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Abstract
We investigate a supply chain consisting of two suppliers and a customer. The cus‑
tomer faces a new product procurement deal and seeks ways to allocate the new 
product demand volume between suppliers so that he maximizes his profits. The 
suppliers compete for this new product offer by deciding on their base stock inven‑
tory levels. In addition, each of the three players decides on accepting or refusing to 
participate in this game according to the profitability of the deal. We examine the 
decentralized system where each player optimizes his own profits regardless of the 
whole system’s benefit. We show the existence of several pure strategies of Nash 
equilibria for this game and that the decentralization of decisions can lead to sig‑
nificant supply chain inefficiency. For instance, we show that the new product deal 
can be lost due to the decentralization of decisions. We derive a transfer payment 
contract which aims to avoid this inefficiency by allowing the decentralized system 
to behave similar to the centralized one. We also provide conditions under which 
collaboration is beneficial for all of the players.
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1 Introduction

In today’s competitive world, products’ life cycles have become shorter, and firms 
are required to more frequently introduce new products to their customers. Usually, 
placing a new product into the market requires the participation of several firms. 
Each firm wants to get as much profit as possible regardless of the whole system’s 
profits, automatically leading to a decentralization of decisions. Most of the litera‑
ture on supply chain management highlights the disadvantages of decentralization 
and underlines the benefits of cooperation in mitigating its inefficiency on the whole 
system.

In this paper, we pursue this research field by investigating a supply chain that 
consists of two capacitated suppliers and a customer who faces the offer of a new 
product procurement contract. The customer decides on how to allocate the new 
product demand volume between the two suppliers. The suppliers compete for the 
new product offer by choosing base stock inventory levels in a way to maximize 
their profits. Moreover, each of the three players decides on accepting or rejecting 
the deal according to its profitability.

To model competition between players, we have applied game theory. In particu‑
lar, we use the Nash equilibrium concept to determine players’ strategies. According 
to this concept, we suppose that players have equivalent dominance power. This is 
the case when large companies negotiate with large‑sized suppliers. It is also the 
case when medium or small‑sized firms interact with each other.

Considering the centralized system performances (where the supply chain is opti‑
mized as a whole) as a benchmark, we highlight the inefficiency of the decentrali‑
zation of decisions and show that it may lead to the loss of the new product offer. 
To improve the decentralized system performances, we derive coordination arrange‑
ments between partners that make the decentralized system perform as well as the 
centralized one. We give simple and feasible conditions that allow each player to 
earn higher profits under coordination.

The remainder of the paper is structured as follows. In the second section, we pre‑
sent the related literature review. In Sect. 3, we describe our model. We then analyze 
the decentralized and centralized system performances in Sect. 4, while in Sect. 5, 
we expose the coordination arrangements. Our analyses are illustrated through a 
numerical example in Sect. 6. Finally, we present conclusions and research perspec‑
tives in Sect. 7.

2  Literature review

In the last 2 decades, several studies have focused on the interaction between supply 
chain actors in the context of production/inventory systems. In particular, some of 
these papers considered interactions within the same firm. For example, Benjaafar 
et al. (2004) investigated the multiple manufacturing facilities system. These authors 
gave a solution procedure to obtain the optimal demand allocation parameters 
and optimal base stock levels that each facility has to keep. Arda (2008) analyzed 
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a model that includes a make to stock producer who allocates demand to several 
facilities experiencing make to order queues. Benjaafar et al. (2008) treated the case 
of multiple demand sources and multiple distribution centers and focused on how to 
allocate each demand to the different distribution centers.

A second stream of papers considered the competition and collaboration between 
independent actors. These papers can be classified into two families. In the first fam‑
ily, the authors focus on the competition within a two‑stage supply chain. Players are 
generally competing on inventory positioning (Cachon and Zipkin 1999; Jemai and 
Karaesmen 2007), on transfer payments between players (Arda and Hennet 2008), 
on sub‑contracting decisions (Saharadis et  al. 2009), on order sequencing and on 
due date quotations (Kaminsky and Kaya 2009).

In the second family of papers, the authors consider competition between actors 
in the same supply chain stage. Ha et al. (2003) presented the competition between 
two suppliers serving one customer whose allocation decision depends on the sup‑
pliers’ mean delivery time in a deterministic environment. Cachon and Zhang (2007) 
investigated a model in which a customer has to split demand volume between two 
make to order servers that are competing on their capacities. They exposed some 
demand allocation frameworks that exist in the literature and studied suppliers’ 
responses at the equilibrium for each framework. Benjaafar et al. (2007) presented 
a way of stressing competition between identical suppliers by means of the propor‑
tional demand allocation scheme. According to this allocation scheme, each supplier 
gets more demand volume if he offers a better service level. Bernstein and de Véri‑
court (2008) studied a system that includes two suppliers and two customers. Each 
customer proposes a new item and allocates all its demand volume to the supplier 
who offers the highest backorder penalty. The authors studied the suppliers’ compe‑
tition and analyzed their choices at equilibrium. Ching et al. (2011) generalized the 
model of Benjaafar et al. (2007) by including a penalty scheme for the suppliers who 
do not meet the promised delivery time. For identical supply chain structures, Elahi 
(2013) compared service level and inventory level competitions and showed that 
the latter creates a higher service level for the buyer. Elahi and Blake (2014) used 
laboratory experiments to examine those theoretical results. Ernez‑Gahbiche et al. 
(2016a) considered competition between two suppliers on an external new product 
offer. Ernez‑Gahbiche et  al. (2016b) analyzed competition between coalitions of 
suppliers on a new product deal. They modeled their problem through a Stackelberg 
game where the customer dominates the supply chain.

All these papers treated the interaction between supply chain members with 
two forms. Some papers treated systems where the customer is leader in the 
game. For instance, Arda and Hennet (2008) analyzed a system where a customer 
decides on the backorder penalty that his supplier is charged for unmet demand. 
Caldentey and Wein (2003) and Jemai and Karaesmen (2007) treated the case 
where the customer decides on each actor’s stock position. The Stackelberg game 
is the tool offered by game theory to model such situations. Generally, the idea 
of dominance between supply chain actors stands when a large company oper‑
ates with small or medium‑sized companies. Some other papers focus on mod‑
els where players have equivalent dominance power with respect to each other. 
This is the case when a large company negotiates with another company that has 
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almost the same power or when medium‑sized firms or small firms interact with 
each other. In the earlier mentioned references, we note the research works of 
Jemai and Karaesmen (2007) in the case of a two‑stage supply chain (Cachon and 
Zhang 2007) in the case of two suppliers and (Benjaafar et al. 2007) in the case 
of multiple suppliers. The Nash equilibrium is the tool offered by game theory to 
model such situations.

Some of the earlier mentioned references shed light on the contract coordination 
that players may agree to adopt to cope with decentralization inefficiency (see for 
example Jemai and Karaesmen 2007; Arda and Hennet 2008; Caldentey and Wein 
2003; Cachon and Zipkin 1999). Cachon (2000) conducted an extensive literature 
review about coordination arrangements.

Our paper is in the field of the papers presented above since it addresses competi‑
tion and coordination between two suppliers and one customer. Our major contribu‑
tions are threefold:

• We consider a more general framework. Indeed, the presented papers consid‑
ering multi‑suppliers’ model generally focus on the downstream stage perfor‑
mances. However, in our model, the customer is considered as an actor and par‑
ticipates in the game. Moreover, the earlier mentioned papers considered that 
supply chain actors accept the demand volume that they are allocated and do not 
discuss the possibility of refusal. In this paper, we introduce the acceptance vari‑
able as a decision parameter. The literature that studied the problem of admitting 
or rejecting the offer of a new item is limited. However, we do acknowledge the 
model of Carr and Duenyas (2000) that gives the supplier the ability to accept or 
to reject orders, which makes their problem a scheduling one. What distinguishes 
this paper from theirs is that this paper examines the possibilities of accepting or 
rejecting a new product offer.

• We consider a one‑stage game where each player concurrently decides on its 
strategies. Indeed, there is interdependence between participation and opera‑
tional parameters. Participation decisions depend on each player’s profits, which 
in turn depend on the players’ operational decisions. We propose a further refine‑
ment similar to some related papers in the literature that consider multi‑stage 
game modeling where decisions are made according to some order and deci‑
sions in a stage serve as game parameters in the following stages. For exam‑
ple, Anupindi et al. (2001) and Granot and Sošic (2003) considered multi‑stage 
models where the first stage concerns decentralized decisions and the second 
stage concerns cooperative decisions. Furthermore (El Ouardighi 2014) analyzed 
a two‑stage system where in the first stage players choose the type of contract 
that they will establish together, and in the second stage players implement their 
management decisions.

• For the considered model, we derive Nash equilibria between the three players 
and obtain interesting insights on the interactions between them. We propose a 
transfer payment contract that allows the decentralized system to behave as the 
centralized one. We also provide conditions under which collaboration is benefi‑
cial for all of the players.
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3  Modeling assumptions and notations

We consider a customer who faces the offer of a new product procurement contract. 
He determines how to allocate the new product’s demand volume between two dif‑
ferent capacity suppliers in a way that would maximize his own profits. The suppli‑
ers may differ in the new item’s sale prices and supply costs. They compete to attract 
the customer based on base stock level guarantees. Furthermore, each of the three 
actors has the option of accepting or refusing the new product deal.

Demand occurs according to a Poisson process with rate λ. Since our work is in 
the Business to Business (B to B) context, we consider a system with backorders. 
Therefore, all orders that cannot be satisfied are backordered. The customer incurs a 
backorder penalty cost B per unit backordered and earns P for each product unit 
sold. The customer is charged a sale price pi and transportation costs tci for each unit 
purchased from supplier‑i. Unit processing times at each supplier facility are sto‑
chastic, independent and exponentially distributed with mean 1

�i

 at supplier‑i, i ∈ {1, 

2}. Each supplier‑i is charged production costs ci, holding costs hi per item per unit 
time and a backorder penalty bi per item per unit time. The penalty is paid to the 
customer.

The three actors simultaneously decide on their strategies, and a competition is 
drawn between them. Each supplier‑i, i ∈ {1, 2} has to decide on a pair of decisions 
(Ai,  si), where Ai is a binary variable expressing supplier‑i’s acceptance (Ai  =  1) 
or refusal (Ai = 0) of the customer’s offer, and si is the base stock level supplier‑i 
decides to install. The customer has to decide on a triplet of decisions (A0, α1, α2) 
where A0 is a binary variable revealing the customer’s acceptance or refusal of the 
new product offer, and αi ∈ [0, 1] is the percentage of demand allocated to supplier‑i.

None of the two suppliers are allocated a demand volume if the customer refuses 
the offer. However, all demand volume is allocated to suppliers if the customer 
accepts the offer. We resume these assumptions by letting α1 + α2 = A0. A supplier‑i 
is not allocated a demand volume if he refuses the offer. Therefore, we suppose that 
αi ≤ Ai. We suppose that the unprofitability of the deal is the only reason of refusal.

We denote the ρi(αi) supplier‑i utilization rate as:

Each supplier’s system stability requires that ρi(αi) < 1. If we satisfy this con‑
straint ∀i ∈ {1, 2}, then we satisfy the whole system stability: λ < μ1 + μ2. However, 
0  ≤  αi  ≤  1, and thus we can resume these constraints by imposing that 
�1 ∈ [0, 1] ∩

]
1 −

�2

�
,
�1

�

[
 , and we denote this interval by J. 

(1)�i
(
�i
)
=

�i�

�i

, ∀i ∈ {1, 2}

(2)J = [0, 1] ∩
]
1 −

�2

�
,
�1

�

[
.
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Since the arrival of demand is a Poisson process and service time has an exponential 
distribution, the production inventory system of each supplier can be modeled as an 
M/M/1 queue. The average inventory and backorder levels were established by Buza‑
cott and Shanthikumar (1993) who showed that the two corresponding expressions are 
respectively of the form:

Let ξ = ((A0, α1, α2), (A1, s1), (A2, s2)) be an example of players’ strategies. We define 
πi(ξ) as the profit function of supplier‑i, i ∈ {1, 2} and π0(ξ) as the profit function of the 
customer. Then:

Since players operate in a stochastic environment, we suppose that the customer and 
both suppliers are risk neutral. This assumption is widely used in the literature related 
to our paper (see Benjaafar et al. 2007; Elahi 2013).

4  Decentralized versus centralized system optimal performances

The performances of the decentralized system are measured with respect to the central‑
ized system ones since they are the best performances the decentralized system can 
ever reach. In this section, we analyze the Nash equilibria resulting from the competi‑
tion between the two suppliers and the customer. Then, we study the centralized system 
performances.

4.1  The decentralized system

In this section, we develop the decentralized system performances. First, we present 
a brief definition of the Nash equilibrium. Second, we determine all Nash equilibria 
resulting from our game through Propositions 1, 2 and 3. Then, we partially charac‑
terize the influence of some system parameters on the obtained equilibria.

Each supplier has to express his acceptance or refusal of the new product 
offer and has to decide on the base stock level to install. On the other hand, the 

(3)X̄i = si −
𝜌i
(
𝛼i
)

1 − 𝜌i
(
𝛼i
)(1 − (

𝜌i
(
𝛼i
))si)

(4)
Ȳi =

(
𝜌i
(
𝛼i
))si+1

1 − 𝜌i
(
𝛼i
)

(5)𝜋0(𝜉) = A0

2∑
i=1

Ai

((
P − pi − tci

)
𝛼i𝜆 −

(
B − bi

)
Ȳi
)

(6)𝜋1(𝜉) = A0A1

((
p1 − c1

)
𝛼1𝜆 − b1Ȳ1

)
− h1X̄1

(7)𝜋2(𝜉) = A0A2

((
p2 − c2

)
𝛼2𝜆 − b2Ȳ2

)
− h2X̄2
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customer has to decide on whether he accepts or rejects the new product offer and 
on the demand allocation scheme between suppliers.

As defined by Osborne and Rubinstein (2011), a Nash equilibrium is an action 
profile a∗ = {a∗

1
,… , a∗

n
} that has the property that no player j can do better by 

choosing an action different from a∗
j
 , given that every other player k adheres to a∗

k
.

In the case of our Nash game, unlike most of the models treated in the litera‑
ture, each player’s action contains more than one decision variable. In fact, each 
supplier‑i decides on the couple (Ai, si) and the customer decides on (A0, α1, α2).

Next, we show the existence of Nash equilibria and we determine all of them. 
We denote ξ∗ = ((A∗

0
, �∗

1
, �∗

2
), (A∗

1
, s∗

1
), (A∗

2
, s∗

2
)) as a Nash equilibrium.

We adopt the following classifications:

�
0 is the set of Nash equilibria corresponding to the refusal of the deal by the 

customer.

�
1 is the set of Nash equilibria where the demand volume is allocated to only 

one supplier.

�
2 is the set of Nash equilibria where the demand volume is split between the 

two suppliers.

It is clear that the set of all Nash equilibria is � = �
0 ∪ �

1 ∪ �
2.

In the next proposition, we characterize the set �0.

Proposition 1 

Proof See the “Appendix”. □

If the customer turns down the offer, the rest of the supply chain members 
refuse it as well.

In the next proposition, we characterize Nash equilibria where all demand vol‑
ume is allocated to one supplier.

Proposition 2 

where

�
0 =

{
�0 =

((
A∗
0
, �∗

1
, �∗

2

)
,
(
A∗
1
, s∗

1

)
,
(
A∗
2
, s∗

2

))
⧵A∗

0
= 0

}
.

�
1 =

{
�1 =

((
A∗
0
, �∗

1
, �∗

2

)
,
(
A∗
1
, s∗

1

)
,
(
A∗
2
, s∗

2

))
⧵A∗

0
= 1 and �∗

1
= 1 or �∗

2
= 1

}
.

�
2 =

{
�2 =

((
A∗
0
, �∗

1
, �∗

2

)
,
(
A∗
1
, s∗

1

)
,
(
A∗
2
, s∗

2

))
⧵A∗

0
= 1 and �∗

i
∈ ]0, 1[∀i ∈ {1, 2}

}
.

(8)�
0 =

{
�0 = ((0, 0, 0), (0, 0), (0, 0))

}
.

�
1 = �

1
a
∪ �

1
b

�
1
a
=

{
𝜉1
a
=
(
(1, 1, 0), (1, s∗

1
), (0, 0)

)
if 𝜋1

(
𝜉1
a

)
> 0 and 𝜋0

(
𝜉1
a

)
> 0,

� otherwise.

�
1
b
=

{
𝜉1
b
=
(
(1, 0, 1), (0, 0),

(
1, s∗

2

))
if 𝜋2

(
𝜉1
b

)
> 0 and 𝜋0

(
𝜉1
b

)
> 0,

� otherwise.
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ρ1(1) and ρ2(1) are given by (1).

Proof See the “Appendix”. □

Proposition 2 determines all Nash equilibria where the entire demand is allocated 
to a single supplier. Note that this set is composed of two types of equilibria: the 
equilibria where demand is fully assigned to supplier‑1 (the set �1

a
 ), and those where 

demand is fully assigned to supplier‑2 (the set �1
b
 ). Note that unlike the set �0 , the set 

�
1 may be empty depending on the values of the problem’s parameters.

By the Nash equilibria resulting from Proposition 2, our model returns to a one 
supplier–one customer supply chain. It aligns the problem handled by Jemai and 
Karaesmen (2007) if we consider that players accept the affair and that (in their 
model) the customer does not hold inventory.

In the next proposition, we characterize the Nash equilibria where the new prod‑
uct offer is accepted by players and demand volume is shared between both suppliers 
such that α∗

i
∈ ]0, 1[ ∀i ∈ {1, 2} . Let α2 = 1 − α1 and g

(
s1, s2, �1

)
 be the derivative 

of the profit function �0 with respect to �1 . Then, we obtain:

Proposition 3 Let ŝ1
(
α1
)
=

⌊
Log

(
h1

h1+b1

)

Log(𝜌1(𝛼1))

⌋
 and ŝ2

(
α1
)
=

⌊
Log

(
h2

h2+b2

)

Log(𝜌2(1−𝛼1))

⌋
.

If the equation g
(
ŝ1
(
𝛼1
)
, ŝ2

(
𝛼1
)
, 𝛼1

)
= 0 has no roots with respect to �1, then 

�
2 = �.

Otherwise
Let α∗

1
 be a root of the equation g

(
ŝ1
(
α1
)
, ŝ2

(
𝛼1
)
, 𝛼1

)
= 0, and let s∗

1
= ŝ1

(
𝛼∗
1

)
 and 

s∗
2
= ŝ2

(
𝛼∗
1

)
.

For each root �∗
1
 , we denote � =

((
1, �∗

1
, 1 − �∗

1

)
,
(
1, s∗

1

)
,
(
1, s∗

2

))
.

• If b1 > B, b2 < B and 𝜇1 > 𝜆, then �2 is the set of all ξ such that:

1. �∗
1
∈ ]0, 1[,

2. 𝜕g

𝜕𝛼1

(
s∗
1
, s∗

2
, 𝛼∗

1

)
< 0,

3. 𝜋i(𝜉) > 0 ∀i ∈ {0, 1, 2}, and

(9)s∗
1
=

⎢⎢⎢⎢⎣

Log
�

h1

h1+b1

�

Log
�
�1(1)

�
⎥⎥⎥⎥⎦
, s∗

2
=

⎢⎢⎢⎢⎣

Log
�

h2

h2+b2

�

Log
�
�2(1)

�
⎥⎥⎥⎥⎦

g
(
s1, s2, �1

)
=

��0

��1
=

2∑
i=1

(−1)i

{(
pi + tci

)
� +

(
B − bi

)
�
(
�i
(
�i
))si(1 + si

(
1 − �i

(
�i
)))

(
1 − �i

(
�i
))2

�i

}
.
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4. �0(�) ≥ �0
(
(1, 1, 0),

(
1, s∗

1

)
,
(
1, s∗

2

))
.

• If b1 < B, b2 > B and 𝜇2 > 𝜆, then �2 is the set of all ξ such that:

1. �∗
1
∈ ]0, 1[,

2. 𝜕g

𝜕𝛼1

(
s∗
1
, s∗

2
, 𝛼∗

1

)
< 0,

3. 𝜋i(ξ) > 0 ∀i ∈ {0, 1, 2}, and
4. �0(�) ≥ �0

(
(1, 0, 1),

(
1, s∗

1

)
,
(
1, s∗

2

))
.

• If ( b1 > B and �1 ≤ � ) or ( b2 > B and �2 ≤ � ), then �2 = �.
• Otherwise, �2 is the set of all � such that

1. �∗
1
∈ ]0, 1[,

2. 𝜕g

𝜕𝛼1

(
s∗
1
, s∗

2
, 𝛼∗

1

)
< 0

3. 𝜋i
(
𝜉2
)
> 0 ∀i ∈ {0, 1, 2}.

Proof See the “Appendix”. □

To determine the set �2 , we first have to determine the roots of the equation 
g(ŝ1(𝛼1), ŝ2(𝛼1), 𝛼1) = 0 . These roots are obtained numerically by means of an iter‑
ative algorithm that simply searches the solutions in the interval J through a small 
increment.

The set of all Nash equilibria is then � = �
0 ∪ �

1 ∪ �
2 . Note that at least there 

is a Nash equilibrium since �0 ≠ ∅ . However, as shown in Propositions 1, 2 and 3, 
there may be several Nash equilibria.

In the next lemma, we partially characterize the influence of some system 
parameters on the obtained equilibria.

Lemma 1 Recall that �1
a
 is the Nash equilibrium set where supplier‑1 gets the whole 

demand volume and �1
b
 is the one where supplier‑2 gets the whole demand volume.

• ∃ μ01 > λ such that if �1 ≤ �01, then �1
a
= �.

• ∃ μ02 > λ such that if �2 ≤ �02, then �1
b
= �.

There is no Nash equilibrium where all demand volume is allocated to supplier‑i 
if his service capacity is less than some threshold μ0i, i ∈ {1, 2}.

Proof See the “Appendix”. □

Remark Let us note that in the study led here, we supposed that λ < μ1 + μ2 (see 
Sect. 3). Indeed, it is obvious that should the opposite occur, the affair can be only 
lost because we supposed that all of the demand must be satisfied in the case of 
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acceptance. While it is out of our hypothesis indicated in Sect. 3, we can write that if 
λ ≥ μ1 + μ2, then � = �

0.

We illustrate the results of Remarks 1 and 2 in Fig. 1 where we present all the 
possible Nash equilibria according to suppliers’ production capacities.

Lemma 2 When the whole supply chain is relatively loaded, the relaxation of the 

base stocks to their continuous form s∗
i
≈ ŝi =

Log
(

hi

hi+bi

)

Log(𝜌i(𝛼i))
 is known to be a good 

approximation in the literature (see Buzacott and Shanthikumar 1993). In this case, 
we can determine the earlier production capacity thresholds analytically as:

Proof See the “Appendix”. □

4.2  Performances of the centralized system

To underline the impact of decentralization on system performances, we study the 
centralized system where the suppliers and the customer decisions are optimized in 
a centralized manner. The whole system receives the entire demand from the cus‑
tomer according to a Poisson process with rate λ, earns P per unit sold and pays a 
backorder penalty B per unit backordered per unit time. Each supplier‑i incurs pro‑
duction and holding costs ci and hi, respectively. The unit transportation costs from 
supplier‑i is tci.

In the centralized system, we have to determine the base stock level of each sup‑
plier‑i sic, the amount of demand volume that will be allocated to him αicλ and the 

(10)�0i = max

⎧⎪⎨⎪⎩
�

�
1 +

bi

hi

� hi

(pi−ci)�

, � +
B − bi

P − pi − tci

hi

hi + bi

⎫⎪⎬⎪⎭
, ∀ i ∈ {1, 2}.

Fig. 1  Possibilities of suppliers 
1’s and 2’s shares of the new 
product deal as function of μ1 
and μ2

Supplier-2 gets 
the offer, it

is shared or lost

Supplier-1 gets 
the offer, it
is shared or lost

The offer is 
shared
or lost

The offer  
is lost

All possibilities are 
available
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binary variable Ac that reveals the decision of acceptance Ac = 1 or refusal Ac = 0 of 
the new product offer by the whole system. The deal is refused by the system if it is 
not profitable.

Since the arrival of demand is a Poisson process and service time has an expo‑
nential distribution, the production inventory system of each supplier can be mod‑
eled as an M/M/1 queue. The average inventory X̄ic and backorder Ȳic levels were 
established by Buzacott and Shanthikumar (1993) who showed that the two corre‑
sponding expressions are respectively of the form X̄ic = sic −

𝜌i(𝛼ic)

1−𝜌i(𝛼ic)

(
1 − 𝜌i(𝛼ic)

sic
)
 

and Ȳic =
𝜌i(𝛼ic)

sic+1

1−𝜌i(𝛼ic)
 , where ρi(αic) is supplier‑i’s utilization rate 

�i
(
�ic

)
=

�ic�

�i

∀ i ∈ {1, 2} . To afford stability for each supplier’s production sys‑

tem, we impose that �1c ∈ J.
The centralized system profits are denoted by πc. It consists of the system turno‑

ver minus the sum of the production and holding costs of suppliers and the back‑
order costs of the customer.

Our object is to maximize πc, which we can express as follows:

where Ac =

{
1 if 𝜋c

(
1, 𝛼1c, 𝛼2c, s1c, s2c

)
> 0

0 otherwise
.

Proposition 4 Let

and �̃�1c = ArgMax𝛼1c∈J𝜋c
(
1, 𝛼1c, 1 − 𝛼1c, ŝ1c

(
𝛼1c

)
, ŝ2c

(
1 − 𝛼1c

))

• If 𝜋c
(
1, �̃�1c, 1 − �̃�1c, ŝ1c

(
�̃�1c

)
, ŝ2c

(
1 − �̃�1c

))
> 0 , then A

∗
c
= 1, 𝛼∗

1c
= �̃�1c, 𝛼

∗
2c
=

1 − �̃�1c, s
∗
1c
= ŝ1c

(
�̃�1c

)
 , and s∗

2c
= ŝ2c

(
1 − �̃�1c

)
• If 𝜋c

(
1, �̃�1c, 1 − �̃�1c, ŝ1c

(
�̃�1c

)
, ŝ2c

(
1 − �̃�1c

))
≤ 0 , then A∗

c
, s∗

ic
= 0 and 

�∗
ic
= 0 ∀ i ∈ {1, 2}.

Proof See the “Appendix”. □

s1c and s2c in (11) are replaced with their expressions given by (12), and the 
resulting function depends only on αc. Since it is difficult to analytically characterize 

(11)

𝜋c
(
Ac, 𝛼1c, 𝛼2c, s1c, s2c

)
= Ac

(
P𝜆 −

2∑
i=1

((
ci + tci

)
𝛼ic𝜆 + BȲic

))
−

2∑
i=1

hiX̄ic

(12)

ŝic
�
𝛼ic

�
=

⎢⎢⎢⎢⎣

Log
�

hi

hi+B

�

Log
�
𝜌i
�
𝛼ic

��
⎥⎥⎥⎥⎦
if 𝛼1c ≠ 0 and ŝic = 0 otherwise ∀i ∈ {1, 2}
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the values of �̂�c , we constructed an algorithm that increases �̂�c with a small incre‑
ment in each iteration and saves the highest corresponding πc value.

4.3  Comparison between the decentralized and the centralized systems

In this section, we study the system’s inefficiency due to decentralization of deci‑
sions. �∗

d
 denotes the whole decentralized system’s profits and Ad is a binary variable 

that expresses whether the offer is accepted (Ad = 1 if 𝜋∗
d
> 0 ) or refused (Ad = 0 if 

�∗
d
≤ 0 ). Let �∗

c
 be the optimal centralized system profit. When 𝜋∗

c
> 0 , we define the 

competition penalty CP as the relative loss of the decentralized system with regard 
to the centralized one.

In the next proposition, we derive some comparisons between centralized and 
decentralized systems.

Proposition 5 Regardless of the Nash equilibrium that results from the decentral-
ized system, we have the following results:

• �∗
d
≤ �∗

c
,

• If A∗
c
= 0 then A∗

d
= 0, and

• In addition, if the system parameters are such that

then, the deal is accepted in the centralized model and refused in the decentral-
ized one (i.e., A∗

c
= 1 and A∗

d
= 0). Consequently, CP = 100%.

Proof See the “Appendix”. □

Proposition 5 shows that the offer can never be accepted in the decentralized sys‑
tem if it is refused in the centralized one. Inversely, the offer can be refused in the 
decentralized system (because of competition). Nevertheless, it is profitable for the 
system when it is managed in a centralized manner. In this case, the loss caused by 
competition is as high as 100%. Let us note that condition (14) is sufficient but not 

(13)CP =
�∗
c
− �∗

d

�∗
c

× 100

(14)

𝜇1 > 𝜆 > 𝜇2 and p1 +
h1Exp(1)

𝜇1

Log

(
h1

h1 + b1

𝜇1

𝜆 − 𝜇2

)

< c1 < P − tc1 −
h1

𝜆

Log
(

h1

h1+B

)

Log
(

𝜆

𝜇1

)
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necessary. In fact, the offer can be refused in the decentralized system and accepted 
in the centralized one in other different situations. These cases will be detailed 
numerically.

5  Coordination of the decentralized system

As shown in Proposition 5, decentralized operations lead to a high loss of efficiency 
for the supply chain. This loss can reach 100%. In this section, we design contrac‑
tual arrangements between players that allow the decentralized system to perform as 
efficiently as the centralized one while letting each player independently manage his 
system. First, we provide transfer payments between players. Second, we investigate 
some constraints on the transfer payment parameters so that players get higher prof‑
its after coordination.

Our coordination mechanism involves contracts that consist of a linear transfer 
payment from the customer to supplier‑1 (Tr1) and from the customer to supplier‑2 
(Tr2):

where ξ = ((A0, α1, α2), (A1, s1), (A2, s2)) is an example of players strategies, and ζ1 
and ζ2 are the contract parameters where ζ1 and ζ2 ∈ [0, 1].

Through these transfer payments, the customer pays each supplier a holding cost 
subsidy and a part of the whole system’s profits.

Since suppliers’ sale prices are such that c1 < p1 < P − tc1 and c2 < p2 < P − tc2 , 
they can be written as follows:

where η1 and η2 are in the interval ]0, 1[.
The new profits of the players are as follows:

In the next proposition, we present the set of possible contracts 
((ζ1, ζ2), (η1, η2)) such that there is a Nash equilibrium that aligns the centralized 
system’s optimal performances.

Let �∗
c
=
(
1, �∗

1c
, �∗

2c
, s∗

1c
, s∗

2c

)
 be the optimal centralized system solution.

Tr1(𝜉) = A0A1

((
1 − 𝜁1

)((
P − c2 − tc2

)
𝛼2𝜆 − h2X̄2 − BȲ2

)
+ 𝜁1h1X̄1

)

Tr2(𝜉) = A0A2

((
1 − 𝜁2

)((
P − c1 − tc1

)
𝛼1𝜆 − h1X̄1 − BȲ1

)
+ 𝜁2h2X̄2

)

p1 = �1
(
P − tc1 − c1

)
+ c1

p2 = �2
(
P − tc2 − c2

)
+ c2

(15)𝜋0c(𝜉) = A0

2∑
i=1

(
Ai

((
1 − 𝜂i

)(
P − tci − ci

)
𝛼i𝜆 −

(
B − bi

)
Ȳi
))

−

2∑
i=1

Tri(𝜉)

(16)𝜋1c(𝜉) = A0A1

((
𝜂1
(
P − tc1 − c1

))
𝛼1𝜆 − b1Ȳ1

)
− h1X̄1 + Tr1(𝜉)

(17)𝜋2c(𝜉) = A0A2

((
𝜂2
(
P − tc2 − c2

))
𝛼2𝜆 − b2Ȳ2

)
− h2X̄2 + Tr2(𝜉)
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Proposition 6 If

• �1 = 1 −
b1

B
 and �2 = 1 −

b2

B
• η1 = 1 − ζ1 and η2 = 1 − ζ2
• ζ1 < 1, ζ2 < 1 and ζ1 + ζ2 > 1

then, �∗ = ((A∗
c
, �∗

1c
, �∗

2c
), (1, s∗

1c
), (1, s∗

2c
)) is a Nash equilibrium of the decentralized 

system after coordination. In this case, CP = 0%.

Proof See the “Appendix”.  □

The transfer payment arrangements allow for the perfect coordination of the 
supply chain. Note that our coordination contract is applicable in the case of one 
supplier by simply supposing that the other supplier refuses the offer. In this case, 
our coordination contract is a holding cost subsidy by the customer to the sup‑
plier. This kind of contract was detailed by Cachon and Zipkin (1999).

To participate to this consortium, each player needs to obtain higher profits 
after coordination.

In the next proposition, we present some expressions of suppliers’ backorder 
penalties b1 and b2 such that each player gets better profits after coordination.

Recall that �∗
c
 is the optimal centralized system’s profits. �∗

i
 denotes the profits 

of player‑i at the Nash equilibrium before coordination and �∗
ic

 denotes his profits 
at the equilibrium after coordination, where i ∈ {0, 1, 2}. Let �∗

d
=
∑2

i=0
�∗
i
.

Proposition 7 If bco
1

 and bco
2

 are such that

then, �∗
ic
≥ �∗

i
∀ i ∈ {0, 1, 2}.

Proof See the “Appendix”.  □

As shown in Proposition 7, an adequate choice of backorder penalties contributes 
to better profits for each player. Consequently, it is interesting for all the players to 
accept the coordination contracts.

(18)bco
1
> B

𝜋∗
1

𝜋∗
c

(19)bco
2
> B

𝜋∗
2

𝜋∗
c

(20)bco
1
+ bco

2
< B

(
1 −

𝜋∗
0

𝜋∗
c

)
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The choice of parameters bco
1

 and bco
2

 impacts the allocation of savings between 
players. In the next corollary, we provide a condition that allows an equal distribu‑
tion of the additional benefits thanks to coordination.

Corollary By letting

Then, players’ profits increase at the same amount, i.e., 
�∗
1c
− �∗

1
= �∗

2c
− �∗

2
= �∗

0c
− �∗

0
.

Proof See the “Appendix”.  □

We note that the conditions in (21) satisfy constraints (18)–(20). Therefore, each 
player’s profits are higher with coordination. Moreover, profits increase at the same 
amount.

6  Numerical results

In this section, we numerically illustrate our principle results and give some insights.

6.1  Example 1: Study of the loss due to competition

To measure the gap between the centralized and the decentralized policies, we first 
consider an example where the two suppliers are identical except for their produc‑
tion capacities. The demand’s arrival rate is λ = 50 pallets/year where a pallet con‑
tains 1000 items.

The suppliers’ unit production costs are c1 = c2 = 8 €/item. The suppliers’ sale 
prices are p1 = p2 = 10 €/item. The customer’s sale price is P = 12.5 €/item. The 
transportation costs are tc1 = tc2 = 150 €/pallet. The unit inventory holding costs are 
h1 = h2 = 38 €/Pallet/week. The customer’s backorder penalty is B = 480 €/Pallet/
week. The suppliers’ backorder penalties are b1 = b2 = b, where b = B/3. This value 
will be varied in the next numerical example.

Figure 2 shows the competition penalty (CP%) as a function of �1

�1+�2

 for several 

values of the system load ρ, where � =
�

�1+�2

 . We note that for symmetry reasons 
�1

�1+�2

 takes values in the interval [0.5; 1]. We note that when several Nash equilib‑

ria exist, we report the Nash equilibrium that corresponds to the lowest CP value.

(21)bco
1
=

B

�∗
c

(
�∗
1
+

�∗
c
− �∗

d

3

)
and bco

2
=

B

�∗
c

(
�∗
2
+

�∗
c
− �∗

d

3

)
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These curves show that the loss due to decentralization can be very important 
(between 20 and 100% in most of the cases). Recall that a 100% loss means that 
the offer is lost in the competitive case while it is accepted in the centralized one.

From these curves, it appears that CP is increasing with respect to the system 
load ρ. For ρ = 98%, the system becomes so loaded that the deal is refused in both 
the decentralized and the centralized cases. The overall profits will be zero in 
both cases.

To analyze the shape of the CP curves, we consider the example of ρ = 93%. 
This curve has three ranges. The first one is approximately 50% ≤

�1

�1+�2

≤ 60% . 

In this range, the production capacities of the two suppliers are almost identical. 
The offer will be shared between the two suppliers. The corresponding competi‑
tion penalty is approximately 50%. In the second range ( 60% ≤

�1

�1+�2

≤ 95% ), 

supplier‑2 has a low capacity. Supplier‑1’s production capacity is relatively large 
but not large enough to allow him to get the deal alone. Competition makes both 
suppliers refuse the offer, and thus, CP is equal to 100%. In the third range 
(approximately 95% ≤

�1

�1+�2

≤ 100% ), the offer is not lost because the production 

capacity of supplier‑1 is very important and enables him to get the whole offer 
alone. The loss resulting from competition is also high in this range since, in the 
centralized system, supplier‑2 is allocated a small amount of demand, which sig‑
nificantly reduces the costs. However, the impact of supplier‑2 on this loss is 
reduced when his capacity is lower. This is why CP decreases when �1

�1+�2

 
approaches 100%.
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+

Fig. 2  Competition penalty (CP%) as a function of supplier‑1’s relative production capacity
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6.2  Example 2: Supply chain coordination

We now consider a second example where the two suppliers are different in terms 
of production costs, transportation costs and sale prices. We suppose that the 
demand arrival rate is λ = 50,000  items/year. Suppliers’ production capacities are 
μ1 = μ2 = 52,000 items/year. The customer’s sale price is P = 12.5 €/item. The sys‑
tem backorder penalty is B = 480  €/Pallet/week. The unit inventory holding costs 
are  h1 = h2 = 38€/Pallet/week. The suppliers’ production costs are c1 = 8 €/item and 
c2 = 6.5 €/item. The transportation costs are tc1 = 150 €/pallet and tc2 = 187 €/pal‑
let. The suppliers’ sale prices (p1 and p2) and backorder penalties (b1 and b2) will be 
varied (see Tables 1, 2, 3).

In these tables, we give players’ strategies at the Nash equilibrium ( �∗
1
, �∗

2
, s∗

1
, s∗

2
 ) 

and their corresponding profits ( �∗
1
,�∗

2
,�∗

0
 ). We also give their decisions at the 

equilibrium under coordination ( �∗
1c
, �∗

2c
, s∗

1c
, s∗

2c
 ) and the corresponding profits 

( �∗
1c
,�∗

2c
,�∗

0c
 ). We follow the expressions of the corollary in the choice of bco

1
 and bco

2
 

in the three tables. Finally, we present the competition penalty (CP). We note that 
when several Nash equilibria exist, we report the Nash equilibrium that maximizes 
the total supply chain profits.

Again, the loss due to competition is important and varies between 30 and 
100% in most of the cases. These tables also show the huge interest of coordina‑
tion in improving the profits of the three players. For example, for (p2 = 13 and 
b = b), the profits of supplier‑1 increases from 17 to 75 M€/year, supplier‑2’s prof‑
its grow from 0 to 58 M€/year and the customer’s profits rise from 67 to 125 M€/
year.

It is also interesting to note the gap between competition and coordination optimal 
strategies. In the centralized case, the optimal allocation of demand between the two 
suppliers is ( �∗

1c
= 18% and �∗

2c
= 82% ) regardless of p2 and b

B
 . In the decentralized 

case, because of competition, the demand allocation is very different. In some cases, 
it is fully assigned to the first supplier, and in some others it is fully assigned to the 
second supplier or it can be divided between the two suppliers in several demand 

Table 1  Competition versus coordination optimal performances 
(
b =

B

3

)

p1 p2 �∗
1

�∗
2

s
∗
1

s
∗
2

�∗
1

�∗
2

�∗
0

CP% �∗
1c

�∗
2c

s
∗
1c

s
∗
2c

�∗
1c

�∗
2c

�∗
0c

11 6 0 0 0 0 0 0 0 100 0.18 0.82 1 11 86 86 86
11 7 0.15 0.85 0 9 20 10 220 2.9 0.18 0.82 1 11 23 13 223
11 8 0.17 0.83 0 8 23 53 176 2.5 0.18 0.82 1 11 25 55 178
11 9 0.22 0.78 1 6 31 90 134 1.3 0.18 0.82 1 11 32 92 135
11 10 0.31 0.69 1 4 43 117 92 2.5 0.18 0.82 1 11 46 119 94
11 11 0.50 0.5 2 2 71 110 59 7.4 0.18 0.82 1 11 77 116 65
11 12 0.67 0.33 3 1 93 89 39 14 0.18 0.82 1 11 105 102 52
11 13 0.75 0.25 4 1 102 81 29 18 0.18 0.82 1 11 117 97 44
11 14 0.81 0.19 6 1 108 72 24 21 0.18 0.82 1 11 126 90 43
11 15 0.85 0.15 8 0 111 64 19 25 0.18 0.82 1 11 132 86 41
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allocation schemes (see columns �∗
1
 and �∗

2
 ). The gaps between base stock levels are 

also very wide. Under coordination, the total base stock level is (s∗
1c

+ s∗
2c
) = 12 

pallets. Under competition, the total base stock level 
(
s∗
1
+ s∗

2

)
 varies between 4 and 

9 pallets if b =
B

3
 , between 66 and 71 pallets if b = B and 98 pallets if b = 3B.

This shows that base stock level varies significantly with respect to the penalty 
costs imposed by the customer and that the competition scheme can lead to over 
storage for high values of b and vice versa.

Looking at the evolution of �∗
2
 and �∗

2c
 with respect to p2, it appears that suppli‑

er‑2’s sale price must be almost equal to supplier‑1’s sale price, although c2 < c1. 
Indeed, a lower price will allow supplier‑2 to get a higher portion of demand vol‑
ume, but it will reduce his profit margin.

On the other hand, it appears that the customer has no interest in charging suppli‑
ers a high backorder penalty (see for example �∗

0
 and �∗

0c
 if p2 = 7). Note that, in most 

cases of this example, the penalty costs are also increasing with respect to b
B
 : (CP(b 

> B) > CP(b = B) > CP(b < B).

Table 2  Competition versus coordination optimal performance (b = B)

p1 p2 �∗
1

�∗
2

s
∗
1

s
∗
2

�∗
1

�∗
2

�∗
0

CP% �∗
1c

�∗
2c

s
∗
1c

s
∗
2c

�∗
1c

�∗
2c

�∗
0c

11 6 1 0 66 0 17 0 67 67 0.18 0.82 1 11 75 58 125
11 7 1 0 66 0 17 0 67 67 0.18 0.82 1 11 75 58 125
11 8 1 0 66 0 17 0 67 67 0.18 0.82 1 11 75 58 125
11 9 0 1 0 71 0 15 165 30 0.18 0.82 1 11 26 41 192
11 10 0 1 0 71 0 65 115 30 0.18 0.82 1 11 26 91 142
11 11 0 1 0 71 0 115 65 30 0.18 0.82 1 11 26 141 92
11 12 0 1 0 71 0 165 15 30 0.18 0.82 1 11 26 191 42
11 13 1 0 66 0 17 0 67 67 0.18 0.82 1 11 75 58 125
11 14 1 0 66 0 17 0 67 67 0.18 0.82 1 11 75 58 125
11 15 1 0 66 0 17 0 67 67 0.18 0.82 1 11 75 58 125

Table 3  Competition versus coordination optimal performances (b = 3B)

p1 p2 �∗
1

�∗
2

s
∗
1

s
∗
2

�∗
1

�∗
2

�∗
0

CP% �∗
1c

�∗
2c

s
∗
1c

s
∗
2c

�∗
1c

�∗
2c

�∗
0c

11 6 0 0 0 0 0 0 0 100 0.18 0.82 1 11 86 86 86
11 7 0 0 0 0 0 0 0 100 0.18 0.82 1 11 86 86 86
11 8 0 0 0 0 0 0 0 100 0.18 0.82 1 11 86 86 86
11 9 0 0 0 0 0 0 0 100 0.18 0.82 1 11 86 86 86
11 10 0 1 0 98 0 22 142 36 0.18 0.82 1 11 31 54 174
11 11 0 1 0 98 0 72 92 36 0.18 0.82 1 11 31 104 124
11 12 0 1 0 98 0 122 42 36 0.18 0.82 1 11 31 154 74
11 13 0 0 0 0 0 0 0 100 0.18 0.82 1 11 86 86 86
11 14 0 0 0 0 0 0 0 100 0.18 0.82 1 11 86 86 86
11 15 0 0 0 0 0 0 0 100 0.18 0.82 1 11 86 86 86
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7  Conclusion and perspectives

We have investigated a supply chain with two capacitated suppliers and a down‑
stream customer who faced the offer of a new product deal. The customer decides 
how to allocate demand volume between suppliers according to their base stock lev‑
els’ commitment. In addition, each of the three players decides to accept or to refuse 
the concerned deal. In the case where all players manage their own systems in a 
decentralized manner, we showed that the game has pure Nash equilibria and we 
characterized them all. In addition, we analyzed the impact of different parameters 
on the system’s whole profits.

We showed that the decentralized system may be inefficient, and this inefficiency 
can be significant. In some cases the offer is lost, while it is accepted if the system 
is managed in a centralized manner. We presented linear transfer payments between 
the customer and each of the two suppliers that led to a perfect coordination of the 
supply chain. However, we allow each part to separately manage its system.

The last part of this paper was devoted to a numerical study where we underlined 
the impact of decentralization on the players’ systems’ performances and where we 
studied the benefit of our coordination arrangement.

It would be interesting to investigate the case where the customer holds inventory. 
In this case, the customer decides on the demand distribution and the stock to install. 
The multiple suppliers’ case could represent an interesting extension of our research 
work as well.

Finally, it would also be interesting to let suppliers cooperate and decide on how 
to divide demand volume between them. Some interesting insights may be drawn by 
comparing results with the optimal centralized system performances.

Funding Funding was provided by Ecole Nationale d’Ingénieurs de Monastir.

Appendix

Proof of Proposition 1 We show first that �0 ⊂ {(0, 0, 0), (0, 0), (0, 0)}.

Let � =
((
A∗
0
, �∗

1
, �∗

2

)
,
(
A∗
1
, s∗

1

)
,
(
A∗
2
, s∗

2

))
∈ �

0 . We know that A∗
0
= 0 and that ξ is a 

Nash equilibrium.

Concerning supplier‑1

A∗
0
= 0 then as �∗

1
+ �∗

2
= A∗

0
 so �∗

1
= �∗

2
= 0 . With reference to (3), (4) and (6) we 

have X̄1 = s1, Ȳ1 = 0 and π1(ξ) = − h1s1. It leads to 𝜋1(𝜉) < 0∀ s1 > 0 . Thus the 
best supplier‑1 base stock level choice is 

(22)s∗
1
= 0.
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According to (6), s∗
1
= 0 and �∗

1
= 0 lead to π1(ξ) = 0. The offer is then unprof‑

itable for supplier‑1 then A∗
1
= 0 . Consequently, the best supplier‑1 strategy is 

(0, 0).

Concerning supplier‑2

Analogously we show that the best supplier‑2 strategy is (0, 0).

Concerning the customer

As we supposed that α1 + α2 = A0 then A∗
0
= 0 leads to �∗

1
= �∗

2
= 0.

According to (4) and (5), �∗
1
= �∗

2
= 0 lead to π0(ξ)  =  0. The offer is then 

unprofitable for the customer then A∗
0
= 0 is its best choice. The best customer 

strategy is then (0, 0, 0).
It turns out that ξ = ξ0  =  ((0,  0,  0),  (0,  0),  (0,  0)) so 

�
0 ⊂

{
𝜉0 = ((0, 0, 0), (0, 0), (0, 0))

}
.

Next we show that {(0, 0, 0), (0, 0), (0, 0)} ⊂ �
0.

Let ξ = (0, 0, 0), (0, 0), (0, 0).

• A0 = 0.
• We show that ξ is a Nash equilibrium.

Concerning supplier‑1

We know that the customer strategy is (0, 0, 0) and that supplier‑2 strategy is (0, 
0). With reference to (22) if �∗

1
= 0 then s∗

1
= 0 . Consequently �1(ξ) = 0 . The new 

product offer is not profitable for supplier‑1 so A∗
1
= 0 . Therefore (0, 0) is the best 

supplier‑1 strategy.

Concerning supplier‑2

Analogously we show that if the customer chooses (0, 0, 0) and supplier‑1 
chooses (0, 0) then the best supplier‑2 strategy is (0, 0).

Concerning the customer

We know that supplier‑1 strategy is (0, 0) and that supplier‑2 strategy is (0, 0). As 
A1 = A2 = 0 then �0(ξ) = 0 , this means that the new product offer is not profitable 
for the customer so A∗

0
= 0 . Having Ai = 0∀i ∈ {1, 2} leads with the assumption 

that αi ≤ Ai to �∗
i
= 0 ∀i ∈ {1, 2} . Thereby (0, 0, 0) is the best customer strategy.

Hence ξ is a Nash equilibrium. So {((0, 0, 0), (0, 0), (0, 0))} ⊂ �
0.

Finally E0 = {((0, 0, 0), (0, 0), (0, 0))}. □
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Proof of Proposition 2 Let � =
((
A∗
0
, �∗

1
, �∗

2

)
,
(
A∗
1
, s∗

1

)
,
(
A∗
2
, s∗

2

))
∈ �

1 . Then we know 
that:

• A∗
0
= 1.

• Either ( �∗
1
= 1 and �∗

2
= 0 ) or ( �∗

1
= 0 and �∗

2
= 1).

• ξ is a Nash equilibrium.

Concerning supplier‑1

If the customer adopts the strategy (1, 1, 0) then since we assumed that α1 ≤ A1 so 
A∗
1
= 1 which occurs only if π1(ξ) > 0. In addition, π1 is concave with respect to s1. 

As s1 is an integer variable, the classical method to determine the optimal s1 value 
with reference to Buzacott and Shanthikumar (1993) is to solve the equation: 
𝜋1
(
𝜉
(
ŝ1
))

− 𝜋1
(
𝜉
(
ŝ1 − 1

))
= 0 where 𝜉

(
ŝ1
)
 is any example of players strategies 

such that s1 = ŝ1 . Solving this equation leads to ŝ1 =
Log

(
h1

h1+b1

)

Log(𝜌1(1))
 . Thereby s∗

1
= ⌊ŝ1⌋ 

where ⌊x⌋ denotes the largest integer that is less than or equal to x (10).
Therefore, if the customer adopts (1, 1, 0) and supplier‑2 adopts ( A∗

2
, s∗

2
 ) then the 

best supplier‑1 strategy is ( 1, s∗
1
 ) where s∗

1
 is given by (9).

If the customer adopts the strategy (1, 0, 1) then according to (22), the best sup‑
plier‑1 base stock level choice is s∗

1
= 0 . By looking at expression (6) we note �∗

1
= 0 

and s∗
1
= 0 result in π1(ξ) = 0. Thus supplier‑1 refuses the offer on account of unprof‑

itability: .
Therefore, if the customer adopts (1, 0, 1) and supplier‑2 adopts ( A∗

2
, s∗

2
 ) then the 

best supplier‑1 strategy is (0, 0).

Concerning supplier‑2

The proof is the same as above if we inverse suppliers 1 and 2.
Hence if the customer adopts (1, 1, 0) and supplier‑1 adopts ( A∗

1
, s∗

1
 ) then the best 

supplier‑2 strategy is (0, 0).
On the other hand, if the customer adopts (1, 0, 1) and supplier‑1 adopts (0, 0) 

then the best supplier‑2 strategy is ( 1, s∗
2
 ) where s∗

2
 is given by (9).

Concerning the customer

If supplier‑1 adopts ( 1, s∗
1
 ) where s∗

1
 is given by (9) and supplier‑2 adopts (0, 0) then 

the whole new product offer is allocated to supplier‑1. In other words �∗
1
= 1 and 

�∗
2
= 0 . As A∗

0
= �∗

1
+ �∗

2
 then A∗

0
= 1 . So the best customer strategy is (1, 1, 0).

If supplier‑1 adopts (0, 0) and supplier‑2 adopts ( 1, s∗
2
 ) where s∗

2
 is given by (9) 

then A∗
0
= 1 is the best customer choice if π0(ξ) > 0. On the other hand, as α1 ≤ A1 

then �∗
1
= 0 and so �∗

2
= 1.

So if supplier‑1 adopts (0, 0) and supplier‑2 adopts (1, s∗
2
 ) then the best customer 

strategy is (1, 0, 1).
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As a conclusion � =
(
(1, 1, 0), (1, s∗

1
), (0, 0)

)
 where π1(ξ)  >  0 and π0(ξ)  >  0 or 

� =
(
(1, 0, 1), (0, 0),

(
1, s∗

2

))
 where π2(ξ) > 0 and π0(ξ) > 0.

It turns out that �1 = �
1
a
∪ �

1
b
. □

Proof of Proposition 3 To determine the set �2 we adopt the same definition of Nash 
equilibrium (D.1) that we presented in the proof of Proposition 1.

Concerning supplier‑1

The customer adopts the strategy (1, �∗
1
, 1 − �∗

1
).

As π1(ξ) > 0 then A∗
1
= 1 . According to (23) the best supplier‑1 base stock choice 

is 

 where ŝ1 =
Log

(
h1

h1+b1

)

Log(𝜌1(𝛼∗1))
.

So the best supplier‑1 strategy when the customer chooses (1, �∗
1
, 1 − �∗

1
 ) and 

supplier‑2 chooses ( 1, s∗
2
 ) is ( 1, s∗

1
).

Concerning supplier‑2

The customer adopts the strategy (1, �∗
1
, 1 − �∗

1
).

As π2(ξ) > 0 then A∗
2
= 1 . According to (23) the best supplier‑2 base stock choice 

is s∗
2
= ⌊ŝ2⌋ where ŝ2 =

Log
(

h2

h2+b2

)

Log(𝜌2(1−𝛼∗1))
.

So the best supplier‑2 strategy when the customer chooses (1, �∗
1
, 1 − �∗

1
 ) and 

supplier‑2 chooses ( 1, s∗
1
 ) is ( 1, s∗

2
).

Concerning the customer

Supplier‑1 and 2 have chosen ( 1, s∗
1
 ) and ( 1, s∗

2
 ) respectively. If π0(ξ) > 0 then A∗

0
= 1.

A closer examination of function g shows that it is continuous and derivable with 
respect to �1 . When function g has no roots in ]0, 1[ it means that π0 is monotonic. 
Thus it is better for the customer to choose α1 = 1 if ∀ α1 ∈ ]0, 1[ g > 0 and to choose 
α1 = 0 if ∀ α1 ∈ ]0, 1[ g < 0. In both cases �2 = � . If ∀ α1 ∈ ]0, 1[ we have g = 0 then 
the customer is indifferent of α1 value i.e. any α1 leads to the same customer profit.

• Suppose bi ≤ B ∀ i ∈ {1, 2}. In this case function π0 is concave with respect to α1. 
The root of equation g = 0 if it exists corresponds to the maximal π0 value.

• Suppose bi ≥ B ∀ i ∈ {1, 2} where b1 > B or b2 > B. In this case by noting that 
�g

��1
≥ 0 then function π0 is convex with respect to α1. The root of equation g = 0 

(23)s∗
1
= ⌊ŝ1⌋
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corresponds to the minimal π0 value. Hence the best customer response is α1 = 1 
or α1 = 0 in which cases �2 = � . If however 1 ∉ J or 0 ∉ J then we can show eas‑
ily that lim�1→

�1

�

�0 = lim�1→1−
�2

�

�0 = +∞ . In both cases there is no customer 

best response. Consequently �2 = �.
• Suppose that b1 > B and b2 < B. We can easily show that g is convex with respect 

to α1 by noting that �
2g

��2
1

≥ 0 . In this case there are at most two roots of function g 

in the interval ]0, 1[. We denote them by x1 and x2 where x1 < x2. Then x1 corre‑
sponds to a maximum of function π0 and x2 corresponds to a minimum. In other 
words, function π0 increases in the interval [0, x1]. It decreases in the interval 
[x1, x2] and increases again in the interval [x2, 1]. We select the root correspond‑
ing to a maximum by checking if 𝜕g

𝜕𝛼1

(
s∗
1
, s∗

2
, 𝛼∗

1

)
< 0 as a necessary constraint in 

this case. If 1 ∈ J (the case where λ < μ1) we need to compare π0 values when 
α1 = x1 and when α1 = 1 (with letting suppliers strategies unchanged). If α1 = 1 
corresponds to a better customer choice then α1 = x1 does not lead to a Nash 
equilibrium as the customer may improve his profit by choosing α1 = 1. If 1 ∉ J 
(the case where λ  ≥  μ1) then lim�1→

�1

�

�0 = +∞ . In this case there is no best 

choice for the customer so �2 = �.
• Suppose that b1 < B and b2 > B. Noting that �

2g

��2
1

≤ 0 so function g is concave in 

which case π0 decreases in the interval [0, x1]. It increases in the interval [x1, x2] 
and decreases again in the interval [x2, 1]. We select the root corresponding to a 
maximum by checking if 𝜕g

𝜕𝛼1

(
s∗
1

(
𝛼∗
1

)
, s∗

2

(
1 − 𝛼∗

1

)
, 𝛼∗

1

)
< 0 as a necessary con‑

straint in this case. Thus if 0 ∈ J (the case where λ < μ2) we need to compare π0 
value when α1 = x2 and when α1 = 0. If α1 = 0 corresponds to a better customer 
choice then α1 = x2 does not lead to a Nash equilibrium as the customer may 
improve his profit by choosing α1  =  0. If 0 ∉ J (the case where � ≥ �2 ) then 
lim�1→1−

�2

�

�0 = +∞ so there is no customer best choice. In this case �2 = �. □

Proof of Lemma 1 Let �1
a
=
(
(1, 1, 0),

(
1, s∗

1

)
, (0, 0)

)
 where s∗

1
 is given by (9) and �′

1
 be 

such that �1(1) =
�

�1

=
(

h1

h1+b1

) 1

k+1 where k ∈ ℕ . So s∗
1
= k + 1 . By noting that 

lim(�1→��
1)

+ s∗
1
= k then lim(�1→��

1)
+ �1

(
�1
a

)
=
(
p1 − c1

)
� − h1k − h1 . On the other 

hand, by noting that lim(�1→��
1)

− s∗
1
= k + 1 then 

lim(�1→��
1)

− �1
(
�1
a

)
=
(
p1 − c1

)
� − h1k − h1. It follows that �1

(
�1
a

)
 is continuous with 

respect to �1. As s∗
1
 remains constant when 

(
h1

h1+b1

) 1

k+1
< 𝜌1(1) ≤

(
h1

h1+b1

) 1

k and by exam‑

ining the derivative of �1
(
�1
a

)
 with respect to μ1 (for fixed s∗

1
 ) we can show that �1

(
�1
a

)
 is 

increasing with respect to μ1. In addition lim(�1→�)
+ �1

(
�1
a

)
= −∞ and 
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lim�1→+∞ �1
(
�1
a

)
=
(
p1 − c1

)
� . It turns out that ∃ ̃𝜇1

1
> 𝜆 such that ∀𝜇1 > �̃�1

1
 we have 

𝜋1
(
𝜉1
a

)
> 0 and ∀𝜇1 ≤ �̃�1

1
 we obtain �1

(
�1
a

)
≤ 0.

We now check the customer profit. Suppose that b1 < B. According to (23) we have 

0 ≤ s∗
1
≤ ŝ1 where ŝ1 =

Log
(

h1

h1+b1

)

Log(𝜌1(1))
 . In addition, according to (5) π0 is increasing with 

respect to s1. Therefore, 𝜋0((1, 1, 0), (1, 0), (0, 0)) ≤ 𝜋0
(
𝜉1
a

)
≤ 𝜋0

(
(1, 1, 0),

(
1, ŝ1

)
, (0, 0)

)
 . 

π0((1, 1, 0),  (1, 0),  (0, 0)) and 𝜋0
(
(1, 1, 0),

(
1, ŝ1

)
, (0, 0)

)
 are continuous and increasing 

with respect to μ1 where μ1 ≥ λ.
Furthermore, lim(𝜇1→𝜆)

+ 𝜋0((1, 1, 0), (1, 0), (0, 0)) = lim(𝜇1→𝜆)
+ 𝜋0((1, 1, 0),

(
1, ŝ1

)
,

(0, 0)) = −∞ and lim�1→+∞ �0((1, 1, 0), (1, 0), (0, 0)) = lim�1→+∞ �0

(
(1, 1, 0),

(
1, ŝ1

)
, (0, 0)

)
=
(
P − p1 − tc1

)
𝜆 . It turns out that ∃ �̃�2

1
> 𝜆 such that 

∀𝜇1 ≤ �̃�2
1
 we get �0

(
�1
a

)
≤ 0.

Let 𝜇01 = max
{
�̃�1
1
;�̃�2

1

}
 . Therefore ∀μ1 ≤ μ01 we have necessarily �1

(
�1
a

)
≤ 0 or 

�0
(
�1
a

)
≤ 0 . In this case �1

a
= �.

Suppose that b1 ≥ B. According to (5) we conclude easily that 𝜋0
(
𝜉1
a

)
> 0∀𝜇1 . 

In this case let 𝜇01 = �̃�1
1
 where �̃�1

1
 is as defined above. Therefore if μ1 ≤ μ01 then 

�1
(
�1
a

)
≤ 0 . So �1

a
= �.

Analogously, we show the existence of �02 ≥ � such that if 𝜇2 < 𝜇02 then �1
b
= �. □

Proof of Lemma 2 Suppose that the relaxation s∗
i
= ŝi where ̂si =

Log
(

hi

hi+bi

)

Log(𝜌i(𝛼i))
∀i ∈ {1, 2} 

is adopted. Note that in this case �1
(
�1
a

)
=
(
p1 − c1

)
� − h1

Log
(

h1

h1+b1

)

Log
(

�

�1

)  and 

�0
(
�1
a

)
=
(
P − p1 − tc1

)
� −

(
B − b1

) h1

h1+b1

�

(�1−�)
.

On the other hand, �2
(
�1
b

)
=
(
p2 − c2

)
� − h2

Log
(

h2

h2+b2

)

Log
(

�

�2

)  and 

�0
(
�1
b

)
=
(
P − p2 − tc2

)
� −

(
B − b2

) h2

h2+b2

�

(�2−�)
.

Thus, if 𝜇1 > 𝜆

(
1 +

b1

h1

) h1

(p1−c1)𝜆 then 𝜋1
(
𝜉1
a

)
> 0 . If 𝜇1 > 𝜆 +

B−b1

P−p1−tc1

h1

h1+b1
 then 

𝜋0
(
𝜉1
a

)
> 0 . Analogously, if 𝜇2 > 𝜆

(
1 +

b2

h2

) h2

(p2−c2)𝜆 then 𝜋2
(
𝜉1
b

)
> 0 . If 

𝜇2 > 𝜆 +
B−b2

P−p2−tc2

h2

h2+b2
 then 𝜋0

(
𝜉1
b

)
> 0 . It follows that 

�0i = max

{
�

(
1 +

bi

hi

) hi

(pi−ci)� , � +
B−bi

P−pi−tci

hi

hi+bi

}
,∀i ∈ {1, 2}. □
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Proof of Proposition 4 ŝic denotes the optimal supplier‑i base stock level if he is allo‑
cated the demand amount αicλ ∀i ∈ {1, 2}. In fact:

• If αic  =  0 then X̄ic = sic and Ȳic = 0 so according to expression (11) 
πc(sic > 0) < πc(sic = 0) so ŝic = 0.

• If αic ≠ 0 then πc is concave with respect to sic. As sic is an integer variable the 
classical method to determine ŝic is through resolving the following equation: 
𝜋c
(
s̃ic
)
− 𝜋c

(
s̃ic − 1

)
= 0 (Buzacott and Shanthikumar 1993). Thereby ŝic = ⌊s̃ic⌋ 

∀ i ∈ {1, 2} where ⌊x⌋ denotes the largest integer that is less than or equal to x 
(23).

• �̃�1c corresponds to the maximal πc value after replacing sic with their optimal 
expressions ŝic ∀i ∈ {1, 2}. If 𝜋c

(
1, �̃�1c, 1 − �̃�1c, ŝ1c

(
�̃�1c

)
, ŝ2c

(
1 − �̃�1c

))
> 0 

then the offer is profitable: A∗
c
= 1;𝛼∗

1c
= �̃�1c;𝛼

∗
2c
= 1 − �̃�1c;s

∗
1c
= ŝ1c

(
�̃�1c

)
 and 

s∗
2c
= ŝ2c

(
1 − �̃�1c

)
.

If 𝜋c
(
1, �̃�1c, 1 − �̃�1c, ŝ1c

(
�̃�1c

)
, ŝ2c

(
1 − �̃�1c

))
≤ 0 then A∗

c
= 0 . Yet according to 

(11) 𝜋c
�
0, �̃�1c, 1 − �̃�1c, ŝ1c

�
�̃�1c

�
, ŝ2c

�
1 − �̃�1c

��
=

2∑
i=1

�
−hiX̄ic

�
 so 

𝜋c
(
0, �̃�1c, 1 − �̃�1c, ŝ1c

(
�̃�1c

)
, ŝ2c

(
1 − �̃�1c

))
≤ 0∀�̃�1c ∈ J . Since πc(0,  0,  0,  0,  0)  =  0 

then s∗
ic
= 0 and �∗

ic
= 0 ∀ i ∈ {1, 2}. □

Proof of  Proposition 5 Let � =
((
A∗
0
, α∗

1
, α∗

2

)
,
(
A∗
1
, s∗

1

)
,
(
A∗

2
, s∗

2

))
 be a Nash equilib‑

rium in the decentralized system. We begin by showing that �∗
d
≤ �∗

c
.

• Recall that ŝi
(
α∗
i

)
 are optimal base stock levels corresponding to the 

Nash equilibrium ξ where i ∈ {1, 2}. ŝic
(
α∗
ic

)
 are optimal base stock lev‑

els corresponding to centralized system, i ∈ {1, 2}. As ŝic
(
𝛼∗
i

)
 corre‑

sponds to the maximal πc value if (�∗
1
, �∗

2
) is applied as demand share then 

𝜋c
(
1, 𝛼∗

1
, 𝛼∗

2
, ŝ1

(
𝛼∗
1

)
, ŝ2

(
𝛼∗
2

))
≤ 𝜋c

(
1, 𝛼∗

1
, 𝛼∗

2
, ŝ1c

(
𝛼∗
1

)
, ŝ2c

(
𝛼∗
2

))
 . Given that (

�∗
1c
, �∗

2c

)
 is the optimal demand share of the centralized system then we have 

𝜋c
(
1, 𝛼∗

1
, 𝛼∗

2
, ŝ1c

(
𝛼∗
1

)
, ŝ2c

(
𝛼∗
2

))
≤ 𝜋c

(
1, 𝛼∗

1c
, 𝛼∗

2c
, ŝ1c

(
𝛼∗
1c

)
, ŝ2c

(
𝛼∗
2c

))
 . It leads to: 

𝜋c
(
1, 𝛼∗

1
, 𝛼∗

2
, ŝ1

(
𝛼∗
1

)
, ŝ2

(
𝛼∗
2

))
≤ 𝜋c

(
1, 𝛼∗

1c
, 𝛼∗

2c
, ŝ1c

(
𝛼∗
1c

)
, ŝ2c

(
𝛼∗
2c

))
 . Noting that 

𝜋∗
d
= 𝜋c

(
1, 𝛼∗

1
, 𝛼∗

2
, ŝ1

(
𝛼∗
1

)
, ŝ2

(
𝛼∗
2

))
 and 𝜋∗

c
= 𝜋c

(
1, 𝛼∗

1c
, 𝛼∗

2c
, ŝ1c

(
𝛼∗
1c

)
, ŝ2c

(
𝛼∗
2c

))
 so 

we have �∗
d
≤ �∗

c
.

• As �∗
d
≤ �∗

c
 so if �∗

c
= 0 then �∗

d
= 0 . Hence if A∗

c
= 0 then A∗

d
= 0.

• As πc is concave with respect to s1c then 𝜋c
(
1, 1, ŝ1c(1), 0

)
> 𝜋c

(
1, 1, s̃1c(1), 0

)
 

where s̃1c(1) =
Log

(
h1

h1+B

)

Log
(

𝜆

𝜇1

)  . As 𝜋c
(
1, 1, s̃1c(1), 0

)
=
(
P − c1 − tc1

)
𝜆 − h1

Log
(

h1

h1+B

)

Log
(

𝜆

𝜇1

)  

then 𝜋c
(
1, 1, s̃1c(1), 0

)
> 0 if c1 < P − tc1 −

h1

𝜆

Log
(

h1

h1+B

)

Log
(

𝜆

𝜇1

)  . So if 
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c1 < P − tc1 −
h1

𝜆

Log
(

h1

h1+B

)

Log
(

𝜆

𝜇1

)  then 𝜋c
(
1, 1, ŝ1c(1), 0

)
> 0 . As 𝜋∗

c
≥ 𝜋c

(
1, 1, ŝ1c(1), 0

)
 

so if c1 < P − tc1 −
h1

𝜆

Log
(

h1

h1+B

)

Log
(

𝜆

𝜇1

)  then 𝜋∗
c
> 0 . Then A∗

c
= 1.

Let � =
((
1, �∗

1
, �∗

2

)
,
(
1, s∗

1

)
,
(
1, s∗

2

))
 where s∗

i
 are given by expression (23) 

∀i ∈ {1, 2}. We note that J =
]
1 −

�2

�
, 1
]
 . According to (14) we have 

(
p1 − c1

)
(−Exp(−1))𝜇1 + h1Log

((
1−

𝜇2

𝜆

)
𝜆

𝜇1

)
> h1Log

(
h1

h1+b1

)
 we denote this rela‑

tion with (I). Function �1
(
�1
)
Log

(
�1
(
�1
))

 is convex with respect to α1 and achieves 
its minimum in �1 = (Exp(−1))

�1

�
 . Its minimum corresponds to 

�1
(
�1
)
Log

(
�1
(
�1
))

= −Exp(−1) . So we have 
�1
(
�1
)
Log

(
�1
(
�1
))

≥ −Exp(−1) ∀�1 ∈ J . Hence (I) leads to 
(
p1 − c1

)
𝜌1
(
𝛼1
)
Log

(
𝜌1
(
𝛼1
))
𝜇1 + h1Log

((
1−

𝜇2

𝜆

)
𝜆

𝜇1

)
> h1Log

(
h1

h1+b1

)
∀𝛼1 ∈ J  . 

Since function Log is increasing then 

∀𝛼1 > 1 −
𝜇2

𝜆
we have Log

(
𝜌1
(
𝛼1
))

> Log

((
1−

𝜇2

𝜆

)
𝜆

𝜇1

)
 . Therefore relation (I) 

implies that (
p1 − c1

)
𝜌1
(
𝛼1
)
Log

(
𝜌1
(
𝛼1
))
𝜇1 + h1Log

(
𝜌1
(
𝛼1
))

> h1Log
(

h1

h1+b1

)
∀𝛼1 ∈ J . We 

can write 
(
p1 − c1

)
𝜌1
(
𝛼1
)
𝜇1 − h1

(
Log

(
h1

h1+b1

)

Log(𝜌1(𝛼1))
− 1

)
< 0∀𝛼1 ∈ J . Remember that 

s̃1
(
𝛼1
)
=

Log
(

h1

h1+b1

)

Log(𝜌1(𝛼1))
 so 

(
p1 − c1

)
𝜌1
(
𝛼1
)
𝜇1 − h1

(
s̃1
(
𝛼1
)
− 1

)
< 0 ∀𝛼1 ∈ J . As 

ŝ1
(
𝛼1
)
> s̃1

(
𝛼1
)
− 1 then 

(
p1 − c1

)
𝜌1
(
𝛼1
)
𝜇1 − h1ŝ1

(
𝛼1
)
< 0 ∀𝛼1 ∈ J that we 

denote by (II). Besides, we have ŝ1
(
𝛼1
)
≤ s̃1

(
𝛼1
)
 so 𝜌1(𝛼1)

ŝ1(𝛼1)+1

1−𝜌1(𝛼1)
≥

𝜌1(𝛼1)
s̃1(𝛼1)+1

1−𝜌1(𝛼1)
 which 

results in −
(
h1 + b1

) 𝜌1(𝛼1)
ŝ1(𝛼1)+1

1−𝜌1(𝛼1)
≤ −

(
h1 + b1

) 𝜌1(𝛼1)
s̃1(𝛼1)+1

1−𝜌1(𝛼1)
 . Yet we know that 

𝜌1
(
𝛼1
)s̃1(𝛼1) = h1

h1+b1
 (as s̃1

(
𝛼1
)
=

Log
(

h1

h1+b1

)

Log(𝜌1(𝛼1))
 ). Consequently 
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−
(
h1 + b1

) 𝜌1(𝛼1)
ŝ1(𝛼1)+1

1−𝜌1(𝛼1)
≤ −h1

𝜌1(𝛼1)
1−𝜌1(𝛼1)

 and 

−
(
h1 + b1

) 𝜌1(𝛼1)
ŝ1(𝛼1)+1

1−𝜌1(𝛼1)
+ h1

𝜌1(𝛼1)
1−𝜌1(𝛼1)

≤ 0∀𝛼1 ∈ J . We denote this inequality by (III). 

A simple addition of (II) and (III) and with reference to (3), (4) and (6) we deduce 
that 𝜋1(𝜉) < 0 ∀𝛼1 ∈ J . Thus A∗

1
= 0 . On the other hand supplier‑2 cannot get the 

whole demand volume for lack of capacity (as ρ2(1) < 0) then A∗
2
= 0 . It leads to 

π0 = 0. So A∗
0
= 0 and = �

0. □

Proof of Proposition 6 Suppose that A∗
c
= 1 then 𝜋∗

c
> 0.

When the constraints of the proposition are satisfied we can easily prove that: 
�0(�

∗) =
(
�1 + �2 − 1

)
�∗
c
;�1(�

∗) =
(
1 − �1

)
�∗
c
 and �2(�∗) =

(
1 − �2

)
�∗
c
.

For each supplier‑i where i ∈ {1, 2}: s∗
ic
 corresponds to the optimal πc. It implies 

that s∗
ic
 is the best choice of supplier‑i at equilibrium. In addition, as 𝜁i < 1 then 

𝜋i(𝜉
∗) > 0 therefore A∗

i
= 1, i ∈ {1, 2}.

Concerning the customer: Suppose that he chooses 
( 1, �∗

1
, �∗

2
 ) at equilibrium where �∗

1
≠ �∗

1c
 . Hence we have: 

𝜋c
(
1, 𝛼∗

1
, 1 − 𝛼∗

1
, ŝ1c

(
𝛼∗
1c

)
, ŝ2c

(
1 − 𝛼∗

1c

))
> 𝜋c

(
1, 𝛼∗

1c
, 1 − 𝛼∗

1c
, ŝ1c

(
𝛼∗
1c

)
, ŝ2c

(
1 − 𝛼∗

1c

))
. 

Yet 𝜋c
(
1, 𝛼∗

1
, 1 − 𝛼∗

1
, ŝ1c

(
𝛼∗
1

)
, ŝ2c

(
1 − 𝛼∗

1

))
> 𝜋c

(
1, 𝛼∗

1
, 1 − 𝛼∗

1
, ŝ1c

(
𝛼∗
1c

)
, ŝ2c

(
1 − 𝛼∗

1c

))
 

because ̂sic
(
𝛼∗
i

)
 corresponds to the optimal sic value when �∗

i
 is applied. It turns out that 

𝜋c
(
1, 𝛼∗

1
, 1 − 𝛼∗

1
, ŝ1c

(
𝛼∗
1

)
, ŝ2c

(
1 − 𝛼∗

1

))
> 𝜋c

(
1, 𝛼∗

1c
, 1 − 𝛼∗

1c
, ŝ1c

(
𝛼∗
1c

)
, ŝ2c

(
1 − 𝛼∗

1c

))
 

which cannot occur since �∗
ic
 corresponds to the highest value of πc. In this way 

�∗
1
= �∗

1c
 . On the other hand ζ1 + ζ2 < 1 leads to 𝜋0(𝜉∗) > 0 so A∗

0
= 1 . Consequently 

�∗ is a Nash equilibrium of the decentralized system after coordination.
If A∗

c
= 0 then it is obvious that the new product suggestion is refused as well as 

in the decentralized system after coordination.
As �0(�∗) + �1(�

∗) + �2(�
∗) = �∗

c
 then CP = 0%. □

Proof of Proposition 7 As �∗
1c
=
(
1 − �1

)
�∗
c
 it can also be written as �∗

1c
=

bco
1

B
�∗
c
 . If 

bco
1
> B

𝜋∗
1

𝜋∗
c

 then b
co
1

B
𝜋∗
c
> 𝜋∗

1
 . Thus 𝜋∗

1c
> 𝜋∗

1
.

We show that 𝜋∗
2c
> 𝜋∗

2
 by the same reasoning.

As �∗
0c
=
(
�1 + �2 − 1

)
�∗
c
 it can also be written as �∗

0c
=
(
1 −

bco
1
+bco

2

B

)
�∗
c
 . If 

bco
1
+ bco

2
< B

(
1 −

𝜋∗
0

𝜋∗
c

)
 then 

(
1 −

bco
1
+bco

2

B

)
𝜋∗
c
> 𝜋∗

0
 . Thus �∗

0c
≥ �∗

0
. □

Proof of the Corollary We know that �∗
1c
=

bco
1

B
�∗
c
 and that �∗

2c
=

bco
2

B
�∗
c
 and finally that 

�∗
0c
=
(
1 −

bco
1
+bco

2

B

)
�∗
c
.

By letting bco
1
=

B

�∗
c

(
�∗
1
+

�∗
c
−�∗

d

3

)
 then �∗

1c
= �∗

1
+

�∗
c
−�∗

d

3
 . Consequently 

�∗
1c
− �∗

1
=

�∗
c
−�∗

d

3
.
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By letting bco
2
=

B

�∗
c

(
�∗
2
+

�∗
c
−�∗

d

3

)
 then �∗

2c
= �∗

2
+

�∗
c
−�∗

d

3
 . Thus �∗

2c
− �∗

2
=

�∗
c
−�∗

d

3
.

As �∗
0c
=
(
1 −

bco
1
+bco

2

B

)
�∗
c
 then �∗

0c
=
(
1 −

1

�∗
c

(
�∗
1
+ �∗

2
+ 2

�∗
c
−�∗

d

3

))
�∗
c
 . After some 

simplifications we get �∗
0c
− �∗

0
=

�∗
c
−�∗

d

3
 . Thereby �∗

1c
− �∗

1
= �∗

2c
− �∗

2
= �∗

0c
− �∗

0
. □
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