailing durations between the ports in the same continent are usually quite small com-
pared with those in the LH legs. It is also an industry practice to aggregate the demand 
from the ports in the same continent because it has more stable pattern and is easier to 
forecast than that from a single origin and destination (OD) port pair. Also noted that 
we separately forecast the demands through the HH and BH legs. This is because the 
demands through these two legs have the opposite origin and destination continents and 
are thus almost unrelated. In addition, the booking period for the HH and BH legs in 
the same voyage are also considered different because of the long sailing time between 
these two continents.

This paper thus solves the container slot booking forecasting problem for an 
intercontinental shipping service, that is, during the booking period of each ship 
voyage, how to predict the realized container slot booking amounts through the LH 
legs by the incoming voyage based on the current booking information for this voy-
age and the historical data for the completed voyages belonging to the same service. 
An integrated container slot booking forecasting method is developed in this paper. 
This method combines the predictions from the different forecasting models such 
as piecewise linear regression (PLR) model, autoregressive (AR) model and artifi-
cial neural network (ANN) model by assigning weights to these models. Test results 
show the satisfactory forecasting precision of this forecasting model.

The remainder of this paper is organized as follows. In Sect.  2, we review the 
literature on demand forecasting and analyse the uniqueness of demand forecasting 
in the intercontinental liner shipping services. In Sect. 3, we introduce the demand 
forecasting problem considered in this study. In Sect.  4, the tangible forecasting 
method is developed. The demand forecasting procedure, as well as the model build-
ing and training technique, are also presented in this section. Section 5 tests the effi-
ciency of the developed forecasting model on the real-case container slot booking 
log data. Section 6 gives the conclusions of this study.

2 � Literature review

This topic belongs to the area of the container shipping demand forecasting, which 
can be divided into the aggregate-level forecasting and the disaggregate-level fore-
casting. The aggregate-level forecasting focuses on the long-term variation of the 
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total number of containers, such as forecasting the annual container throughput of a 
port. On the other hand, the disaggregate-level forecasting deals with the short-term 
variation of the container shipping demand for a specific service, which is the focus 
of this study. Currently, lots of studies focusing on the aggregate-level forecasting 
for the container shipping demand including Chen and Chen (2010), Fung (2001), 
Gao et al. (2016), Peng and Chu (2009), Russo and Musolino (2013), Tavasszy et al. 
(2015), Winston (1981), Woo et al. (2016) and Xie et al. (2013). For example, Fung 
(2001) used a vector error correction time series model (VECM) with structural 
identification to forecast the demand for container handling services and analyzed 
the competition between Hong Kong and Singapore in the East and Southeast Asian 
market. Tavasszy et al. (2015) investigated the modeling methods and techniques for 
the analyses of the future global container shipping demand. However, as far as we 
are concerned, there exist no studies discussing the disaggregate-level forecasting on 
the container slot booking. This reveals the necessity to study the disaggregate-level 
container slot booking forecasting for intercontinental liner shipping services.

As a matter of fact, the disaggregate-level demand forecasting has been exten-
sively discussed in the land and airline transportation. For example, in the truck 
freight transportation, Garrido and Mahmassani (2000) modeled the freight trans-
portation demand for the truckload carrier by means of the space–time multinomial 
probit model for the tactical and operational plannings. This model considers spa-
tially and temporally correlated error structure. In the study by Al-Deek (2002), the 
back-propagation (BP) artificial neural network (ANN) model and time series model 
were combined to forecast the inbound and outbound heavy truck movement using 
the vessel freight data. Nuzzolo and Comi (2014) developed the demand forecast-
ing models to estimate the Origin–Destination matrices by the transport service, 
the delivery time period, the tour departure time and the vehicle type. The airline 
industry is the most successful area for the disaggregate-level demand forecasting 
and modeling. The earliest study can be traced back to the work by Beckmann and 
Bobkoski (1958), which examined Poisson, Negative Binomial and Gamma distri-
butions for the stochastic passenger arrivals and concluded that Gamma distribution 
best fits the data. After that, many studies formulated the airline passenger arrival 
pattern as the general point process (Gallego and van Ryzin 1994, 1997; Li and 
Sheng 2016) and different versions of Poisson process, such as non-homogeneous 
Poisson process (Lee 1990; Zhao 1999), stuttering Poisson process (Rothstein 1968, 
1971) and censored Poisson process (Lee 1990). For a comprehensive review on the 
airline demand modeling and forecasting, we here recommend the review by McGill 
and van Ryzin (1999).

However, in spite of the sufficient studies conducted in the land and airline trans-
portation, the following characteristics of the liner container shipping make the con-
tainer slot booking forecasting a worthy research topic:

1.	 Due to the large capacity of a container ship (up to several thousands of TEUs), 
compared with the airline and land transportation, the booking amount from a 
single customer varies more widely, ranging from a few TEUs to tens of TEUs. 
At the same time, the canceling behaviors of the customers are quite unique. 
Some customers cancel their bookings completely while some customers cancel 
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part of their bookings. According to our preliminary study with a global shipping 
company, a considerable percentage of customers choose to cancel half of their 
bookings during the booking period. Moreover, some customers even recover 
their bookings after their bookings have been canceled. This increases the chal-
lenge in modeling the customer booking behaviors.

2.	 In the airline seat booking, the seats are classified into different classes by the 
airline operators, such as first class, business class and economic class, each 
with specific fare and service level. However, in the liner shipping industry, the 
services are more customized. For example, the freight rate is usually determined 
through the negotiation between the customers and sale department of the liner 
shipping companies. Customers are also different in their container handling 
priorities, such as the timeliness in handling the delayed containers. Thus, it is 
generally hard to classify the customers into different classes.

3.	 In the airline seat booking, the customer may be charged a penalty if he decides to 
cancel his booking. However, in the liner shipping industry, customers can cancel 
their bookings without any penalty. This also leads to high canceling rates and 
large variations in the realized demand.

In the airline demand forecasting, the customer booking arrivals can be formulated 
as different analytical distributions or stochastic processes, such as Poisson distribu-
tion, as is mentioned in above paragraphs. However, for the liner shipping industry, due 
to the above three reasons, we find it hard to formulate the customer booking/cance-
ling behaviors as specific analytical distributions and stochastic processes from the real 
booking data. On the other hand, it is interesting to observe that similar patterns exist 
in the container slot booking among different directions in different services. Figure 3 
shows the variations of the container slot booking levels for different voyages in two 
directions, HH and BH, of an intercontinental service, within 28 days before the gate-
in day. Each line in the subfigure represents the container slot booking of a voyage for 
the corresponding direction during its booking period. It can be seen that, for the two 
directions, HH and BH, the container slot booking amount generally increases in early 
days of booking period, reaches the peak and decreases near the gate-in time. This can 
be explained that when the shipping company starts accepting slot bookings, the book-
ing arrival rate is much higher than the canceling rate. Hence, the cumulative booking 
will increase fast. For the days quite near the gate-in time, however, more bookings 
are canceled. As a result, the cumulative booking level will increase more and more 
slowly or even decrease near the gate-in time. In this study, the pattern existing in the 
container slot booking data is used for the forecasting model development to predict 
the booking levels for future voyages. At the same time, it can be also observed that the 
exact patterns for the two directions, HH and BH, are different (see Fig. 3). Therefore, 
to give precise results, the forecasting models are separately developed for these two 
directions, based on the exact pattern in each direction.
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3 � Container slot forecasting

Consider a liner shipping company that intends to forecast the realized shipping 
demands in both directions, HH and BH, for the intercontinental shipping services 
during their booking periods. According to the industrial practice, for each intercon-
tinental shipping service, the shipping company usually starts forecasting when there 
are T days remaining in the booking period instead of forecasting across the whole 
booking period, where T is smaller than the booking period length. For example, the 
booking period can be as long as several months while T is often within 1 month. 
This is because, at the beginning of the booking period, the booking amount is too 
small to show a strong pattern. In addition, predicting a value too long time ahead 
usually incurs large errors and is thus unreliable. The days for the demand predic-
tion can thus be expressed as t ∈ {−T ,−T + 1,… ,−1} . t = −T  means the day when 
shipping company starts prediction, and t = 0 means the gate-in day of the voyage 
when the bookings will no longer be accepted or canceled for this voyage.

The shipping company has the historical data depicting the variations of the con-
tainer slot booking levels across the booking periods for all completed voyages in 
this service (see Fig. 3 as an example). Denote by V the set of all completed voy-
ages in the historical data. For each voyage v ∈ V  , denote by xHH

v
(t) and xBH

v
(t) the 

cumulative slot booking levels for the two directions, HH and BH, respectively on 
the day t ∈ {−T ,−T + 1,… ,−1, 0} . This cumulative container slot booking level 
is calculated as the total amount of the arrival slot bookings minus the total amount 
of the bookings canceled by the customers from the start of the booking period day 
T to the day t. It is thus easy to know that the finalized slot booking level (or the 
realized container shipping demand) after the booking period is equal to the cumula-
tive container slot booking level on day 0, i.e., xHH

v
(0) and xBH

v
(0) , ∀v ∈ V  . This is 

because, after the gate-in day t = 0 , no bookings can be accepted or canceled. The 
slot booking level is thus fixed.

Based on the above illustrations, the problem considered in this study can be 
elaborated here. For the incoming ship voyage v0 in an intercontinental service, on 
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each day tv0 ∈ {−T ,−T + 1,… ,−1} of its booking period, we can collect the cur-
rent booking information, i.e., the cumulative booking value, xHH

v0
(t) and xBH

v0
(t) from 

the day t = −T  to t = tv0 . At the same time, we also have the historical slot booking 
data of the completed ship voyages in this service, i.e., xHH

v
(t), xBH

v
(t) , for all 

t ∈ {−T ,−T + 1,… ,−1} and v ∈ V  . In this regard, the forecasting problem in this 
paper considers, on each day tv0 ∈ {−T ,−T + 1,… ,−1} of the booking period of 
the incoming shipping voyage v0 , how to predict the finalized container slot booking 
demand xHH

v0
(0) and xBH

v0
(0) for the two directions, HH and BH, respectively, based 

on the historical booking log data xHH
v

(t), xBH
v

(t), ∀t ∈ {−T ,−T + 1,… ,−1, 0};v ∈ V  
and the currently arrived demand information xHH

v0
(t), xBH

v0
(t) ∀t ∈ {−T ,−T + 1,… , t

v0} 
of the voyage v0 . This means that we need to establish a series of forecasting models 
for tv0 ∈ {−T ,−T + 1,… ,−1} that map xHH

v0
(t) and xBH

v0
(t) to xHH

v0
(0) and xBH

v0
(0) , for 

the two directions, HH and BH, respectively, namely:

where x̂k
v0
(0, tv0) stands for the prediction of the revealed container booking demand 

made on the day tv0 for direction k using the arrived container slot booking data from 
the day t = −T  to t = tv0 . f ktv0(⋅) is the forecasting model for the prediction made on 
the day tv0 for direction k which can be calibrated from the historical booking data 
xHH
v

(t), xBH
v

(t); t ∈ {−T ,−T + 1,… ,−1, 0}, v ∈ V  . Note that, in Eq.  (1), we 
separately forecast the finalized container slot bookings for the two directions, HH 
and BH. The value of tv0 is also determined separately for each direction based on its 
own gate-in day. Equation (1) can be intuitively depicted in Fig. 4.

4 � Forecasting model building logic

In order to solve the problem defined in Sect.  3, an integrated forecasting model 
is developed, which combines several different forecasting models (called “member 
models”) by calculating the weighted average of all these models. Hence, this inte-
grated model is able to reflect the merits of these member models in formulating the 
patterns of the container slot bookings existing in the historical data. We first briefly 
introduce these member models. We then show how to build the integrated model 
and give procedures to use this model for prediction. In addition, some key tech-
niques concerned with this model, such as the model calibration methods and the 
weight determination methods for these member models are also introduced.

In this study, three member models are considered, i.e., the PLR model, the AR 
model and the ANN model. The reasons for choosing these three models are illus-
trated as follows. As is mentioned in Sect.  2, the variations of the container slot 
booking levels across different voyages share similar patterns. The PLR model is 
used to formulate the general trend of the slot booking data as a piecewise linear 
function. The PLR model can be viewed as a macro level forecasting model on the 

(1)x̂k
v0
(0, tv0) = f k

tv0
(xk

v0
(t), t = −T ,… , tv0); tv0 ∈ {−T ,−T + 1,… ,−1}, k ∈ {HH,BH}
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finalized container slot booking amount. The ANN model is also widely used in 
forecasting. It is able to directly model the relationship between the container slot 
booking level on each day of the booking period and the finalized container slot 
booking amount for each voyage in a service. Therefore, it can be viewed as a meso 
level forecasting model. In addition, it is also able to model the effect of unknown 
or unclear factors on the forecasting results. Finally, the AR model is a time series 
model to represent the effect of the previous values on the current value. It reflects 
the deviations of the container slot booking levels away from the general trend rep-
resented by PLR. It can be viewed as a micro level forecasting model on the final-
ized container slot booking amount. We can see that these three models focus on 
the slot booking predictions from three different levels, i.e., macro level, meso level 
and micro level, respectively. Hence, the integrated model combining all these three 
models is able to give predictions simultaneously reflecting the characteristics of the 
container slot booking from all three levels. The integrated forecasting model can 
be shown in Fig. 5. In this model, the prediction result is calculated as the weighted 
average of the predictions from these three models, which can be expressed as

where x̂k
v0
(0, tv0) is the prediction result of the integrated model in Eq. (1); x̂k

vo,i
(0, tv0) 

stands for the prediction from the member model i ∈ {PLR,AR,ANN} made on the 
day tv0 ; wk

i
(tv0) is the weight assigned to this member model i ∈ {PLR,AR,ANN} . 

(2)

x̂k
vo
(0, tv0) =

∑
i∈{PLR,AR,ANN}

wk
i
(tv0)x̂

k
vo,i

(0, tv0); tv0 ∈ {−T ,−T + 1,… ,−1}, k ∈ {HH,BH}
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We can see that the integrated forecasting model is quite flexible, i.e., the forecasting 
models used in the integrated method are not exclusive. Other forecasting models 
can be easily embedded into this forecasting framework by means of the integrated 
model training method developed in this paper, if readers consider them helpful 
for precise prediction (and their contributions will be reflected by the weight deter-
mined in the modelling training method).

It should be noted that, to capture the time-varying performance of each model 
across the booking period, the weights wk

i
(tv0) in Eq. (2) are day-based, which means 

that the weights assigned to these three models may not be the same on the different 
days during the booking period. In addition, seasonality also has a significant effect 
on the container slot demand level. For example, the number of laden containers 
from Asia to Europe often increases significantly in the fourth quarter of each year 
(Meng and Wang 2011). In order to incorporate the effect of seasonality on the fore-
casting results, a time window is maintained for the historical data. When the book-
ing data of newly finished ship voyages are available, the time window moves for-
ward to incorporate these new data and to remove too old data. The member models 
are retrained with their weights recalculated for the subsequent forecasts in a rolling-
horizon manner. Also noted that the appropriate time window may vary service by 
service according to the characteristics of the service considered. For example, by 
default, the time window can be set as 3 months to reflect the seasonal changes in 
the container shipping demand. For the service with a stable pattern across different 
seasons, this time window can be expanded in order to incorporate more data for a 
more precise prediction. On the contrary, if service has large variations in differ-
ent seasons, the time window should be shortened so that only the data from the 
recently completed voyages are included to reflect the up-to-date trend of the ser-
vice. The whole process including model training and forecasting is shown in Fig. 6.

The remaining content in this section illustrates how to calibrate the integrated 
model (as is highlighted by the dotted line in Fig. 6) including the training method 
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for the member models (PLR, AR, and ANN) and the weight determination method 
for these three models. Finally, a step-by-step forecasting procedure is presented.

4.1 � Member model training

4.1.1 � Piecewise linear regression (PLR) model

To reflect the pattern shown in the cumulative container slot bookings, the piecewise 
linear regression (PLR) method is adopted. The PLR, also the called segmented 
regression, is a regression technique to fit the data with a piecewise linear function. 
The piecewise function with n breakpoints (or equally, n + 1 line segments) for the 
container slot booking for the direction k ∈ {HH,BH} can be expressed as

where �� ∶= [�k
1
,… , �k

n
] and �� ∶= [�k

0
,… , �k

n+1
] are parameters to be estimated; t 

is the independent variable representing the day before the gate-in day; Sign(⋅) is a 
sign function, i.e.

It can be easily seen that �k
1
,… , �k

n
 represent the n breakpoints of the piecewise 

linear function. The parameters �� and �� can be estimated by minimizing the sum 
of squared errors (SSE) of the function (3), f k

PLR
(t) , with respect to container slot 

booking data value, xk
v
(t) . That is

It can be observed that this minimization model is nonconvex and nonsmooth 
due to the existence of the function Sign(⋅) . Thus in order to obtain the global opti-
mal solution, the genetic algorithm (GA) is used. As the number of variables in this 
problem is not very large (e.g., six variables for PLR with two break points and three 
line segments), GA is able to find the solution quite close to the global optimal solu-
tion in a reasonable time. We will not present here the detailed procedure of the GA 
due to the length of this paper. By solving the minimization model (5), the piecewise 
linear function can be determined.

(3)
f k
PLR

(t) = �k
0
+ �k

1
t +

n∑
i=1

�k
i+1

(t − �k
i
)sign(t − �k

i
);

t ∈ {−T ,−T + 1,… , 0}, k ∈ {HH,BH}

(4)Sign(x) =

⎧⎪⎨⎪⎩

1, x > 0

0, x = 0

−1, x < 0

(5)min
��,��

SSEk =

−1∑
t=−T

∑
v∈V

(
xk
v
(t) − f k

PLR
(t)
)2
; k ∈ {HH,BH}
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Another question related to the PLR model is how to choose the proper number of 
line segments. Too small number of segments does not sufficiently represent the trend 
of the slot booking levels. On the other hand, the excessive line segments cause over-
fitting problem, which also severely affects the prediction precision. In this study, we 
select the number of line segments according to the Akaike’s Information Criterion 
(AIC). The AIC simultaneously combines the information theory, maximum likelihood 
theory and the entropy of information in model assessment. The model with lower AIC 
value is believed to better represent the actual patterns of the container slot booking 
(Motulsky and Christopoulos 2004). The AIC value of the PLR model for direction 
k ∈ {HH,BH} can be calculated as

where Nk is the total number of data points used in the PLR model; SSEk is the opti-
mal sum of squared errors in the optimization problem (5); n is the number of break-
points for the piecewise linear function. To find the proper number of line segments, 
for each direction k ∈ {HH,BH} of a service, we calibrate PLR models with the 
number of breakpoints n varying from 1 to 5. Then the PLR model with the small-
est AIC value is selected as the most proper model for PLR forecasting. Also noted 
that there exist some other selection criteria for the number of breakpoints, such as 
BIC and HQIC. These criteria give similar results to AIC in this study and we do not 
illustrate them in detail.

We take the data shown in Fig. 3 as an example, the AICs under different numbers 
of breakpoints are shown in Table 1. For head haul (HH), the PLR with three break 
points has the lowest AIC while, for back haul (BH), the PLR with two break points is 
the best. The piecewise linear functions for BH and HH are given in Fig. 7 and Table 2.  

Based on the PLR model, the finalized container shipping demand can be predicted 
as

where xk
v0
(tv0) is the container slot booking level of the voyage v0 for the direction k 

on the forecasting day tv0 . f kPLR(0) − f k
PLR

(tv0) can be viewed as the incoming booking 
amount from day tv0 to the gate-in time estimated by PLR model.

(6)AICk
PLR

= Nk ln

(
SSEk

Nk

)
+ 4(n + 1)

(7)
x̂k
vo,PLR

(0, tv0) = xk
v0
(tv0) + f k

PLR
(0) − f k

PLR
(tv0); tv0 ∈ {−T ,−T + 1,… ,−1}, k ∈ {HH,BH}

Table 1   AICs for PLR with 
different numbers of breakpoints

The bold number means that it is the lowest value in each row (HH 
and BH)

Breakpoint no. 1 2 3 4 5

HH 3377.80 3341.63 3331.56 3331.98 3334.25
BH 4025.36 4008.02 4009.16 4011.47 4014.71
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4.1.2 � Autoregressive (AR) model

The cumulative booking level can be split into two components, the trend and the fluc-
tuation. The trend can be viewed as a long-term pattern of the cumulative booking for 
all ship voyages, which has been formulated by the PLR model presented in Sect. 4.1.1. 
The fluctuation, on the contrary, represents the short-term effects on the cumulative 
booking. In this study, the autoregressive (AR) model is used to formulate this fluctua-
tion component.

Denote by f k
PLR

(t) the long-term trend value obtained on the day 
t ∈ {−T ,−T + 1,… , 0} for leg k ∈ {HH,BH} represented by the PLR model in 
Sect.  4.1.1. The fluctuation component, x̃k

v
(t) , contained in historical data can be 

obtained by subtracting the trend value from the real data. This operation is called 
“detrending”.

It should be noted that the long-term trend can be expressed by other models, such 
as moving average model and cubic smoothing spline model (see e.g., Hyndman and 
Athanasopoulos 2014). According to our preliminary tests, these trending models do 
not affect the prediction power of the AR model. The AR model with the order of n 
(i.e., n look-back periods, AR(n)) is expressed as

(8)x̃k
v
(t) = xk

v
(t) − f k

PLR
(t); t ∈ {−T ,−T + 1,… , 0}, v ∈ V

(9)x̃k
v
(t) = 𝛾k

0
+

n∑
i=1

𝛾k
i
x̃k
v
(t − i) + 𝜀; t ∈ {−T + n,… , 0}, v ∈ V
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Fig. 7   Piecewise linear regression results for cumulative booking level. a Head haul and b back haul

Table 2   Parameters �� and �� for the PLR

Param. �k
0

�k
1

�k
2

�k
3

�k
4

�k

1
�k

2
�k

3

HH 523.15 0.94 18.29 − 21.77 − 10.20 − 16.00 − 12.59 − 6.86
BH 579.05 − 5.28 − 7.16 − 14.15 N/A − 19.80 − 7.39 N/A
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where �� ∶= [�k
0
,… , �k

n
] are parameters to be determined and � is the white noise 

term. The parameters �� can be easily estimated by linear regression, or equiva-
lently, by minimizing the sum of squared errors (SSE) for each direction k, i.e.,

As this minimization model is convex, the optimal solution can be precisely 
obtained by the convex optimization algorithms such as gradient method. It should 
be noted that the order of the AR model, n, also significantly affects the prediction 
precision. Observe that the numbers of data points used to calibrate the AR model 
are different for different orders of the AR model. Therefore, different from the PLR 
model, the AIC cannot be used to select the best order of the AR model as it makes 
no sense to compare two AICs with different numbers of data points. In this regard, 
we calculate the p value of the F test in the analysis of variance (ANOVA) for the 
linear regression (10) for each order n ∈ {1,… , 10} and select the best order of AR 
model with the lowest p value.

We take the data in Fig.  3 as an example. First, we remove the trend obtained 
in PLR (see Fig. 7) from the original cumulative booking data. Then we vary the 
order of the AR model from 1 to 10, calibrate the AR model and select the best 
order with the lowest p value. For HH direction, the best order is 1 and �k

0
= 0.1048 

and �k
1
= 0.8912 , with R2 = 0.7985 , and for BH direction, the best order is 1 and 

�k
0
= 0.3263 and �k

1
= 0.8227 , with R2 = 0.7652 . The histograms for white noise 

term � for these two directions are shown in Fig.  8. We also conducted the auto-
correlation analysis for the white noise as shown in Fig. 9. We can see that there 
exist no autocorrelations in the residuals of the AR models. This means that the AR 
model is able to sufficiently reflect the autocorrelations of the booking levels in dif-
ferent time periods. 

After the AR model is calibrated, on each day tv0 , the realized demand for the 
incoming voyage, x̂k

v0,AR
(0) , can be predicted by iteratively calculating the next-day 

(10)min
��

SSEk =

0∑
t=−T+n

∑
v∈V

(
x̃k
v
(t) − 𝛾k

0
−

n∑
i=1

𝛾k
i
x̃k
v
(t − i)

)2

; k ∈ {HH,BH}

Fig. 8   Histogram for the white noise. a Head haul and b back haul
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value using the AR(n) from t = tv0 to t = 0 . The detailed procedure is illustrated as 
follows by taking AR(2) as an example: First, on the day tv0 for each direction k, 
we remove the trend from xk

v0
(tv0) and xk

v0
(tv0 − 1) , i.e., x̃k

v0
(tv0) = xk

v0
(tv0) − f k

PLR
(tv0) 

and x̃k
v0
(tv0 − 1) = xk

v0
(tv0 − 1) − f k

PLR
(tv0 − 1) . Then, we calculate the predicted 

cumulative booking level without the trend for the day tv0 + 1 by Eq.  (9), i.e., 
̂̃xk
v0
(tv0 + 1) = 𝛽k

1
x̃k
v0
(tv0) + 𝛽k

2
x̃k
v0
(tv0 − 1) . We repeat this calculation by using the pre-

dicted value obtained in previous calculations to predict the value for the next day 
until we reach the day t = 0 and get the value ̂̃xk

v0
(0) . Finally, the trend value f k

PLR
(0) 

is added to ̂̃xk
v0
(0) to get the predicted value x̂k

vo,AR
(0, tv0) . The whole process illus-

trated above can generally be represented as follows

4.1.3 � Artificial neural network (ANN) model

The ANN is also used for the container shipping demand prediction. The ANN 
model uses a series of linear relationships to approximate the highly nonlinear and/
or unclear relationship between the input parameters and the explained parameter. 
The readers can refer to the book by Haykin (2009) for the detailed information for 
the ANN. Here, we adopt the ANN model to formulate the relationship between the 
current cumulative booking level and the realized container shipping demand.

For the ANN model used in this study, we consider two input variables, i.e., the 
days before gate-in day tv0 and the cumulative booking level on this day, xk

v0
(tv0) . 

We also consider the output variable to be the cumulative booking level on the 
ship gate-in day, xk

v0
(0) . In addition, the ANN model has single node layer with 10 

nodes, which is enough to represent the relationship between input and output in 
most cases. The configuration of this ANN model is illustrated in Fig. 10. The ANN 
model is trained based on the historical booking data: the input (t, xk

v
(t)) and output 

xk
v
(0) for all v ∈ V  . Due to the length of this paper, we will not introduce how to 

train ANN. The readers can find the training method in the book by Haykin (2009). 
As an example, we take the data shown in Fig. 3 to train the ANN model.

(11)
x̂k
vo,AR

(0, tv0) = f k
AR
(tv0, x

k
v0
(tv0),… , xk

v0
(tv0 − n)); tv0 ∈ {−T + n,… , 0}, ∈ {HH,BH}

Fig. 9   Autocorrelation analysis for the white noise. a Head haul and b back haul
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Figure 11 shows the histogram of the ANN fitting errors of the historical booking 
data on HH and BH directions respectively.

The realized container shipping demand for the incoming voyage v0 , x̂kv0,ANN(0) , can 
be predicted by putting the day tv0 and current cumulative booking level xk

v0
(tv0) into the 

ANN, i.e.,

4.2 � Weight determination

Now we determine the day-based weights in Eq. (2) so as to combine all forecasting 
results from the three models. There exist a series of combination methods, such as 

(12)x̂k
v0,ANN

(0, tv0) = f k
ANN

(tv0, x
k
v0
(tv0)); tv0 ∈ {−T ,… , 0}, ∈ {HH,BH}

Net booking value, 

Days before gate-in day, 

Cumulative booking level on 
ship gate-in day, 

Output parameters

D
at

a 
En

tri
es

Input parameters

Black box (hidden layer)

0vt

0 0( )k
v vx t

0 (0)k
vx

Fig. 10   Structure of artificial neural network model

Fig. 11   Fitting errors of the ANN model for HH and BH legs. a Head haul and b back haul
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simple average combination method, variance–covariance method, discounted mean 
square forecast error method and information-based method (see e.g., Cang and Yu 
2014; Gao et al. 2016; Shen et al. 2008; Wong et al. 2007). Shen et al. (2008) exam-
ine that the variance–covariance method gives the best performance. Therefore, in this 
paper, the variance–covariance method is adopted to determine the weights for the 
three member models.

This method determines the optimal weights assigned to these three models that 
minimize the sum of the squared distance between the actual data value xk

v,i
(0) and the 

weighted average of the fitted values x̂k
v,i
(0, tv)i ∈ {PLR,AR,ANN} for all voyages of a 

service in the training data (see Shen et al. 2008). For the direction k ∈ {HH, BH} , this 
can be expressed as

subject to

where the weights vector �k ∶= [wk
i
(t)|t = −T ,… ,−1; i ∈ {PLR,AR,ANN}] is the 

decision variables. x̂k
v,i
(0, tv) represents the fitted value from model i for the actual 

data xk
v
(t), t = −T ,… , tv , i.e.

The first item in the bracket of the objective function (13) refers to the realized book-
ing value in the historical data; the second item is the weighted average of the fitted 
values from the three forecasting models. Constraint (14) guarantees that the sum of 
the weights assigned to these three models should equal to 1. The constraint (15) is 
the non-negativity constraint. It is easy to see that this model is convex with respect to 
the decision variables �k . Thus it can be efficiently solved by the convex optimization 
algorithms.

4.3 � Step‑by‑step forecasting procedure

For the incoming ship voyage v0 in the intercontinental shipping service, we now 
give the step-by-step forecasting procedure for the realized container slot book-
ing. Note that in this procedure, Step 0 updates the historical data to incorporate 
the seasonality in a rolling horizon manner. If new data are added to the historical 
data, the forecasting model is retrained as is shown in Step 1 and Step 2.

(13)min
�k

−1∑
t=−T

∑
v∈V

(
xk
v
(0) −

∑
i∈{PLR,AR,ANN}

wk
i
(t)x̂k

v,i
(0, t)

)2

(14)
∑

i∈{PLR,AR,ANN}

wk
i
(t) = 1; tv ∈ {−T ,… ,−1}

(15)�k
≥ 0

(16)
x̂
k

v,i
(0, t

v
) = f

k

i
(xk

v
(t), t = −T ,… , t

v
); i ∈ {PLR,AR,ANN},

t
v
∈ {−T ,… ,−1}, k ∈ {HH,BH}
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Forecast-
ing proce-
dure

Input: Current day index t
v0 ; the direction k; the arrived booking information xk

v0
(t) for 

t ∈ {−T ,−T + 1… , t
v0}.

Output: Prediction for the realized container slot booking level, x̂k
v0
(0, t

v0).
Step 0. (Historical data updating) If there exists a newly finished ship voyage v

new
 in this service 

that is not contained in V  , add v
new

 into V  , i.e., V = V ∪ {v
new

} . Also remove the oldest 
voyage v

old
 from V  , i.e., V = V�{v

old
} . If V  is updated, go to Step 1. Otherwise, go to 

Step 3.
Step 1. (Member model training) Train the three models, PLR, AR and ANN, based on the newly 

updated historical data according to Sects. 4.1.1–4.1.3.
Step 2. (Weight determination) Determine the day-based weights for the three models, PLR, AR, 

and ANN, based on the updated historical data according to Sect. 4.2.
Step 3. (Member model forecasting) Calculate the forecasting value x̂k

v0,i
(0);i ∈ {PLR,AR,ANN} 

by these three models according to Sects. 4.1.1–4.1.3.
Step 4. (Integrated model forecasting) Calculate the weighted average x̂k

v0
(0, t

v0) of the forecasting 
value x̂k

v0,i
(0)i ∈ {PLR,AR,ANN} by these three models according to Eq. (2) based on the 

weights assigned to these three models.
Step 5. (Output) Return the value x̂k

v0
(0, t

v0).

5 � Numerical test

In this section, the efficiency of the integrated forecasting model is evaluated 
based on the real-case container slot booking data from a global liner shipping 
company. The data record slot bookings within 1  year (from mid-2015 to mid-
2016) for the 17 intercontinental services from the typical trade lanes including 
Asia-Europe, Asia-North America (west coast), Asia-North America (east coast), 
North–South America etc. For the sake of confidentiality, we do not show the 
names and port call sequences of all these services. In the container slot book-
ing data, we have removed the irregular voyages with the structural changes. For 
example, in some voyage, the ship type or the port rotation is changed. For each 
service, we randomly choose the voyages data for model training and testing, 
which are shown in Table 3. We also assume T = 28 , which means that shipping 
company starts forecasting when there are 28 days left for the booking period.

For each shipping service and each direction (HH or BH), an integrated fore-
casting model is calibrated based on the training voyages data of this service (so 
there are 34 models calibrated in total). The average weight of the model for each 
service and each direction is shown in Table 4. We can see that the ANN model 
makes the most contributions among the three to the final predictions. This can be 
explained that the ANN model gives good predictions at most time in the booking 
period compared with the remaining two models. But the other two models (PLR, 
AR) indeed have positive weights indicating that they also contribute to the final 
results.



670	 Y. Wang, Q. Meng 

1 3

Then the forecasting efficiency is tested on the testing voyages. On day 
t ∈ {−T ,… ,−1} during the booking period of the testing voyages, we make the pre-
dictions on the realized container shipping demand and compare it with the actual 
value to calculate the forecasting error according to following formula

where |x| means the absolute value of x.
The average forecasting errors (i.e., mean absolute percentage error, MAPE) 

are reported in Table  5 for the forecasts made 1–4  week(s) ahead of the gate-in 
time for the test voyages. Note that the satisfactory error limits for the liner ship-
ping company are 20% for forecasts made 3–4 weeks ahead and 10% for forecasts 
made 1–2  weeks ahead. It can be seen that most of the forecasting errors satisfy 
the requirement. This demonstrates the high precision of the developed forecasting 
model. In addition, the forecasting errors tend to be smaller for the forecasts made 
just a few days before the gate-in day (e.g. 1 week ahead) than those with quite long 
time ahead (e.g. 4 weeks ahead). This can be easily explained that forecasting an 
uncertain value too long time before its realization suffers large uncertainties and 
thus incurs large prediction error. Finally, it can be also noticed that, although the 
overall forecasting precisions are satisfactory for both the HH and BH directions, the 
predictions for the HH direction are generally better than those for the BH direction. 
This is because the data for the HH direction show clearer pattern than those for the 
BH direction, which makes it harder to predict the container shipping demand on the 
BH direction than the HH direction.

(17)Error = |Actual value − Predicted value|∕Actual value × 100%

Table 3   Intercontinental services used for efficiency test

Service no. Type Number of voyages for 
training

Number of voy-
ages for testing

1 Asia-Europe 30 6
2 Asia-Europe 25 3
3 Asia-Europe 25 6
4 Asia-Europe 23 7
5 Asia-Europe 27 7
6 Intra-Asia Long Haul 27 7
7 Intra-Asia Long Haul 31 5
8 Intra-Asia Long Haul 31 5
9 Intra-Asia Long Haul 31 6
10 North–South America 32 7
11 North–South America 32 7
12 Asia-North America (East coast) 29 7
13 Asia-North America (East coast) 33 7
14 Asia-North America (West coast) 30 8
15 Asia-North America (West coast) 32 6
16 Asia-North America (West coast) 29 5
17 Asia-North America (West coast) 20 7
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Table 4   Average weights of 
the three models (PLR, AR and 
ANN) for each shipping service

Service no. HH BH

PLR AR ANN PLR AR ANN

1 0.1106 0.0913 0.7981 0.1735 0.0158 0.8107
2 0.0638 0.0734 0.8627 0.1151 0.0609 0.8240
3 0.1421 0.0502 0.8076 0.2458 0.2113 0.5429
4 0.1386 0.0620 0.7994 0.1224 0.0640 0.8135
5 0.0345 0.0398 0.9257 0.1438 0.0127 0.8435
6 0.1420 0.0322 0.8258 0.2094 0.1095 0.6811
7 0.2384 0.2020 0.5596 0.1224 0.0508 0.8268
8 0.1212 0.0409 0.8379 0.0796 0.0304 0.8899
9 0.0998 0.1281 0.7721 0.1001 0.0418 0.8581
10 0.1043 0.0385 0.8572 0.1706 0.0412 0.7882
11 0.0639 0.0240 0.9121 0.1870 0.1393 0.6737
12 0.1874 0.1177 0.6949 0.1104 0.0037 0.8860
13 0.2041 0.0725 0.7234 0.1241 0.0436 0.8323
14 0.1332 0.1050 0.7618 0.1317 0.1230 0.7454
15 0.1378 0.0284 0.8338 0.1292 0.1701 0.7008
16 0.3693 0.0560 0.5747 0.1935 0.0888 0.7177
17 0.2825 0.1383 0.5792 0.1030 0.1753 0.7218

Table 5   MAPE of the integrated model on testing data

Service no. 4 weeks ahead
(t = − 28 to − 22)

3 weeks ahead
(t = − 22 to − 15)

2 weeks ahead
(t = − 14 to − 8)

1 week ahead
(t = − 7 to − 1)

HH (%) BH (%) HH (%) BH (%) HH (%) BH (%) HH (%) BH (%)

1 13.22 11.61 13.70 8.78 10.26 4.88 3.19 2.15
2 7.17 7.49 4.09 5.58 3.01 4.84 1.66 2.50
3 4.55 9.25 4.24 9.55 2.27 6.78 1.51 2.65
4 10.17 15.86 5.98 8.54 4.25 5.15 1.60 2.45
5 12.70 6.52 7.10 4.79 3.04 5.16 1.87 2.17
6 5.52 32.27 6.21 30.96 4.33 15.90 1.46 7.24
7 5.75 10.09 4.75 10.16 5.07 7.05 3.77 5.13
8 4.06 15.34 4.81 11.03 2.73 10.82 1.29 7.82
9 3.38 6.20 3.60 5.95 3.35 3.73 1.94 1.45
10 16.22 23.89 13.52 24.75 7.55 9.87 4.55 2.85
11 11.12 11.32 8.01 11.58 5.60 8.22 3.58 3.39
12 22.82 20.26 10.63 17.93 1.89 14.02 1.53 4.41
13 11.62 12.94 9.67 7.89 4.21 8.69 1.83 4.45
14 6.52 12.75 6.58 14.02 5.56 12.51 3.22 8.01
15 12.68 18.85 10.71 16.05 4.96 11.47 2.56 6.75
16 10.02 22.36 10.45 17.15 4.57 17.39 1.95 10.02
17 8.57 10.73 6.73 9.72 3.80 7.28 2.97 3.70
Average 9.77 14.57 7.69 12.61 4.50 9.05 2.38 4.54
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To further investigate the forecasting efficiency of the forecasting method devel-
oped in this paper, we move to compare the forecasting results between the inte-
grated method and each of the three member models. The forecasting results of these 
models on the test data can be seen in Table 6. We can see that the ANN model 
generally shows a better forecasting precision than the other two member models 
(PLR and AR), which is consistent with the observations in Table 4. This may be 
because of its ability to directly model the relationship between booking value on 
the day of prediction and the finalized booking amount and to incorporate unknown 
factors affecting the prediction. In addition, the integrated model outperforms the 
other methods in both HH and BH directions for all four-week forecastings. This 
means that the integrated model is able to combine the merits of the three member 
models in representing the pattern of the container slot booking data. Above results 
show the satisfactory forecasting efficiency of the integrated model.

6 � Conclusions and discussions

Intercontinental shipping services operated transport containers between different 
continents. This paper discussed how to forecast the realized container slot booking 
amount between two continents by the intercontinental service for the incoming ship 
voyage. Considering the patterns existing in the historical container slot booking 
data, an integrated forecasting model was developed for this problem. This model 
combines the forecasting powers from the piecewise linear regression (PLR) model, 
the autoregressive (AR) model, and the artificial neural network (ANN) model by 
calculating the weighted average of the results from these three models. We also 
introduced the training methods for the models and discussed how to determine 
the weights assigned to these three models in the integrated model. The test results 
based on the real-case booking data showed the satisfactory precision of the devel-
oped model.

Future research extending this study can be conducted as follows. First, this 
forecasting model is developed based on the data pattern and does not consider the 
effects of exogenous variables on the container slot booking, such as the general eco-
nomic condition, the market share of a shipping company and market competition. 
Therefore, future studies can incorporate these factor for more precise predictions. 

Table 6   MAPE for different forecasting methods

Method 4 weeks ahead
(t = − 28 to − 22)

3 weeks ahead
(t = − 22 to − 15)

2 weeks ahead
(t = − 14 to − 8)

1 week ahead
(t = − 7 to − 1)

HH (%) BH (%) HH (%) BH (%) HH (%) BH (%) HH (%) BH (%)

PLR 16.56 18.99 17.04 18.22 12.11 15.40 6.61 7.67
AR 13.56 15.55 11.55 14.96 7.93 12.67 4.22 8.25
ANN 13.92 16.08 10.94 15.47 7.90 11.77 3.70 7.94
Integrated method 9.77 14.57 7.69 12.61 4.50 9.05 2.38 4.54
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In addition, this model only focuses the number of containers to transport in each of 
the two directions and cannot predict the utilization rate of a container ship. There-
fore, future studies can consider the ship utilization prediction.
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