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Abstract
We introduce the load-dependent vehicle routing problem with time windows 
(LDVRPTW) in this paper. Transportation costs in this new problem, unlike those in 
the classical vehicle routing problem with time windows (VRPTW), are calculated 
based on not only the travel distances but also the vehicular loads on travel arcs. 
To solve this challenging NP-hard problem, we design a new constraint relaxation-
based algorithm. In the proposed algorithm, a new constraint relaxation is intro-
duced, i.e., some clients are not visited by a real vehicle and instead are entrusted to 
an additional virtual vehicle. Based on this relaxation, we present an effective execu-
tion scheme of local search procedures. The proposed algorithm is tested on bench-
mark instances of several special cases of the LDVRPTW, including the VRPTW. 
Numerical results for different variant problems demonstrate that the algorithm 
consistently yields impressive results: in particular, for one special variant, namely 
the fuel consumption rate considered vehicle routing problem (FCR-VRP), the algo-
rithm improves the best-known solutions found by existing state-of-the-art methods.

Keywords  Heuristic · Vehicle routing · Time windows · Constraint relaxation

1  Introduction

The vehicle routing problem (VRP) is an important aspect in a diverse range of 
application systems, including distribution, transportation, healthcare, and supply 
chains. The VRP costs are traditionally derived from the total distances traveled by 
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the vehicles or the total travel times consumed by the vehicles (Laporte 2009). How-
ever, in numerous practical scenarios, the cost of a vehicle that travels between two 
nodes depends on not only classical attributes, such as the travel distance, but also 
the load of the vehicle on the corresponding arc. Two industries exemplify this two-
fold computation of the cost, the first of which is the expressway system in China. 
Most expressways there are owned by for-profit corporations and adopt the toll-by-
weight scheme, i.e., tolls are charged in accordance with not only the travel distance 
of the vehicle but also its weight. In this context, the routing problem solved by car-
riers should not be modeled as the classical VRP (Zhang et al. 2012). The second is 
the supply-chain industry, in which companies such as those in cold-chain logistics 
also adopt both distance and weight as the primary factors in calculating travel costs. 
In this context, the classical VRP model is not applicable when the companies desire 
to optimize the vehicular routes. In this paper, we focus on the load-dependent VRP 
with time windows (LDVRPTW), in which transportation costs are calculated based 
on the travel distance and vehicular load on the travel arcs and each client must be 
served within a hard time window. It is evident that the LDVRPTW is an extension 
of the classical VRP with time windows (VRPTW). It contains many existing rout-
ing problems as special cases and can be applied to many practical situations.

Although many researchers consider the vehicular load as a factor in objective 
functions, the literature remains limited on the VRP with a load-dependent objective 
and time-window constraints. Zachariadis et al. (2015) examined a load-dependent 
VRP with the objective of minimizing the total product of the distance traveled and 
the gross weight carried along this distance. Furthermore, Zachariadis et al. (2015) 
extended the problem to simultaneous pickup-and-delivery services. However, they 
did not consider the time window assigned to each service in their problem.

In this paper, we design a new heuristic to address the LDVRPTW. This approach 
can also effectively solve some LDVRPTW variant problems. The proposed algo-
rithm not only compares favorably with previous algorithms from the literature, but 
also yields new best solutions on benchmark instances for specific variants of the 
LDVRPTW, such as the fuel consumption rate considered vehicle routing problem 
(FCR-VRP).

The main contributions of this paper is twofold. First, this paper introduces a new, 
practical and important problem, the load-dependent vehicle routing problem with 
time windows. In the problem the load-dependant transportation cost and time win-
dow constraints are considered simultaneously. Since the basic VRP and VRPTW 
are well-known NP-hard problems, obviously, the proposed problem is also NP-
hard, i.e., we cannot find a polynomial time algorithm o solve the problem unless 
P = NP. Therefore, we design a new constraint relaxation-based heuristic algorithm 
for the LDVRPTW and its variant problems. Although it is built on a general tabu 
search framework, it uses a new constraint relaxation that disregards the one-visit-
per-client requirement.

In the literature, some relaxation schemes have been used in the algorithms for 
the VRPs. For example, Gendreau et al. (1994) designed a tabu search heuristic for 
solving the VRPTW, in which a solution might violate the maximum load and dura-
tion constraints associated with the routes, and the time-window constraints associ-
ated with the customers and the depot. Each solution of the tabu search was then 
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evaluated using a cost function consisting of the original cost and penalty cost which 
was proportional to the violation of the constraints. Vidal et al. (2012) proposed a 
Genetic Algorithm for the multi-depot and the periodic VRPs, in which the vehic-
ular capacity and the route maximum duration were relaxed. Similarly, the penal-
ties for exceeding such constrains were computed as part of the route costs. In our 
algorithm, in addition to the classical relaxations, we relax the one-visit-per-client 
requirement in the algorithmic search process. Therefore, it is probable that only a 
subset of clients are visited and served in a solution. Correspondingly, we assume 
that an additional virtual vehicle is available to serve all un-assigned clients. This 
relaxation enables the algorithm to explore a broader solution space and enhance the 
search capability. Furthermore, based on this relaxation, we design the correspond-
ing inter-route neighborhood structures and introduce a new local search (LS)-based 
post-optimization execution scheme. We refer to this algorithm as the Virtual Vehi-
cle-based Tabu Search (VVTS).

The remainder of the paper is organized as follows. Section  2 defines the 
LDVRPTW. Section 3 provides a review of the relevant literature. Section 4 sum-
marizes the framework of the proposed algorithm, while Sects. 5–8 detail its main 
components. Finally, Sect. 9 provides the conclusions.

2 � Problem statement

Let G = (V, A) be a directed graph, where V =  {0}∪{1,…,n}∪{n + 1} is the node set 
and A =  {{(i, j): i, j∈V, i ≠ j} is the arc set. C  =  {1,…,n} denotes the set of clients. 
Nodes 0 and n + 1 represent the depot for start and finish of the route, respectively. 
Let K be the set of all vehicles. Each vehicle k∈K has a capacity Q, and a no-load 
weight w. Each vehicular route corresponds to a path that starts at node 0 and ends 
at n + 1. Each client i∈C has a demand qi to be delivered from the depot. For con-
venience of notation, nodes 0 and n + 1 are assigned to demands q0 = qn+1 = 0. A 
time window [ei, li] is associated with each node i∈V to ensure that the visit to node 
i occurs only between ei and li, i.e., a vehicle is allowed to reach i before ei, but 
must wait until ei before the service can be performed. Each arc (i, j)∈A is associ-
ated with a travel distance dij and a travel time τij. The service duration for a client 
is included in the travel time from this node. Given a vehicular route r, let (r0, r1, 
…, rn(r), rn(r)+1) be the sequence of the nodes on this route, where ri denotes the ith 
nodes in r, r0 and rn(r)+1 both represent the depot, and n(r) refers to the number of 
clients on this route. The vehicular starting weight on this route is w +

∑n(r)

i=1
qri , and 

vehicular load is progressively reduced by qri with a visit to client i along route r. 
The travel cost along an arc (i, j) is calculated as dij × f(wij), where f(wij)=cd + cwwij, 
wij denotes the vehicular total weight (no-load vehicular weight and its load) during 
this travel, cd is a non-negative constant that represents the vehicular travel cost per 
unit distance, and cw is the constant of delivering the product per unit weight and 
unit distance. The LDVRPTW is to determine a set of routes with the minimum 
total cost, such that the following are attained: (1) each route is assigned to exactly 
one vehicle; (2) the total demand of all clients served on a route cannot exceed the 
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vehicular capacity Q; and (3) each client is visited once within the corresponding 
time window.

A three-index mathematical formulation model to the problem is presented as fol-
lows. Three types of decision variables are used. Let the binary variable xijk be the 
number of times traveled by vehicle k through arc (i, j), yijk be the total weight on arc 
(i, j) of vehicle k, and tik be the time at which vehicle k begins to serve at node i.

Subject to:

The objective function (1) serves to minimize the total vehicular costs, which 
depends on the travel distance along an arc and the flow on the arc. Constraints (2) 
to (4) specify that each client must be visited by exactly one vehicle. Constraints (5) 

(1)min
∑

i∈C∪{0}

∑

j∈C∪{n+1}

∑

k∈K

xijkdij(cd + cwyijk)

(2)
∑

j∈C∪{n+1}

xijk =
∑

j∈C∪{0}

xjik ∀i ∈ C, ∀k ∈ K

(3)
∑

k∈K

∑

j∈C∪{n+1}

xijk = 1 ∀i ∈ C

(4)
∑

j∈C∪{n+1}

x0,j,k =
∑

j∈C∪{0}

xj,n+1,k =1 ∀k ∈ K

(5)
∑

i∈C∪{0}

∑

j∈C∪{n+1}

qixijk ≤ Q ∀k ∈ K

(6)
∑

j∈C∪{0}

∑

k∈K

yjik −
∑

j∈C∪{n+1}

∑

k∈K

yijk = qi ∀i ∈ C

(7)
∑

j∈C∪{0}

yj,n+1,k ≥ w ∀k ∈ K

(8)tik + �ij −
(
1 − xijk

)
M ≤ tjk ∀i ∈ C ∪ {0},∀j ∈ C ∪ {n + 1}, k ∈ K

(9)ei ≤ tik ≤ li ∀i ∈ V , k ∈ K

(10)xijk ∈ {0, 1} ∀i ∈ C ∪ {0}, j ∈ C ∪ {n + 1}, k ∈ K
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to (7) ensure the feasibility of the vehicular capacity. Constraints (8) and (9) impose 
the time windows.

3 � Literature review

The LDVRPTW is a variant of the VRPTW. There have been numerous works 
on the VRPTW in the past three decades, including both heuristic approaches 
and exact methods. For example, Bard et  al. (2002) designed a branch-and-
cut algorithm to the VRPTW; Desaulniers et  al. (2008) presented an efficiency 
branch-and-price-and-cut approaches to the VRPTW. The most recent and best 
exact approaches have been designed by Desaulniers et al. (2008), Baldacci et al. 
(2011) and Røpke (2012), whereas the most recent and highly-competitive heu-
ristic approaches have been presented by Muter et al. (2010), Demir et al. (2012), 
Vidal et al. (2013), and Kramer et al. (2015). Readers are referred to the reviews 
by Bräysy and Gendreau (2005a, b) and Desaulniers et  al. (2014) for greater 
insights into the literature. The main objective of much of the literature on the 
VRPTW is to minimize either the number of vehicles or the total distance trave-
led (Braysy and Gendreau 2005a). In this regard, the objective of the VRPTW 
can be subsumed into that of the LDVRPTW, e.g., the LDVRPTW can be 
reduced to the VRPTW with an objective of minimizing travel distances when 
cd = 1 and cw = 0. Compared with the classical VRPTW, there are fewer works on 
the LDVRPTW. We review the load-dependent VRP both with and without time-
window constraints, and discuss the relationships between the LDVRPTW and 
these problems.

The first related problem is the Energy Minimizing VRP introduced by Kara 
et  al. (2007), in which the linear weighted distance objective concerned the 
vehicular energy requirements. The authors formulated a mathematical model 
and solved the problem using the Cplex solver. Motivated by the toll-by-weight 
schemes implemented on expressways in over twenty provinces in China, Zhang 
et al. (2010) introduced the toll-by-weight VRP (TBW-VRP), in which the trans-
portation cost per unit distance monotonically increased with the vehicular total 
weight. The authors designed a branch-and-bound algorithm to solve a simpli-
fied problem with only one vehicle. The toll-by-weight VRP is a special case of 
the LDVRPTW when tolls are charged proportionally to the vehicular weight. 
For example, as shown by Zhang et al. (2012), in the Gansu Province of China, 
the expressway toll on road (i, j) was calculated as dij × 0.08wij where wij repre-
sents the vehicular weight on this road. In this case, the toll-by-weight VRP can 
be converted into the LDVRPTW with cd = 0, cw = 0.08 and the relaxation of the 
time-window constraints. Xiao et al. (2012) demonstrated that the fuel consumed 
by a vehicle per unit travel distance (referred to as fuel consumption rate, FCR) 
was proportional to the vehicular load. They defined a linear relationship between 
the FCR and the vehicular load. Based on this definition, Xiao et al. (2012) built 
a mathematical model for the FCR-VRP and developed a simulated annealing 
method to solve the problem. Gaur et  al. (2013) established a constant-factor 
approximation algorithm for the FCR-VRP. Zachariadis et  al. (2015) extended 
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the basic load-dependent VRP by allowing clients to simultaneously require pick-
up and delivery services. This extension aimed to minimize the total product 
between the distance traveled and the gross weight carried along this distance. To 
address large-scale instances of the examined problems, the authors proposed an 
effective local-search algorithm. They further demonstrated that the FCR-CVRP 
of Xiao et al. (2012) could also be viewed as a special case of their problem and 
solved the FCR-CVRP benchmark instances used by Xiao et  al. (2012). Kopfer 
et  al. (2014) introduced a special VRP, aiming at minimizing fuel consumption 
instead of driving distances. The classical distance-minimizing objective function 
was replaced by a vehicle-specific affine linear fuel-consumption function. Addi-
tional constraints to determine the actual payload along a vehicular route have 
been established. According to their experimental results, the authors found that 
the quantity of fuel needed to serve a given request portfolio could be reduced 
tremendously by using an inhomogeneous fleet with vehicles of different sizes. 
Besides the transportation distance and the loading weight, some researchers 
have considered the vehicular travel speed in models for calculating fuel con-
sumption and integrated it into the problem objective. For example, Kuo (2010) 
integrated the transportation distance, transportation speed and loading weight 
into a model and designed a simulated annealing heuristic to optimize the VRP 
with the objective of minimizing fuel consumption. The author performed com-
putational experiments comparing fuel consumption, transportation time and 
travel distance for the time-dependent VRP. Kuo and Wang (2011) re-considered 
the problem of Kuo (2010) and solved it with a tabu search algorithm. Figliozzi 
(2010) focused on a problem in which the minimization of emissions and fuel 
consumption was the primary objective or was part of a generalized cost function, 
and departure times and travel speeds became decision variables. A formulation 
and solution approaches were presented. Results obtained with the proposed solu-
tion approaches for different levels of congestion were compared and analyzed.

In addition to the above problems, a relatively new problem, the Green VRP, is 
also relevant to the LDVRPTW, in which the influences to the environment such 
as carbon dioxide-equivalent (CO2e) emissions are considered. The Pollution Rout-
ing Problem (PRP) (Bektaş and Laporte 2011; Grabenschweiger et  al. 2017) is a 
typical Green VRP, which seeks to minimize a more comprehensive objective that 
accounts for not only operational costs, but also environmental costs, such as the 
amount of greenhouse emissions (Bektaş and Laporte 2011). The total travel dis-
tance, load carried per distance unit and vehicular speed have been simultaneously 
adopted as the components of the objective. Bektaş and Laporte (2011) first built the 
mathematical models for the PRP, and used the Cplex solver to perform extensive 
computational experiments on realistic test instances. Based on this work, Demir 
et al. (2012) presented an extended adaptive large-neighborhood search for the PRP. 
Their algorithm integrated the classical ALNS scheme with a specialized speed-
optimization algorithm that computed optimal speeds on a given path to minimize 
fuel consumption, emissions and driver costs. Jabali et al. (2012) studied the trade-
off between minimizing CO2 emissions and minimizing the total travel times. As 
emissions were directly related to the vehicular speed, time-dependent travel times 
were included in their optimization models. Three different models were compared: 
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a model for minimizing the total travel time; a model for minimizing the total CO2 
emission (which in turn depended on travel times and speed); and a cost-based 
model that optimized the weighted average of travel time, emission and fuel costs. 
Assuming that carrier companies could limit the speed of their vehicles, the authors 
discussed the emission-optimal speed taking into account the impact exerted by traf-
fic congestion on the actual travel time and emission. Later, Demir et  al. (2014a) 
examined the bi-objective PRP, in which one of the objectives was related to car-
bon dioxide equivalent (CO2e) emissions and the other to driving time. An adap-
tive large-neighborhood search algorithm combined with a speed-optimization 
procedure was presented to solve the bi-objective PRP. New sets of instances based 
on real geographic data were generated to evaluate the effectiveness of the algo-
rithm. Oberscheider et  al. (2013) discussed a multi-depot vehicle routing problem 
with pickup and delivery and time windows. The authors contrasted the results 
obtained by minimizing fuel consumption to those obtained by minimizing driving 
times. They found that a significant reduction of CO2 emissions could be achieved 
by the former approach than the latter. Kramer et al. (2015) designed a matheuristic 
approach for the PRP, with the objective of minimizing the operational and environ-
mental costs while respecting capacity constraints and service time windows. The 
costs were based on drivers’ wages and fuel consumption, which depended on fac-
tors such as the travel distance and vehicular load. To solve this problem, the authors 
proposed a sophisticated hybrid algorithm, which combined a local search-based 
metaheuristic with an integer-programming approach over a set covering formula-
tion and a speed-optimization algorithm. The algorithm was tested on both existing 
PRP benchmark instances and on the classical VRPTW benchmark. For a detailed 
review of such studies, reference may be made to Bektaş and Laporte (2011) and 
Demir et al. (2014b).

In summary, given its real-life applications, the load-dependent VRP has attracted 
much attention in the vehicle routing field. However, the time-window constraints 
have not been considered in the related problems. In this paper, we focus on the 
LDVRPTW which has a load-dependent objective and time windows, and propose a 
new heuristic for the problem.

4 � An overview of the solution method

The VVTS is based on the tabu search framework proposed by Gendreau et  al. 
(1994). We outline the general structure of VVTS in Algorithm  1. Firstly, the 
parameters and tabu list of the VVTS are initialized. Then, an initial solution is gen-
erated by an insert heuristic and set as the current solution sc. The VVTS explores 
the inter-route neighborhood set N(sc) of sc and selects the best non-tabu solution s1 
from N(sc) (lines 4–6). Then, a set of intra-route LS operators is applied to improve 
s1 (line 7). Next, the tabu list and tabu tenure are updated (step 8) and solution s1 is 
set as the new current solution. The subsequent iteration is repeated (steps 3–10) 
until VVTS reaches the stopping conditions.

Many algorithms relax the vehicular load and time-window constraints in 
the VRPTW to obtain a broader solution space. Such a notion is inspired by the 



338	 R. Liu, Z. Jiang 

1 3

Lagrangian Relaxation method. In our algorithm, we also absorb the Lagrangian 
relaxation technology, i.e., three constraints can be violated by an intermediate solu-
tion of the algorithm (i.e. a solution obtained by each of the algorithmic iteration): 
(1) the vehicular capacity, (2) the time window of each client, and (3) the require-
ment that each client has to be visited by a vehicle. When the third one is violated, 
some clients are not served by any vehicle. In other words, in an intermediate solu-
tion, it is probable that only some of the customers are visited and the others have no 
vehicles assigned to them. In such a case, we suppose such un-visited customers are 
instead visited by a virtual vehicle. To simplify the notation, its route is called the 
virtual route or route |K| + 1.

For a given route r = (r0, r1,…, rn(r), rn(r)+1), characterized by load q(r) = 
∑ n(r)

i=1
qri 

and driving distance d(r) =
∑n(r)

i=0
dri, ri+1 , suppose (t0, t1,…, tn(r), tn(r)+1) be the visit 

times associated with each stop. Based on the above relaxation method, route r is 
feasible if q(r) ≤ Q and ti∈[eri, lri ] for each 0 ≤ i ≤ n(r) + 1; and a feasible solution s 
is defined as a set of feasible routes such that each client is visited exactly once on a 
single route. In the VVTS, the generalized cost function of solution s is defined as 
follows,

where cost(s) is the original objective value of solution s, Pc(s) and Ptw(s) repre-
sent the violations of vehicular capacity and of time-window constraints, Pn(s) is the 
number of the clients not served by any vehicle in set K (i.e., the number of clients 
to whom the virtual vehicle is assigned), and α, β and γ are the penalty coefficient 
parameters. In terms of the virtual route, because it is introduced to absorb the un-
visited clients and no service route is actually executed by this vehicle, we define its 
routing costs equal 0. We also define its violations of the vehicular capacity and of 
time-window constraints equal 0. Thus, the generalized cost function of this virtual 
route equals γPn(s).

Algorithm 1: General structure of VVTS 
1 Initialize parameters and tabu list 
2 Generate an initial solution s0, sc= s0

3 Repeat
4 Apply cross-exchange neighborhood to sc, to construct solution set N1(sc)  
5 Apply in-out heuristic Lcrossμ times to sc, to construct solution set N2(sc)  
6 Select the best solution s1 from N1(sc) N2(sc) that is not tabu or satisfies the 

aspiration criterion  
7 Apply intra-route LS procedures to improve s1

8 Update the tabu list and tabu tenure
9 sc = s1

10 Until stop-criterion are satisfied 
11 Output the best feasible solution s* 

�(s) = cost(s) + �Pc(s) + �Ptw(s) + �Pn(s)
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The change in Pc(s) caused by a traditional LS move such as the inter-route 
swap can be easily computed in O(1) time. As for the time penalty Ptw(σ), differ-
ent penalty settings are employed for the VRPTW. Two methods are frequently 
used. Firstly, the earliest departure time at depot t0 for route r is e0 whereas the 
earliest service time tri for node ri is max

(
tri−1 + �ri−1,ri , eri

)
 , 0 < i ≤ n(r) + 1 . The 

associated penalty is defined as linear for tardiness but not for early activities. It 
costs O(n) time to evaluate a classical LS move precisely. Secondly, the earli-
est departure time t0 for route r is e0 whereas the earliest service time for ri is 
tri = max

(
min

(
tri−1 + 𝜏ri−1,ri , lri

)
, eri

)
, 0 < i ≤ n (r) + 1 . This associated penalty was 

proposed by Nagata et al. (2010) and Schneider et al. (2013). Classical LS opera-
tors, such as the 2-opt* and inter-route insert, are assessed in O(1) time. Our VVTS 
adopts the second penalty function.

During algorithmic iterations, parameters α, β, and γ are self-adjusted to facili-
tate search-space exploration. They are initialized with α0, β0, and γ0 and are limited 
within the intervals 

(
�min, �max

)
, 
(
�min, �max

)
 and 

(
�min, �max

)
 , respectively. 

If the incumbent solution is feasible, then α is divided by factor 1 + φ1; otherwise, 
it is multiplied by 1 + φ1. If the incumbent solution is infeasible but the vehicular-
capacity constraint is satisfied, then the parameter is divided by 1 + φ2 (0 < φ2 < φ1). 
Parameters β and γ are adjusted likewise.

5 � Initial solution and inter‑route neighborhoods

An insertion algorithm is used to construct the initial solution s0. Firstly, we choose 
the client with the tightest time-window constraint and generate the first single-
client route. If two or more clients have the same tightest time-window constraint, 
the client closest to the depot is chosen. Subsequently, we evaluate the increase in 
the generalized cost function when each un-inserted client is inserted into either a 
position on the existing routes, or an empty route if the solution has fewer than |K| 
routes. At this step, the insertion must satisfy the vehicular-load constraints, but the 
process may violate the time-window constraints. We execute the cheapest inser-
tion and repeat the procedure until all clients are contained in s0. We cannot guaran-
tee the feasibility of s0 because the time-window constraints are not enforced in the 
insertion.

Starting from the first solution s0, the VVTS chooses the best non-tabu solution s1 
from the inter-route neighborhood of s0. The design of the neighborhood structures 
is crucial for the accuracy and speed of the VVTS. Two types of inter-route neigh-
borhoods are adopted by the VVTS: cross-exchange and in–out heuristic-based 
neighborhoods.

5.1 � Standard cross‑exchange neighborhoods

The fundamental concept of the cross-exchange neighborhood involves removing 
two segments from two routes, of which the length (the number of clients on the 
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path) is at most Lcross, and exchanging them. The size of the cross-exchange neigh-
borhood is O(n2(Lcross)2). As shown in Fig. 1, two edges ( ri1 , ri1+1 ) and ( ri2 , ri2+1 ) are 
removed from route r, and another two edges ( uj1 , uj1+1 ) and ( uj2 , uj2+1 ) are removed 
from route u. New edges ( ri1 , uj1+1 ), ( ri2 , uj2+1 ), ( uj1 , ri1+1 ) and ( uj2 , ri2+1 ) are then 
added to exchange the paths ( ri1+1 → ri2 ) and ( uj1+1 → uj2 ) between the routes. The 
generalized costs ϕ(r) and ϕ(u) are used to evaluate each cross-exchange move.

5.2 � In–out cross‑exchange neighborhood

Since a virtual vehicle is introduced to “serve” some clients, corresponding neigh-
borhoods are designed to address this relaxation. Firstly, we apply the above cross-
exchange neighborhood to a real route and the virtual vehicular route, i.e., we 
remove one segment from the real route and another from the virtual vehicular route, 
and then exchange them. We denote this neighborhood as the in–out cross-exchange. 
We use the generalized cost to evaluate each neighboring solution. Although it 
does not affect the generalized cost, the visit sequence of clients in the virtual route 
should be maintained in the in–out cross-exchange. This is because when a substring 
of clients is transferred from the virtual route to the real route, its visit sequence is 
important to the cost of the objective real route. Therefore, once a neighboring solu-
tion is identified, we regard the virtual route as the real route to adjust the position 
for insertion in the virtual route, i.e., use the sequence of clients on the virtual route 
to calculate the corresponding original objective value, capacity penalty and time-
window penalty, and use the resultant sum of them to re-determine the best position 
for insertion in the virtual route.

5.3 � In–out heuristic neighborhoods

In addition to the in–out cross-exchange, we design several simple and effec-
tive methods to exchange clients between the virtual and real vehicles. Unlike the 
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cross-exchange that modifies two routes for a move, these methods handle several 
routes within a move. We use the removal method to select and remove clients from 
the real vehicular routes and then apply the inserting method to insert un-served cli-
ents into the real routes.

5.3.1 � Shaw removal heuristic

The core idea of Shaw removal involves removing a given number of somewhat simi-
lar clients. For example, the clients with similar or conjoint service time windows are 
highly likely to be visited successively in a route. Removing such similar clients from 
separate routes and re-inserting them into the solution may generate a better result. The 
relatedness measure of two clients in this paper depends on the distance between them. 
The detailed steps of Shaw removal are shown in Algorithm 2. In Shaw removal, we 
first assess the number of clients in the virtual route, referred to as n(|K| + 1). If this 
number exceeds pn (where p is a parameter controlling the percentage of the clients 
in the virtual route), we deem that this virtual route has too many clients and that cli-
ents do not need to be removed from the real routes. Otherwise, we randomly choose 
a client from the real routes and the virtual route, depending on whether virtual route 
is empty. We then incorporate this client into a set NT. Another client closest to the 
just-removed client is chosen and inserted into set NT. The process is repeated until NT 
contains pn − n(|K| + 1)clients. During the selection and insertion of clients into NT, a 
parameter q is introduced to randomize the client selection. Given that a maximum of 
pn clients can be removed from the real route, a maximum of pn major iterations are 
performed in Shaw removal. In each iteration, we can fill and sort set NT’ in O(nlogn) 
time. Thus, the overall time complexity of the Shaw removal method is O(pn2logn).

Algorithm 2. Shaw removal 
1 If the number of clients on the virtual vehicular route is less than pn, then
2 If the virtual vehicle is empty, then
3   Randomly select a client i from real vehicular routes, NT ={i} 
4 Else 
5   Randomly select a client i from vehicle |K|+1, NT ={i} 
6 End if
7   Repeat
8     Randomly select a client i’ from NT

9     Set temporary client set NT’ as all clients on real vehicular routes and not in NT

10     Sort NT’ according to the distance to i’
11     Choose a random number y in [0,1], and select a client j= NT’ [yq| NT’ |] 
12 NT = NT {j}  
13   Until |NT|= pn−n(|K|+1)
14  Remove the clients NT from real vehicular routes
15 End if
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5.3.2 � Worst removal heuristic

The detailed steps of worst removal are shown in Algorithm 3. The heuristic first 
checks the initial condition. If this condition is satisfied, it computes the reduced 
cost resulting from the removal of each client from the real routes. It sorts clients in 
accordance with cost reduction and selects one client randomly. A parameter q con-
trols the randomization, as in Shaw removal. This randomness prevents the repeated 
removal of the same clients when the worst removal is repeated many times. Finally, 
the selected client is deleted from the real routes and inserted into NT. The process 
is repeated until pn − n(|K| + 1) clients are removed, i.e., |NT| = pn − n(|K| + 1). The 
worst removal has the same O(pn2logn) computation time as the Shaw removal 
heuristic.

Algorithm 3. Worst removal 
1 If the number of clients on virtual vehicular routes is less than pn then
2 NT =
3   Repeat
4    Set NT’ contains all clients on real vehicular route, and not in NT

5 Sort NT’ according to the reducing cost that is obtained by removing a client from a 
real route 

6    Choose a random number y in [0,1], and select a client j= NT’ [yq| NT’ |] 
7 NT = NT {j} 
8   Until |NT|=pn 
9  Remove the clients NT from real vehicular routes
10 End if

5.3.3 � Insertion heuristic

The insertion method comprises two phases. In the first phase, all clients of NT are 
inserted into the virtual vehicular route. In the second phase, the client(s) from the 
virtual route are inserted into the real routes. The stepwise descriptions are shown in 
Algorithm 4.

Firstly, the method inserts all clients of set NT into the virtual route. Because 
the visiting sequence of the clients on the virtual route affects the other inter-route 
in–out neighborhoods and the second phase of the insertion method, we use the cor-
responding generalized cost to evaluate each possible position for insertion. This 
process continues until NT is empty. In the second phase, each client in the virtual 
route is selected, and we attempt to insert the client into an existing real route or an 
empty route so as to reduce the generalized value of this solution. In this phase, the 
cost of the real routes is computed based on the generalized cost whereas the cost of 
the virtual route is now proportional to the number of clients. Once a client cannot 
be re-located from the virtual route to any real route with a better generalized cost, 
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this client is reserved on the virtual route, and the insertion method proceeds to the 
next client.

In the first phase, given that both NT and the virtual route have a maximum 
of pn clients, the complexity of this phase is O(p3n3). Because the set value of 
parameter p is typically small, i.e., 10% in the VVTS, the speed of the insertion 
algorithm remains high. In the second phase, since O(pn) clients are not served 
in the virtual route and O(n) positions for insertion are possible for each selected 
client, the time complexity is O(pn2). Notice that another type of deeper inser-
tion method is designed in the standard ALNS algorithm (Ropke and Pisinger 
2006). This deeper method searches each client on the virtual route and in each 
possible position for insertion in the real route to determine the insertion with 
the minimum global cost until no more clients from the virtual route can be 
inserted into the real route. This deeper insertion prolongs the computation time 
to O(p2n3). In the preliminary experiments, our insertion method does not differ 
from the deep insertion in terms of solution accuracy.

The cross-exchange examines all possible neighborhoods and selects the 
best one, whereas the in–out heuristic simply constructs two neighborhood 
solutions from one run of the Shaw removal and one run of the worst removal. 
Thus, we execute the in–out heuristic Lcrossμ times within each VVTS iteration 
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(step 4, Algorithm  1), where Lcross is the maximal length of segments in the 
cross-exchange.

6 � Intra‑route local search and execution scheme

After obtaining s1 from the inter-route neighborhoods, we use the Or-opt intra-
route local search (LS) to improve its route. The Or-opt LS removes a path with a 
maximum length of LOr-opt and inserts it into another position on the same route. 
The position for insertion is limited within a distance (the number of clients) of 
Ldis from the original position of the path. Figure  2 depicts an example of the 
Or-opt, in which path (ri → ri+l1−1 ), 1 ≤ l1 ≤ LOr-opt, is removed from route r and 
inserted in between either two conjoint clients ri+l1−1+l2 and ri+l1+l2(0 ≤ l2 ≤ Ldis, 
the middle part), or ri−l2−1 and ri−l2(0 ≤ l2 ≤ Ldis, the bottom part). Two cases 
are considered for each insertion, i.e., the case with the original order of path 
(ri → ri+l1−1 ) and the case with its reversed visiting order. The size of the intra-
route Or-opt neighborhood is O(LOr-optLdisn).

Embedding above LS can intensify and improve the algorithm performances. 
Two LS execution schemes are typically employed. The first, known as the fea-
sible local search (feasible-LS) because it starts from a feasible seed and enters 
the feasible solution space, applies the LS to a feasible solution within a feasi-
ble solution space. The second, known as infeasible local search (infeasible-LS), 
starts from an infeasible or feasible seed. During the infeasible-LS search, both 
feasible and infeasible neighbor solutions may be generated. The infeasible-LS 
has been integrated into the meta-heuristic that facilitates the exploration of 
infeasible solutions (Hemmelmayr et  al. 2009; Stenger et  al. 2013). Although 
both schemes have been widely adopted, nearly all relevant studies have used 
only one scheme. Liu et  al. (2014) combined the feasible-LS and infeasible-LS 
in the solution-improvement phase of their heuristic algorithm. They noted that 
the sequential application of the infeasible-LS and feasible-LS to improve the 
incumbent solution was superior. In the VVTS, we consider the feasibility of the 
seed solution, and design a new hybrid for the feasible-LS and infeasible-LS. It is 
given in Algorithm 5. The VVTS first judges the feasibility of the input solutions 
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sc and s1. If s1 is feasible, then the VVTS applies the feasible-LS to extensively 
search its feasible neighborhood (steps 2–6). Otherwise, the VVTS applies the 
infeasible-LS to s1 with a probability δ (steps 8–13).

Algorithm 5. Execution scheme of intra-route LS
1 Input: solution sc, and s1 obtained by inter-route neighborhood 
2 if sc and s1 are feasible then
3   apply the intra-route feasible-LS to each modified route from sc to s1

4 else if sc is infeasible and s1 is feasible then
5 apply the intra-route feasible-LS to each route of s1

6 end if 
7 if s1 is better than the incumbent best solution s* then s*= s1 end if
8 if s1 is infeasible then
9   apply the intra-route infeasible-LS to each route of s1 with a probability δ
10   if s1 is feasible then
11 Apply the intra-route feasible-LS to each route of s1 and proceed to step 7 
12   end if
13 end if
14 output: solution s1

7 � Tabu duration, aspiration and stopping criterion

The memory structure fundamentally guides the VVTS search process by pre-
venting the search from being trapped into a local optimum. We record an attrib-
ute set B(s) = {(i, k)| i ∈ C , k ∈ K ∪ {|K| + 1} : client i is visited by vehicle k} for 
each solution during VVTS iterations. Thus, the transition from the current solu-
tion to a selected solution in the standard cross-exchange or in the in–out cross-
exchange neighborhood can be regarded as the removal and addition of attrib-
utes in B(s). The tabu duration is associated with each attribute. When one client 
i is removed from a route (including both the real vehicles and virtual vehicle), 
we assign a tabu status to attribute (i, k). The re-insertion of client i into route 
k is forbidden for the subsequent θ iterations of the VVTS. When we attempt to 
insert a set of clients into one or more routes simultaneously, this move is not 
tabu if the insertion of at least one client is not in its tabu status.

For each attribute (i, k), its aspiration value is set to a large positive value. 
When an attribute (i, k) falls into the tabu status in a neighborhood move, the 
attribute can be revoked if a feasible solution s is identified by this move and s 
has a smaller cost than the best feasible solution determined with this attribute 
(i, k). When a set of clients is inserted into one or more routes simultaneously, 
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the aspiration criteria are satisfied if this move generates a feasible solution that 
can improve the aspiration values of all the corresponding attributes.

8 � Numerical experiments

We conduct several sets of experiments to evaluate the performance of the VVTS. 
The VVTS is coded in C ++. Firstly, we tune the VVTS parameter values. Next, 
we compare the VVTS results with those of existing state-of-the-art methods on 
the benchmarks of the LDVRPTW variants. All the experiments are run on an 
Intel E5-2670 clocked at 2.6 GHz and 4 GB memory.

8.1 � Parameter‑setting

We adopt the guidelines by Ropke and Pisinger (2006) to tune the parameters. 
Firstly, eighteen tuning instances are generated based on the well-known Solo-
mon’s VRPTW benchmark instances. An initial parameter-setting is estimated 
according to previous studies and a trial-and-error procedure during the develop-
ment of the algorithm. This parameter-setting is improved when a single param-
eter is allowed to vary within an interval while the others are fixed. We apply 
the VVTS to the tuning instances 10 times to tune each parameter value. The 
appropriate value is selected based on solution quality and computation time. We 
then proceed to the next parameter until all parameters have been tuned. Follow-
ing the first round of parameter-tuning, we apply this setting as a new start seed 
and repeat the procedure described above. This procedure stops after two rounds 
of tuning. The ultimate setting is summarized in Table 1. In terms of the stopping 
criterion of the VVTS, we use different settings either to suit the characteristics 

Table 1   VVTS parameter-
setting

Explanation Values

Penalty relative parameters
 α0, αmin, αmax 1, 0.001, 10,000
 β0, βmin, βmax 1, 0.001, 10,000
 γ0, γmin, γmax c(s0)/n, 0.001 × c(s0)/n, 

1000 × c(s0)/n
 φ1, φ2 1.05, 1.10

Tabu duration parameters: θ [5log10n]
Diversification parameters: λ 0.045
Inter-route neighborhood parameters
 Lcross, p, q, μ 5, 10%,4, [2logn]

Intra-route search parameters:
LOr-opt, Ldis, δ 6, 30, (30% and 100%)
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of the test instances, or to enable fair comparisons with existing state-of-the-art 
algorithms, which are presented in the following subsections.

8.2 � Results for benchmark problems

The VVTS is tested on the standard benchmarks of various types of problems. The 
results are compared with those of state-of-the-art methods. Unless otherwise speci-
fied, we apply the VVTS to each benchmark instance 10 times.

8.2.1 � Results for the FCR‑VRP benchmark instances

The VVTS is first tested on the FCR-VRP instances generated by Xiao et al. (2012). 
The original instances by Xiao et al. (2012) are grouped into two sets: the first set 
C-FCR contains seven test instances built on the small- and medium-scale VRP 
instances with 50–199 clients; the second set G-FCR contains 20 test instances 
generated from large-scale VRP instances with 200–483 clients. Zachariadis et al. 
(2015) used these test instances to perform their experiments and compare with the 
algorithm by Xiao et al. (2012). We note that Zachariadis et al. introduced an addi-
tional constraint in their problem and experiments: the total duration (length) of a 
route could not exceed an upper bound; in the VVTS, this constraint is not consid-
ered. Therefore, for a fair comparison, in our experiments we select test instances 
that have infinity duration, i.e., all 7 instances from the C-FCR set and the last 12 
instances from the G-FCR set. For relatively small-scale C-FCR instances, the 
VVTS ceases after 3000 iterations, i.e., after 3000 algorithmic iterations, the VVTS 
yields the best feasible solution as the final output solution. For large-scale G-FCR 
instances, the VVTS ceases after 5000 iterations. Our VVTS is compared with two 
recent and powerful methodologies presented by Zachariadis et  al. (2015) (ZTK) 
and by Kramer et al. (2015) (KSVC). For these 19 test instances, the duration con-
straint is relaxed (infinity duration) and the solutions of various approaches can be 
compared directly. The detailed results are reported in the online supplement; the 
results in boldface indicate the best known solutions (BKSs).

We find that the proposed VVTS is superior to existing state-of-the-art 
approaches in terms of solution quality. For the seven C-FCR test instances, the 
VVTS yields six existing BKSs and one new BKS (C-FCR-5). For the 12 G-FCR 
large-scale instances, three algorithms ZTK, KSVC and VVTS are able to find 
three, three and eight BKSs, respectively. Additionally, the average best solution 
costs found by the ZTK, KSVC and our VVTS are 1580.11, 1581.38 and 1579.56, 
respectively. Considering the computation time, the KSVC method appears to be the 
fastest among the three approaches, with average run times of 0.3 min for C-FCR 
instances and 1.7 min for G-FCR instances. The ZTK method increases run times 
to 2.3 and 19.1 min for two sets of instance, and run time of VVTS for C-FCR and 
G-FCR instances are 1.4 and 29.1 min, respectively.
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8.2.2 � Results for the realistic TBW‑VRP instances

We test the VVTS on the TBW-VRP instances generated by Zhang et  al. (2012). 
In these instances, the information is obtained from the actual expressway network 
of the Gansu and Jiangxi Provinces in China. Five subsets of instances are con-
structed based on the practical information of each province; each subset consists 
of five instances resulting in a total of 50 test instances. In all instances, the un-
laden weight of the vehicle is 5 tones, and a scheme involving a transportation toll 
of 0.08 Chinese Yuan (RMB) per kilometer and per ton is adopted. The objective of 
the TBW-VRP is to minimize the transportation costs under this toll scheme rather 
than those based on the total travel distance. Zhang et al. (2012) designed a branch-
and-bound algorithm for solving such test instances. In this part of experiments, the 
VVTS ceases after 5000 iterations.

We present the detailed computational results for these instances in the Gansu 
and Jiangxi Provinces in the online supplement. For all test instances, the VVTS 
can determine the optimal solutions (compared with the known optimal solutions 
in Zhang et al. 2012). For the test instances from the Gansu Province, the optimal 
solution is obtained during each VVTS algorithmic run for each instance. For the 
test instances from the Jiangxi Province, considering the total of 250 runs (25 test 
instances, each of which to be solved 10 times), the maximum deviation between 
the VVTS costs and optimal costs is only 0.14%. These statistical findings illustrate 
the high quality of the VVTS solution. With respect to computation time, our VVTS 
(average running time of 0.09 min) is faster than the approach by Zhang et al. (aver-
age running time of 14.38 min).

We think it is also interesting to see the impact of load-dependency on the rout-
ing decisions on such realistic data. So, in the online supplement (Table EC.3 and 
EC.4), we provide the “VRP solution cost” on each instance, i.e., we solve each 
instance as classical VRP with the objective of minimizing the total traveling dis-
tances, and then we evaluate the VRP solution using transportation costs under toll 
scheme. In other words, we let the vehicle travels along the VRP-solution-routes and 
calculate the corresponding real transportation cost. We also present the percent-
age deviation between VRP solution cost and our solution cost, calculated by (VRP 
solution cost − our solution cost)/our solution cost × 100%.

Not surprising, we find that the costs of VRP solutions are much larger than that 
of our solutions. For example, for all instances from Gansu Province, the average 
percentage deviation between our solutions costs and VRP solution costs is up to 
118.8%; in terms of all instances from Jiangxi Province, the average gap is 96.12%. 
Note that in such instances the time windows are not incorporated. These results 
indicate that for such realistic instances the VRP solution cost that only minimizes 
the total travel distances is about the double of our solution cost that considers the 
impact of load-dependency on the routing decisions. To more clearly illustrate the 
difference between two type of solutions, in Figs. 3 and 4, we show the routes of our 
solutions and VRP solutions to two instances (the first instance of Gansu Province 
with 25 customers, and the first one of Jiangxi Province with 30 customers).
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8.2.3 � Results for the VRPTW benchmark instances

In this subsection, we test the VVTS on the well-known VRPTW. The VVTS is then 
compared with existing state-of-the-art exact and heuristic methods. Specifically, the 
tests are performed on the Solomon benchmark (Solomon 1987) that includes 56 
test instances. The Solomon instances consist of C, R and RC classes, which differ 
by the geographical distribution of the clients. Each class is divided into two series: 
100-series instances with narrow time windows and 200-series instances with wide 
time windows. Different VRPTW objectives are considered in testing the Solomon 
instances: for example, minimizing the total traveling distance, the total duration, 
the number of vehicles, and any combinations of these factors (Braysy and Gend-
reau 2005a). We apply the total distance as our VRPTW objective in the experiment. 
Even with this simple objective, two arithmetic precisions were chosen by numer-
ous studies to calculate the travel distance/time between each pair of clients: (1) the 
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travel time and distance are defined with the Euclidean distance, and (2) both are 
calculated with one decimal point and truncation. The former is generally used by 
heuristics whereas the latter is typically adopted by exact algorithms.

Firstly, we consider the Euclidean distance with one precision as the travel dis-
tance and time. In this case, the VRPTW has been studied extensively using vari-
ous effective algorithms, such as the branch-and-price (Danna and Le Pape 2005; 
Desaulniers et al. 2008) and branch-and-cut (Bard et al. 2002) algorithms. In terms 
of the exact approaches, the best ones have been designed by Desaulniers et  al. 
(2008), Baldacci et  al. (2011) and Røpke (2012). The optimal solutions of such 
single-decimal instances have been obtained from such sophisticated approaches. In 
terms of the heuristic algorithms, the most recent and highly competitive ones have 
been presented by Muter et al. (2010), Demir et al. (2012) and Kramer et al. (2015). 
Muter et al. (2010) proposed a MetaOpt approach that integrated a column genera-
tion-based exact algorithm into a metaheuristic algorithm. This MetaOpt approach 
was applied to the VRPTW twice through double- and one-decimal truncated travel 
distances. The approach improved some best solutions identified prior to 2010. The 
ALNS in Demir et al. (2012) and the KSVC method in Kramer et al. (2015) were 
designed for the PRP and have been successfully applied to these VRPTW bench-
marks with single decimals. Our VVTS also addresses such Solomon VRPTW 
problems through one-precision truncation, and the results are compared with pre-
vious state-of-the-art results. In this test, to fairly compete with these sophisticated 
metaheuristics, we solve each instance 15 times, with a maximum running time of 
180 s as the stopping criterion of VVTS.

The detailed results are reported in the online supplement, where the BKS is in 
boldface. Despite the competition from significant approaches, the performance 
of the VVTS is Satisfied. The quality of the VVTS solutions exceeds that of the 
MetaOpt and ALNS by Demir et al. (2012). For example, out of the 56 instances 
with known optimal solutions, the MetaOpt and ALNS yield optimal solutions for 
15 instances and 36 instances, respectively, whereas VVTS can solve all 56 instances 
optimally. It is noteworthy that KSVC also obtains outstanding results, yielding all 
optimal solutions except for one instance, RC106. In terms of the computation time, 
Muter et al. applied their approach three times for each test instance and set a time 
limit of 20  min for each execution. For almost all of these instances, the average 
computation time of the VVTS was 3 min, which was considerably shorter than that 
of the MetaOpt. However, our computation time is longer than that of the ALNS and 
KSVC.

Next, we do not truncate the travel times and distances among locations. We 
apply the VVTS to such VRPTW instances, and obtain the solution costs in tre-
ble precision. For such a case, to the best of our knowledge, the most recent stud-
ies are those by Muter et al. (2010), Vidal et al. (2013) and Kramer et al. (2015). 
The MetaOpt method by Muter et al. (2010) has been found to improve 17 BKSs. 
Then, Vidal et  al. (2013) adopted a significant metaheuristic, namely, the hybrid 
genetic algorithm with advanced population diversity management (Vidal et  al. 
2012) (denoted as HGA), to solve the VRPTW and obtained positive results. Vidal 
et  al. (2013) thereafter updated all the previous BKSs in the literature, yielding 
27 new best solutions. Kramer et  al. (2015) reported their results obtained with 
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double-precision distances. We compare the VVTS solutions with those obtained 
by Muter et al. (2010), Vidal et al. (2013) and Kramer et al. (2015). Again, we limit 
the computation time of the VVTS to 180 s. The detailed results are presented in the 
online supplement.

We find that the HGA by Vidal et al., the KSVC by Kramer et al., and our VVTS 
can obtain significantly positive results for such test instances. Compared with the 
MetaOpt method, the approaches of HGA, KSVC and VVTS improve the mean 
value of the best solution costs over all test instances at a gap of 0.64%. For 51 out 
of the 56 test instances, both the HGA and VVTS determine the same best solutions. 
For four instances (R102, RC108, R205, and RC202), the VVTS obtains new BKSs 
whereas, for one instance, the HGA obtains a better solution than VVTS. Despite 
the difference in the acquisition of results by VVTS and KSVC (the VVTS uses full-
precision distances whereas the KSVC uses double-precision distances), the superi-
ority of the VVTS is apparent: for three test instances (R107, RC106 and R211), the 
VVTS yields better solutions whereas, for other test instances, the two approaches 
obtain the same best solutions. In summary, we can conclude that the results of the 
HGA, KSVC and VVTS are comparable for the Solomon VRPTW benchmark and 
better than the existing state-of-the-art approaches. Furthermore, the VVTS in this 
paper can yield solutions of higher quality than the HGA and KSVC.

9 � Conclusions

We study the LDVRPTW, a generalization of the VRPTW in which the traveling 
costs are computed based on not only the travel distance but also the vehicular load 
on travel arcs. Such increasingly-common cost structures are important for modern-
day transportation problems. We propose a new constraint relaxation-based heuris-
tic to efficiently address the LDVRPTW. The new relaxation scheme allows some 
clients to be served by a virtual vehicle, resulting in new structural differences to 
the algorithm compared with the existing relaxations. Based on this new relaxation 
scheme, we design corresponding neighborhood structures to broaden the access to 
the solution space. We report the computational results for test instances derived 
from the literature on the LDVRPTW-variant problems. The results of our experi-
ments and comparisons with existing state-of-the-art algorithms demonstrate that 
the new heuristic is powerful and exhibits great potential for a wide range of com-
plex practical problems.
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