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Abstract In a loading problem of flexible manufacturing system (FMS), part type

selection and operations allocation are two critical problems. The total completion

time of a product for the selected process plan in the system can be minimum for the

loading problem. But, in a real time scheduling system, this process plan may not be

optimum because of consideration of waiting time of product and machine. So, the

total completion time and thereby the material flow of the selected process plan in

the FMS may be high. Due to this problem an integrated approach of part type

selection and an operation allocation problem i.e. production planning problem and

scheduling problem is considered to optimise material flow in FMS. Loading and

scheduling problems are NP-hard in nature. So, to solve complex problems like this,

real coded genetic algorithm (RCGA) is used which overcomes some limitations of

genetic algorithm. It is observed that, the results of optimisation using RCGA

outperforms those obtained by earlier researchers.
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1 Introduction

Flexible manufacturing system (FMS) consists of an integration of computerized

numerical controlled (CNC) machines for manufacturing of different parts and

automated material handling system for conveying material from machine to

machine and to the storage area with a central computer system for storing data and

information and controlling the activities of machines and material handling

systems (Tompkins et al. 2003). Customers are more concerned about the product

quality and the demand of product is also changing drastically. So, to cater the needs

of customers, it is inevitable for the manufacturing industries to enhance the

flexibility and efficiency of the manufacturing system (Tanchoco 1994). FMS have

two most important flexibilities i.e. machine flexibility and routing flexibility.

Machine flexibility means to manufacture different types of products on a machine

whereas routing flexibility means the manufacturing of the operations on different

machines. FMS is capable of achieving flexibility of low volume production as well

as efficiency of high volume mass production (Gamila and Motavalli 2003).

Therefore, FMS development is a milestone in manufacturing industries (Sujono

and Lashkari 2007). The investment required in FMS is high and a less payback

period is desired by the manufacturing industries. This can be achieved by proper

planning and execution in the FMS (Kumar et al. 2012).

In the planning phase of FMS, two decisions are involved i.e. pre-release

decisions and post release decisions (Stecke 1985). In the pre-release decisions, pre-

arrangements of parts and tools is carried out before the beginning of processing of

FMS and in post release decisions, scheduling problems which consists of

sequencing and routing of parts are addressed. Stecke (1983) had divided the

planning problem into six sub problems: part type selection, machine grouping,

determination of production ratio, batching of part types, allocation of parts and

fixtures and allocation of operations and tools among machines.

A product has alternate process plans which shows that a product can be

manufactured by different operations on different machines. Chan et al. (2007) had

defined the process plan selection problem as to select exactly one process plan for

each part type from a number of accessible and feasible process plans and to provide

optimal processing sequence for the manufacturing of part types. When a random

process plan is selected, it gives the information about the sequence of operations to

be performed on the product on different machines. Thus, if a process plan is

selected from available alternate process plans, then it will select the part type to be

produced and then these part types will be allocated as per selected process plan on

the machines for manufacturing. This selected process plan will give the

information about the time elements such as processing time, material handling

time and set up time which in a total, is a completion time of a product in the

manufacturing system.

Material flow can be defined as the time required from the start of the first

operation to the finish of the last operation in the system. For the part type selection

and operation allocation problem, material flow consists of processing time, set up

time, material movement time. But, in the real time scheduling system, the waiting
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time of the product or machine is considered. In the queuing system, the waiting

cost is proportional to the waiting time. Due to this waiting cost, there may be a loss

of profit or loss of future business. There can be a linear, polynomial or exponential

relationship between waiting time and cost (Hillier and Lieberman 2001). In a real

time scheduling system, if a waiting time is not considered then the completion time

for a selected process plan may be less, but the waiting time might be high. This will

increase the actual completion time and thereby material flow of the product in the

system. So, for the real time scheduling system, the material flow consist of four

time elements i.e. processing time, set up time, material movement time and waiting

time.

As the flexibility of each machine is different from the other, the processing time

and set up time is different for each and every product on each and every machine.

Material handling time depends upon the material handling equipment selected. In a

real time scheduling system, from a set of alternate process plans, exactly one

process plan is selected for each product. The selected process plan can have

minimum process time, material handling time, setup time and waiting time and

thereby minimum material flow of the system. However, to select an optimal

process plan becomes more complex with increasing number of alternate process

plan. Thus, the combination of part type selection, operation allocation problem and

scheduling problem of a FMS becomes a NP-hard problem (Shanker and

Srinivasulu 1989). The complexity of this problem is so immense that even for

8–10 jobs there can be more than 108 possible operation-machine allocation

combinations (Prakash et al. 2008).

There are many objectives and constraints considered in this type of problems.

The search space to find out optimal solution becomes large and the problem

becomes complex to solve by exact methods. Researchers have developed and used

many heuristics and metaheuristics to solve the problems like genetic algorithms

(GA), particle swarm optimisation (PSO), ant colony optimisation (ACO), tabu

search, Simulated Annealing (Tiwari et al. 2006), and Immune Algorithm. Among

the above methods, genetic algorithm (GA) have proven to be a powerful method

with a large search space. In genetic algorithm (GA), solutions are jumping from

one sequence to another randomly and the chance of entrapping of solutions in local

optima is avoided. However, simple GA is not able to solve complex problems like

integrated part type selection and operation allocation and scheduling problem.

Hence, real coded genetic algorithm is used to solve the problem. Mahmudy et al.

(2012, 2013b) have proposed real coded genetic algorithm (RCGA) to solve part

type selection and machine loading problems and obtained the near optimal solution

in reasonable amount of time.

This research work is based on two case studies. First case study is based on

problem of an integration of operation allocation and material handling system

selection (Paulo et al. 2002). The objectives considered are (a) to minimise the

operations cost, material handling cost, machine set ups cost and (b) to maximize

the part equipment compatibility. Machine available time was considered as

constraint. Second case study is based on integration of material handling selection

& operation allocation problem (Mahdavi et al. 2011). The objective functions are

(a) to minimise machine operation, material handling and set up cost and
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(b) maximize machine utilization with machine capacity as a constraint. Both the

case studies are based on production planning problem. However, when production

planning is integrated with scheduling, the optimum solution of production planning

stage remains no more valid. Hence, to deal with this issue of integrated production

planning and scheduling, in this work the objective function is reformulated

considering the waiting time and then real coded genetic algorithm (RCGA) is

applied as a solution methodology.

This work is organized as follows. In Sect. 2, a brief review of the literature

based on integrated loading and scheduling problems in FMS and material flow

optimisation problems is carried out. In the Sect. 3, issues in flexible manufacturing

system, real time scheduling problems in FMS and a brief information of real coded

genetic algorithm (RCGA) is presented. In Sect. 4, two case studies based on Paulo

et al. (2002) and Mahdavi et al. (2011) have considered with scheduling problem.

2 Literature review

Flexible manufacturing system problems are divided into three types:

• Loading problem,

• Scheduling problem and

• Integrated loading and scheduling problem

In machine loading problems, the parts are selected and allocated to the machines

for performing different operations. Some researchers have considered only loading

problem for research. Stecke (1983) has formulated machine loading problem as a

nonlinear integer programming problem. Stecke and Morin (1985) have considered

a flow shop and job shop workload balancing problem and proposed a closed

queuing network model to optimise the throughput of the system. Shankar and Tzen

(1985) have considered a loading problem of a random FMS and proposed two

different algorithms, one for workload balancing and second one for workload

balancing and minimizing the number of late jobs. Stecke (1986) has considered a

loading problem and suggested a hierarchical approach for solving actual machine

grouping and machine loading problems. Mukhopadhyay et al.(1992) have proposed

a heuristic which is based on predefined and fixed sequencing rule for a loading

problem considered by Shankar and Tzen (1985) and Shanker and Srinivasulu

(1989). Tiwari et al. (1997) have considered machine loading problem of

Mukhopadhyay et al. (1992). The objectives considered were workload balance,

minimise inter machine part movement, routing flexibility, tool investment and

machine utilization. They proposed petri net model for the optimisation. Chen and

Askin (1990) have considered objectives as workload balance, maximize machine

utilization, volume of inter machine part movement, routing flexibility and tool

investment. Tiwari and Vidyarthi (2000) have considered a loading problem of

random flexible manufacturing system with batch production. The objectives were

to minimize the system unbalance and maximization of utilization with the

constraints of available machining time and tool slot. Swarnkar and Tiwari (2004)
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have considered a loading problem and the objectives were to minimise system

unbalance and maximise throughput and the constraints were available machine

time and tool slots. They have proposed hybrid algorithm based on Tabu Search and

Simulated Annealing. Biswas and Mahapatra (2008) have considered the Tiwari and

Vidyarthi (2000) problem. A mathematical model was prepared by considering two

cases. Abazari et al. (2012) have considered a loading problem of a batch production

flexible manufacturing system. Objective was to reduce total cost and constraints

were capacity of machines, batch sizes, processing time of operations, machine

costs, tool requirements and capacity of tool magazine. A mathematical program-

ming model with continuous and zero one variables was developed to find out

system unbalance due to underutilized time and over utilized time. Kumar et al.

(2012) have considered a loading problem of random flexible manufacturing system

with batch production. The objectives were minimization of system unbalance and

maximization of utilization with the constraints of available machining time and

tool slot.

In the scheduling problem, parts are assigned to various machines by their

sequences. The jobs are assigned in the proper sequence to complete each and every

activity in less time and cost. In the scheduling problem, the ‘n’ jobs are scheduled

on the ‘m’ machines in the predefined sequence. The objective functions of the

scheduling problem is to minimise completion time, inventory reduction, maxi-

mizing machine utilization and tardiness, etc. Kurz and Askin (2001) have

considered a sequence dependent set up times of parallel machines to optimise

makespan. To optimise the makespan, various heuristics were proposed. Jerald et al.

(2006) have considered a scheduling optimisation problem to minimise machine

idleness and minimise penalty cost. Varadharajan and Rajendran (2005) have

considered a scheduling problem of permutation flowshop. Zandieh et al. (2006)

have considered a scheduling problem of hybrid flowshop. Saidi-Mehrabad and

Fattahi (2007) have considered flexible job shop scheduling problem. Paternina-

Arboleda et al. (2008) have considered a sequence dependent flexible flow shop

scheduling problem having 7 jobs and 5 stages. Ronconi and Henriques (2009) have

considered a flow shop scheduling problem without any buffer. Zeballos (2010) has

considered a scheduling problem of FMS. Bagheri and Zandieh (2011) have

considered flexible job shop scheduling problem having sequence dependent set up

times. Behnamian and Fatemi Ghomi (2011) have considered a scheduling problem

of sequence dependent hybrid flowshop. Abyaneh and Zandieh (2012) have

considered a scheduling problem of a hybrid flow shop with sequence dependent

setup times. Burnwal and Deb (2013) have used a breading behavior of cuckoo to

develop a metaheuristic model to solve a scheduling problem. Marichelvam

et al.(2014) have considered a hybrid flow shop scheduling problem. Li et al. (2015)

have considered rescheduling problem of flow shop with minimization of two

objectives, i.e. maximal completion time and instability performance.

In the early stages, some researchers have developed a mathematical model to

address the problems of FMS to optimise material flow. Malmborg (1994) has

considered material transportation and handling cost with buffer storage to

formulate a mathematical model with single objective to minimise vehicle travel

minutes and constraints such as to minimise waiting time, minimise output
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overflow, minimise number of vehicles needed and to minimise average total space

required. Herrmann et al. (1994) have proposed a mathematical model for design of

material handling flow paths based on single objective as minimizing total material

flow times distance and 5 constraints such as continuity of flow path between

origin–destination pair, traffic congestion, capacity of material handling system on

the arc, vehicle collision avoidance and prohibition of flow through non selected

arcs. Herrmann et al. (1999), have considered the same single objective function of

Herrmann et al. (1994) with 4 constraints such as waiting times due to congestion or

on-line scheduling decisions, each loaded move should have exactly one transporter,

continuity on the path consisting of loaded moves performed by each transporter

and sub tour elimination. Sinriech and Samakh (1999) have considered a segmented

flow based material handling system optimisation problem of pick up/delivery

location. They have considered objective function as to minimise the total flow

distance. Genetic algorithm was used for optimisation. Ioannou (2007) proposed a

mathematical model for integrated plant layout and material handling system with

the objective of minimizing the fixed acquisition and the variable operational costs

of the material handling system. Having constraints such as continuity of loaded and

unloaded moves, traffic congestion, sub tour elimination, no move is performed by

inactive transporters, limit for the overall distance traveled by each transporter.

Few researchers have considered material flow optimisation problems in FMS.

Fazlollahtabar et al. (2010) have considered material flow optimisation of a flexible

flowshop of automated manufacturing systems in which automated guided vehicles

(AGVs) were used to carry raw materials, semi-finished and final products in batch

sizes. A mathematical model was proposed for the material flow optimisation with

the constraints such as completion time, job allocation, cycle time and AGV

capability. Ramalingam et al. (2015) have considered the same problem of

Fazlollahtabar et al. (2010) and considered objective of minimization of material

flow time and completion time. They proposed Genetic Algorithm (GA) to minimise

material flow optimisation problem. Bhosale and Pawar (2016) have considered the

problem of Fazlollahtabar et al. (2010) and proposed Real Coded Genetic Algorithm

to optimise the material flow. The results obtained shows that RCGA is performing

better as compared to GA. Alvarado-Iniesta et al. (2013) have considered a

manufacturing plant to standardize the time required for a worker to deliver raw

material to different production lines from a central warehouse.

In a production planning problems, the parts are selected and allocated to the

machines for performing different operations. In sequencing problem, the order of

performing operations on the product is determined and in scheduling problems, the

starting and finishing time of the product is determined. Some researchers have

considered part selection, operation allocation and machine loading problems

separately. However, if these problems are solved in an integrated way, then it will

give a feasible solution to the problem (Zeballos 2010). So, in this research work an

integrated way of production planning and scheduling is considered to optimise the

material flow.

Stecke and Kim (1988) have considered the flexible approach in which when the

requirement of some part type is over, they replaced with the new part types. They

formulated a mathematical model for the selection of part types and selection of part
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mix ratios while tool magazine capacity was considered as constraint. They also

tried different batching approaches to find the optimal part type selection. Lee et al.

(1997) have considered multi period order selection and machine loading problem

for maximizing system throughput and minimise lateness and earliness of the jobs.

Paulo et al. (2002) have considered an integrated problem of operation allocation

and material handling system selection. The objectives considered were to minimise

the costs of operations, material handling, machine set ups, and to maximize the part

equipment compatibility. Machine available time was considered as constraints. The

mathematical model was prepared for this system. Sujono and Lashkari (2007) have

considered the problem of Paulo et al. (2002). A mathematical model was prepared

for this system. The proposed model was solved by the e-constrained method.

Gamila and Motavalli (2003) have considered part loading, tool loading and part

scheduling problem of a flexible manufacturing system. The objectives were to

minimise the summation of maximum completion time, movement of parts between

machines, total processing time considering machine and tool capacities, due dates

of parts, cost of processing and setup and precedence relationship. However, the

machine tool assignment and operation allocation was done before scheduling.

Chan et al. (2005) have considered machine tool allocation problem. Fuzzy goal

programming model was used to solve the problem. Kumar et al. (2006) reviewed

part type selection and assignment problem of random FMS. In this paper, an

extension of Genetic Algorithm, i.e., CBGA (constraint-based genetic algorithm)

was applied to solve machine-loading. Khayat et al. (2006) have considered an

integrated production and material handling scheduling problem of a job shop. The

objective was to minimise the makespan. Tiwari et al. (2008) have considered a

Part-selection and machine-loading problems to minimise system unbalance and

maximise throughput with the constraints of availability of machining time and tool

slot. They proposed new heuristic which is based on operation allocation and

reallocation of part types simultaneously. Prakash et al. (2008) have considered a

job selection and machine loading problem. The objectives were maximization of

throughput and maximizing load balance and constraints were machining time and

tool slots. Zeballos (2010) has presented a constraint programming (CP) model that

integrated machine assignment, tool planning and allocation, part routing and task

timing decisions in an FMS. The proposed model considered limitation on number

of tool copies, tool lifetime and parts’ due dates. Mahdavi et al. (2011) have

considered integrated material handling selection & operation allocation problem.

The objective functions were to minimise machine operation, material handling and

set up cost, and maximize machine utilization and the constraint was machine

capacity. Mahmudy et al. (2012, 2013a, b, 2014) have considered two objectives as

to maximize the throughput of the system and to minimise the unbalance of the

system of a part type selection and loading problem of FMS. Paslar et al. (2014)

have considered an integrated machine loading, part routing, sequencing and

scheduling decision in flexible manufacturing systems. Novas and Henning (2014)

have considered an integrated scheduling problem simultaneously with machine

loading, part routing, machine buffer scheduling, tool planning and allocation and

AGV scheduling. In Table 1, review based on integrated loading and scheduling

problems is presented.
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Researchers have considered integrated loading and scheduling problems.

However, in real time scheduling system, the waiting time of the machine or

product is to be considered. The optimum process plan selected in the production

Table 1 Integrated loading and scheduling problems

Author Problem Objectives Constraints Methods

Gamila and Motavalli

(2003)

Loading and

scheduling

Minimise the

summation of

maximum

completion

time, material

handling time

and total

processing

time

Limited

tool

magazine

capacity,

limited

tool life

Integer

programming

Khayat et al. (2006) Integrated

scheduling and

material

handling

Minimise

makespan

Precedence

constraint

Constraint

programming

Jerald et al. (2006) Simultaneous

scheduling of

parts and AGV

Minimise

penalty cost

and machine

idle time

Delivery

dates

Adaptive

genetic

algorithm

Turkcan et al. (2007) Loading,

Scheduling and

Tool

management

Minimise

manufacturing

cost and total

weighted

tardiness

Part

priorities

and due

dates

Problem space

genetic

algorithm

Zeballos (2010) Machine

assignment,

tool planning

and allocation,

part routing

Minimise

makespan

tool copies,

tool

lifetime

and parts’

due dates

Constraint

programming

Novas and Henning

(2014)

Integrated

scheduling

problem

simultaneously

with machine

loading, part

routing,

Minimise

makespan,

Number of

AGV

movements,

total

processing

time

Limited

tool

copies,

AGV

speeds

Constraint

programming

Paslar et al. (2014) Integrated

machine

loading, part

routing,

sequencing and

scheduling

Makespan and

total

machining cost

Due dates Biogeography

based

optimisation

Mahmudy et al.

(2012, 2013a, b, 2014)

Part type

selection and

loading

problem

To maximize the

throughput of

the system and

to minimise

Real coded

genetic

algorithm
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planning stage may not remain optimum due to addition of waiting time. This

waiting time has been addressed by researchers while solving scheduling problems.

Pan and Shi (2005)have considered single machine sequencing problem to minimise

total weighted time completion whereas constraints were release dates and

deadlines. Bauman and Józefowska (2006) have considered single machine

scheduling problem to minimise total cost. Li et al. (2007) have considered job

scheduling of a single machine to minimise weighted waiting time. Hendel and

Sourd (2007) have proposed an earliness-tardiness timing algorithm for a flow shop

problem. Amiri et al. (2014) have single machine scheduling to minimise total

tardiness and waiting time variance.

From the literature, it is found that researchers have not considered the waiting

time for integrated operation allocation and real time scheduling problems. In many

situations, though the completion time for the selected process plan is less, waiting

time in the system may be high. This will increase the material flow in the system.

So, in this paper the objective is considered as material flow optimisation so that the

total time required by all the products in the system should be optimum.

3 Issues in flexible manufacturing system

3.1 Production planning in FMS

Hwan and Shogan (1989) have investigated that from the six planning problems

(Stecke 1983), there are only two critical problems i.e. part type selection and

operation allocation. In the part type selection problem, a subset of part types is

selected for manufacturing of parts and in operation allocation problem, operations

of the parts to be manufactured on machines are allocated to machine based on the

process plan of the product. Hence, part type selection and operation allocation

problems are the most important problems in the planning stage. The objectives

considered are: maximize throughput, minimise production cost, due date satisfac-

tion, maximize resource utilization, maximize flexibility, maximize resource

utilization and balance the workloads. These problems have been formulated as

mixed integer programming problems (MIP). FMS are having various flexibilities.

So, the search space even for the moderate problems becomes unmanageable and

computationally intractable. Researchers have developed heuristic methods. The

solution of the planning problem give the set of parts to be manufactured from the

alternate process plans, the machine routing of each part, an allocation of tools to

machines and assignment of operations to machines.

3.2 Real time scheduling problems in FMS

An optimal solution proposed by the planning system does not remain feasible in the

scheduling stage because of the drastic changes in the system such as machine

breakdowns, changes in demand, unavailability of material, changeovers etc. So, a

FMS should be capable of tackling these changes in a shorter time and find an

optimal process plan so that the material flow should be optimum. In a real time
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scheduling system, a starting and completion times for each operation of each job

waiting for manufacturing on machine is determined. An optimal schedule

minimizes the material flow in the system. For the determination of a schedule,

dispatching rules are used which assigns priority value to a waiting job in sequence

of each machine. Different scheduling rules are followed as: FIFO (jobs in queue

ranked by arrival into queue), SPT (Jobs ranked by the shortest processing), DDT

(Jobs ranked according to their earliest due date), LWKR (Jobs ranked by least work

remaining), MWKR (Jobs ranked by most work remaining), MWKR-P (Jobs ranked

by MWKR after the present schedulable operation), MWKR/P (Jobs ranked by

greatest ratio of total remaining work to processing time of schedulable operation),

MOPNR (Jobs ranked according to most operations remaining), SLK/RO (Jobs

ranked by the least ratio of slack time remaining to number of operations remaining,

at the instance that the machine or resource becomes free), RANDOM (At the

instance that the machine or resource is freed, any job already in the queue has equal

probability to any other of going on the machine. In this paper, SPT rule is used

which is efficient with respect to waiting time related criteria of a scheduling

problem. SPT rule is simple to use. When the machine is available, from the

available unscheduled operations which are waiting to be manufactured, the

operation which is having shortest processing time is chosen to be scheduled next on

the machine (Chengbin and Portmann 1993).

Whenever the machines are available then different operations are allocated as

per the priority rule. Thus, when the schedule is prepared, it will determine the start

time and finish time of the operation on the selected machine from the selected

process plan. The objectives considered are: minimise the makespan, minimise

maximum tardiness, minimise the total processing time and minimise the total cost.

When the operation on the machine is finished then the next operation is processed

if the parts are available, otherwise the machine becomes idle. So, it becomes

difficult to find optimum process plan that is having minimum material flow. Thus,

this problem is known to be NP-hard.

3.3 Proposed approach

In flexible manufacturing system, part selection and operation allocation problems

i.e. loading problems and scheduling problems are formulated as mixed integer

programming problems (MIP). If these problems are solved individually, the

solutions may conflict with each other and may become less efficient. For example

in the loading problem, the real time scheduling is not taken into considerations and

in the scheduling problems, operation allocation and sometimes waiting time is not

considered. This will either overload or underload the machines and solution may

not be feasible. Therefore, an integrated approach will be useful to find optimum

solution.

The first operation of the part can be started at time zero if the machine is

available for processing the operation. If the machine is not available at time zero

then the waiting time is to be found out. Suppose, P1, P2, P3,……Pn parts to be

manufactured on M1, M2, M3,……Mn machines having O1, O2,…….,On is the

processing time of the part types as shown in Fig. 1. Operation Oi of part type Pi can
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be started on machine Mi if operation Oi-1 is completed or machine is available for

operation. If operation Oi-1is completed but the machine Mi?1 is not available then

the waiting time Wt is to be calculated as

Wt ¼ Ci�1 Miþ1ð Þ � Ci�1 Mið Þ ð1Þ

Si and Ci denote the start time and completion time of operation Oi respectively.

The completion time of the operation will be Ci= Si? Oi. The start time may be zero

or it will be equal to Ci-1 ?Wt. The next operation will be completed on

Ci?1= Ci? Oi?1.

3.4 Real coded genetic algorithm (RCGA)

Genetic algorithm (GA) is a population based stochastic search algorithm and based

on the concept of nature’s law of survival of fittest and natural selection procedure.

Evolution of nature is driven by the principle of survival of fittest. Stronger ones live

for many years, they reproduce many off-springs by passing on many attributes to

their children, while weaker ones die early without reproduction (Godberg 1989).

In binary GA, genes and chromosomes are used to encode the optimisation

parameters. Each gene is a binary bit and representing a variable of a problem and

the length of chromosomes is kept equal to the solution length of the problem. So, in

the case of binary coded Genetic Algorithm, the string length required is large and

solution obtained may be redundant and the time required for processing of data is

high. So, to avoid these problems, a real coded system is selected which is easy to

handle and less time consuming. In real coded system the solution is represented

directly with the real numbers and the size of chromosome is kept as same to the

vector for which the solution is to be obtained (Herrera et al. 1998).

In binary GA, the solution parameters are first encoded in binary bits and these

binary bits are again decoded in solution parameters. So, while encoding and

decoding, discretization error occurs and computation time required is large. While

in case of Real Coded GA, there is no need of coding and decoding procedure

(Chuang et al. 2015, 2016). Deb and Kumar (1995) have also expressed that real

M1 

M2 

M3 

Mn 

P2 

P2 P1 

P1 P3 

P3 

P2 

P3 

Waiting 
time 

Fig. 1 Gantt chart of scheduling of ‘n’ parts on ‘m’ machines

Material flow optimisation of production planning and… 391

123



coded genetic algorithm performs well or even better as compared to binary coded

genetic algorithm in many real world optimisation applications.

In RCGA three fundamental evolutionary operators are used i.e. selection,

crossover and mutation to obtain optimal solution. Each operator have specific

mechanism so that the solution will approach to optimal solution. The selection

operator selects the potential chromosomes from the whole population and these

selected solution will undergo subsequent crossover manipulation. The roulette

wheel selection method is an imaginary wheel in which each solution presents an

area and the size of the area represents the fitness of the solution. When the spinning

wheel stops it will show which solution is to be selected to take part in the crossover

operation.

The crossover operator creates new offspring by recombination from the selected

parent chromosomes. Crossover is the main effective operator because it assists the

algorithm to achieve the optimum value by creating some new child solutions. The

crossover points are selected randomly, in the traditional method. However,

operations to be performed in the process plan on the part are not same. So, if the

crossover is taken at random site then the child solution may become infeasible. So,

in this work, the whole operations in a process plan on the part is considered as sub-

string of the chromosome and then site for crossover is selected randomly.

The mutation operator randomly changes the gene of chromosomes for the

prevention of premature convergence so that the solution should not be get trapped

in the local minima. In the traditional mutation, random numbers are generated and

from that random number, mutation is operated. Similar type of mutation can be

applied for two case studies also.

In the penalty function method, the objective value is degraded/increased by the

value of constraint violation. In the case of integrated planning and scheduling

problems, the variable and constraints are large in numbers. So, a solution generated

randomly may be infeasible. Here in this work, a static penalty approach suggested

by (Homaifar et al. 1994) is used in which the value of violation of constraint is

added to the objective function. By this static penalty function method, infeasible

solution will die out due to large objective function value. Kumar and Shanker

(2000) have used penalty function to obtain feasible solution from the randomly

generated solution in less time and to avoid hamming cliff. In the next section, two

case studies based on Paulo et al. (2002) and Mahdavi et al. (2011) are presented.

4 Case studies

In this research work, two case studies based on operation allocation problem and

loading problem are described.

4.1 Case study based on operation allocation and material handling system
separately

First case study is based on a numerical example of Paulo et al. (2002). Though

Paulo et al. (2002) have considered problem of operation allocation and material
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handling system separately, here in this present paper only a part of operation

allocation problem is considered. There are 14 parts to be manufactured. The

demand for different part types is as follows: P(1) = 30, P(2) = 50, P(3) = 45,

P(4) = 65, P(5) = 25, P(6) = 40, P(7) = 90, P(8) = 20, P(9) = 15, P(10) = 55,

P(11) = 60, P(12) = 35, P(13) = 80 and P(14) = 40. The total manufacturing

operation time (Ot) and operation costs (Oc) for these demands is given in Table 2.

All the 14 part types have different process plans. Each part can be manufactured by

following any one of the process plan. There are maximum four operations and

these operations can be performed on 10 machines. The available time in units for

machine j = 3 and j = 7 are 480 units and for the remaining machines it is 980 units.

The cost of moving is shown in Table 3. The machine set up cost in $ is as

follows: SC(1) = $120, SC(2) = $230, SC(3) = $450, SC(4) = $60, SC(5) = $180,

SC(6) = $ 220, SC(2) = $310, SC(8) = $90, SC(9) = $260, SC(10) = $550.

The 0–1 integer-programming model is explained below.

There is a set of ‘n’ part types labelled with the indices i = 1,…; n, where the part

type I has the known and uniform demand di over the planning period. A part type

i can be processed under the different process plans p = 1,…;,P(i). For a process

plan p [ P(i) of a part type i, the manufacturing operations are represented by the

indices s = 1,…, S(ip), where for simplicity we use (ip) to indicate part type i under

process plan p. There is a set of m machines labelled with the indices j = 1,…,

m. The set of machines that can perform manufacturing operation s of part type

i under process plan p is given by Jips.

The operation allocation model involves the assignment of operations of each

part type to appropriate machines to minimize the total costs of manufacturing

operations, machine set-ups and materials handling. The 0–1 decision variables are

denoted by Xsj(ip), where Xsj(ip) = 1 if operation s of (ip) is performed on machine j

and zero otherwise.

XsjðipÞ ¼
1 ifoperation s is processed on machine j for the combination ipð Þ
0 otherwise

�

1) The operation cost is given by E1(Xsj(ip)):

E1ðXsj ipÞð Þ ¼
Xn
i¼1

di
XPðiÞ
p¼1

XSðipÞ
s¼1

X
j2Jips

OCsjðipÞXsjðipÞ; ð2Þ

where OCsj(ip) is the known per-unit cost of operation s of (ip) on machine j. This

includes both the manufacturing and the re-fixturing costs.

Index sets are:

i[ {1,2,…n} part types,

p[ {1,2,….P(i)} process plans for part type i,

s[ {1,2,…S(ip)} operations for part type i under process plan p,
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j[Jips, {1,2,.m} set of machines that can perform operation s of part type i under

process plan p,

2) The machine set-up cost is given by E2(Mj):

Mj ¼
1 ifmachine j is selected

0 otherwise

�

E2ðMjÞ ¼
Xm
j¼1

SCjMj; ð3Þ

Where, SCj is the known set-up cost for machine j and the auxiliary variable Mj

takes the value of one if machine j is selected and zero otherwise. Only one set-up

cost per planning period is assumed. Since these machines are operated under a

flexible manufacturing system, it is assumed that the only significant set-up cost is

the initial one where the machines must be programmed and equipped with the

required tools.

3) The materials-handling cost is given by E3(Xsj(ip)):

E3 XsjðipÞð Þ ¼
Xn
i¼1

di
XPðiÞ
p¼1

XSðipÞ
s¼1

X
j2Jipðsþ1Þ

Tiðjþ1ÞjXsjðipÞXðsþ1Þðjþ1ÞðipÞ; ð4Þ

Where, Ti(j ? 1)j is the cost of moving a unit of part type i from machine j to

machine j ? 1 for the next operation.

Since E3(Xsj(ip))is a non-linear function, the linearization technique given in

Taha (2007) is applied. This prescribes replacing � E3(Xsj(ip)):with:

Table 3 Cost of moving parts

from machine to machine

(Reproduced with permission

from Paulo et al. 2002)

Machine no. 1 2 3 4 5 6 7 8 9 10

1 0 4 14 11 5 9 13 10 11 7

2 4 0 12 13 7 7 6 13 5 4

3 14 12 0 7 10 4 5 11 4 9

4 11 13 7 0 13 13 6 14 12 7

5 5 7 10 13 0 5 15 6 10 15

6 9 7 4 13 5 0 6 11 9 4

7 13 6 5 6 15 6 0 8 5 6

8 11 13 11 14 6 11 8 0 5 15

9 11 5 4 12 10 9 5 5 0 9

10 7 4 9 7 15 4 6 15 9 0
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E3ðLs jþ 1ÞjðipÞð Þ ¼
Xn
i¼1

di
XPðiÞ
p¼1

XSðipÞ
s¼1

X
j2Jipðsþ1Þ

Tijðjþ1ÞLsjðjþ1ÞðipÞ; ð5Þ

Lsjðjþ1ÞðipÞ ¼
1

ifpart type i moves to moves ðjþ 1Þ to perform operation ðsþ 1Þ after

performing operation s on machine j for the combination ðipÞ
0 otherwise

8><
>:

The objective function of the model is considered by Paulo et al. (2002), to

determine Xsj(ip) and Ls(j ? 1)j(ip) that will minimize:

E1ðXsj ipð ÞÞ þ E2ðMjÞ þ E3ðLs jþ 1ð ÞjðipÞ ð6Þ

Paulo et al. (2002) have considered only operation allocation problem. The

mathematical model have not considered the real time scheduling system in which

waiting time of machine and product should be considered. So, to accommodate this

waiting time, a model of Paulo et al. (2002) is modified.

4) The waiting cost Wc is given by:

The waiting time is calculated from Eq. 1. From this waiting time, waiting cost

(WC) is calculated. Here in this problem (Paulo et al. 2002), the data regarding

waiting cost of product and machine is not given. Hence, it is assumed that waiting

cost of the machines would be significant and there is a linear relationship between

operation cost and operation time. From that relation, the waiting cost of individual

machine per unit time is calculated as follows: Wc1 = $1.5, Wc2 = $1.2,

Wc3 = $1.0, Wc4 = $2.0, Wc5 = $1.0, Wc6 = $1.3, Wc7 = $0.6, Wc8 = $1.0,

Wc9 = $1.6 and Wc10 = $1.3.

Xn
i¼1

XPðiÞ
p¼1

XSðipÞ
s¼1

X
j2Jipðsþ1Þ

WCijXsjðipÞ ð7Þ

Assembling the above Eqs. 2–3, 5, 7, we get the following complete statement of

our 0–1 mathematical programming model of the operation allocation model and

scheduling, which is designated as P(OA).

P(OA): minimise cost

Xn
i¼1

di
XPðiÞ
p¼1

XSðipÞ
s¼1

X
j2Jips

OCsjðipÞXsjðipÞ þ
Xm
j¼1

SCjMj

þ
Xn
i¼1

di
XPðiÞ
p¼1

XSðipÞ
s¼1

X
j2Jipðsþ1Þ

Tijðjþ1ÞLsjðjþ1ÞðipÞ þ
Xn
i¼1

XPðiÞ
p¼1

XSðipÞ
s¼1

X
j2Jipðsþ1Þ

WCijXsjðipÞ ð8Þ

The constraints are developed next. The first constraint set ensures that each part

type is processed under a single process plan, and it is given by:
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XPðiÞ
p¼1

ZðipÞ ¼ 1 ð9Þ

Where, Z(ip) = 1 if part type i is processed under process plan p and zero

otherwise.

The next set of constraints ensures that once a process plan is selected for a part

type, each operation in that plan is processed on only one of the available machines.

It is given by: X
j2Jips

XsjðipÞ ¼ ZðipÞ 8i; p; s: ð10Þ

The third set of constraints ensures that a machine j is selected before we assign

any operations to it. It is given by:

Xn
i¼1

XPðiÞ
p¼1

XSðipÞ
s¼1

XsjðipÞ�Mj8j ð11Þ

The next set of constraints ensures that the total time required by the operations

allocated to a machine j, once it is selected, does not exceed the machine’s known

capacity. It is given by:

Xn
i¼1

XPðiÞ
p¼1

XSðipÞ
s¼1

tsjðipÞXsjðipÞ� bjMj8j ð12Þ

Where, tsj (ip) is the time to perform operation s of (ip) on machine j. The two

sets of constraints, (10) and (11), ensure consistency between the allocation of

operations of the part types to machines and the selection of machines.

The mathematical model considered in Eq. 8 is applied on this numerical

problem. The material flow is calculated by considering the mathematical model.

For example, in Table 2, for part no. 7, the demand is 90 and there are two different

process plans. If we consider the process plan no. 1, the minimum operation time

required for the first operation is 90 9 5 = 450 units on machine number 7 and the

minimum operation time required for the second operation is 90 9 7 = 630 units on

machine number 3. It means that, unless and until the first operation is completed,

the second operation cannot be started. So, there is a waiting of 450 units for the

second operation. Due to this, the total completion of time of part number 7 under

process plan 1 is 450 ? 630 = 1080 units. Similarly, if we consider the process plan

no.2, the minimum operation time required for the first operation is 90 9 9 = 810

units on machine number 10 and the minimum operation time required for the

second operation is 90 9 7 = 630 units on machine number 1. It means that, unless

and until the first operation is completed, the second operation cannot be started. So,

there is a waiting of 810 units for the second operation. Due to this, the total

completion of time of part number 7 under process plan 2 is 810 ? 630 = 1440
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units. But, the total available time is 980 units. So, it is not possible to complete all

the demands by considering this model.

Table 2 shows that, all products have one or more process plan and each process

plan have one or more operations. It is assumed that the details regarding number of

jobs to be produced, their processing time, number of operations to be performed on

each product is already available in advance. In this problem, the flexibility of

selecting a process plan and then allocating an operation to a machine is available.

In this problem, 14 products with one or more operations are to be manufactured on

10 machines. The flexibility is complex and can be calculated. Let ‘j’ be total

number of products having ‘oj’ operations to be processed on ‘m’ machines.

Therefore, the number of possible solutions can be calculated by (Abazari et al.,

2012):

Number of Possible solutions ¼
Yj
j¼1

Yoj
o¼1

moj

 !
þ 1

( )
ð13Þ

The illustration for the example given in Table 2, is as follows:

Y14
j¼1

Y4
o¼1

moj

 !
þ 1

( )
¼ 5� 4� 3ð Þ þ 1ð Þ � 3� 5ð Þ þ 1ð Þ � 4� 4ð Þ þ 1ð Þ

� 5� 4� 4ð Þ þ 1ð Þ � 4� 3ð Þ þ 1ð Þ � 4� 5ð Þ þ 1ð Þ
� 4� 3� 4� 5ð Þ þ 1ð Þ � 3� 4ð Þ þ 1ð Þ
� 5� 5� 5ð Þ þ 1ð Þ � 3� 4� 4ð Þ þ 1ð Þ
� 3� 3ð Þ þ 1ð Þ � 3� 4ð Þ þ 1ð Þ
� 4� 3� 5� 4ð Þ þ 1ð Þ � 5� 3ð Þ þ 1ð Þ
� 3� 3ð Þ þ 1ð Þ � 4� 5� 3ð Þ þ 1ð Þ � 2� 3ð Þ þ 1ð Þ
� 4� 4ð Þ þ 1ð Þ � 5� 4� 3ð Þ þ 1ð Þ � 3� 5ð Þ þ 1ð Þ
� 4� 4ð Þ þ 1ð Þ � 5� 4� 4ð Þ þ 1ð Þ � 4� 3ð Þ þ 1ð Þ
� 4� 5ð Þ þ 1ð Þ � 4� 3� 4� 5ð Þ þ 1ð Þ
� 3� 4ð Þ þ 1ð Þ � 5� 5� 5ð Þ þ 1ð Þ

¼ 3:7� 1040

Some of the solutions may not be feasible due to constraint of machine

availability time. As to determine the optimum solution from all these solutions, it is

computationally difficult. Because of these facts, a Real Coded Genetic Algorithm

(RCGA) is proposed in this paper for solving problem.

4.2 Working of RCGA

As discussed in Sect. 3, the working of RCGA is explained below:

Step 1 The parameters of real coded Genetic Algorithm used are: Population size:

20, generations = 100, Crossover type: Single point, Crossover probability: 0.7,

Mutation probability: 0.1. Population is determined by various experiments.

Different sizes from 10 to 30 are checked and it is observed that after population

Material flow optimisation of production planning and… 401

123



size 20, there is no significant change in solutions and it is also observed that after

100 generation, there is no significant change in results.

Step 2 Initialisation:

There are 14 products and these products are to be manufactured from 10

machines. In the initialization stage, 20 random initial solutions are generated and

for these solutions objective function value is calculated from Eq. 8 as the objective

function is to minimise the material flow. A single random solution is called as

‘‘Chromosome’’. In this way, 20 random chromosomes are generated. These random

chromosomes are called as ‘‘initial population’’.

The initial random objective function value is calculated by considering

operation cost given in Table 2, set up cost is given in previous section, material

handling cost given in Table 3, waiting cost is calculated from Eq. 7 and a static

penalty is applied for the violation of available time constraint.

For example, the initial solution, 1(2) {2, 4} as shown in Table 5, indicates that

the objective function is to be evaluated for product 1, second process plan is

selected with first operation is to be performed on machine 2 and second operation

to be performed on machine 4. The operation cost and operation time is calculated

from Table 2. The demand of product 1 is 30 (from Sect. 4.1). For process plan 2,

first operation to be performed on machine two which has operation time is 6 units

(from Table 2) and operation cost is $8 (from Table 2). So, the total operation time

and operation cost for the first operation is 180 units (= 30 9 6 units) and

$240(= 30 9 $8) respectively. Similarly, for the second operation to be performed

on machine six which has operation time is 13 units (from Table 2) and operation

cost is $26 (from Table 2). So, the total operation time and operation cost for the

first operation is 390 units (= 30 9 13 units) and $780 (= 30 9 $26) respectively.

Thus, total operating cost for product 1 is $240 ? $780 = $1020. The cost of

moving is calculated from Table 3. After completion of the first operation, the

material is moved from machine 2 to 4. So, the cost of moving is $13 (Table 3).

Similarly, the operating cost and cost of moving of all 14 products is calculated and

shown in Table 4.

The total set up costs (given in Sect. 4.1) of all 14 products for all 10 machines is

$2470. Waiting time of machines is calculated by using Eq. 1. For example, the

total planned operation time on machine 2 is 905 units and operation completion

time for machine 2 is 1495 units. So, waiting time for machine 2 is

1495 - 905 = 590 units. Thus, waiting cost of machine 2 is 590 9 $1.2 = $726.

Similarly, the waiting cost of all machines calculated and it is equal to $2887. Then

by adding operation cost ($14,890), cost of moving ($201), set up cost ($2470), and

waiting cost ($2887) of all 14 products, the total cost (objective function value)

becomes $25,419 which is shown in Table 5 for solution 1. In similar way, the

objective function value is evaluated for all initial 20 solutions. However, for

demonstration purpose, four solutions are presented in Table 5.

Step 3 Selection:

From the calculated objective function values, the fitness function value is

calculated and shown in Table 6. As this problem is of minimization, the fitness

function values will be reciprocal of objective values. From these values cumulative

values are calculated. From these cumulative values, roulette wheel values are
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Table 4 Operation cost and cost of moving of random solution

Product Process

plan

Operation

sequence

on

machine

Operation

cost in $

Cost of

moving

in $

1 2 2 240 13

4 780

2 3 10 250 7

1 450

3 2 7 360 13

1 135 11

4 180 6

7 270

4 1 4 1300 11

1 715

5 1 10 150 15

8 175 13

2 400

6 1 2 320 6

7 80 6

10 280 4

2 160

7 2 10 990 7

1 990

8 1 2 60 4

1 120 13

7 60

9 1 6 150 9

9 240

10 3 8 550 11

6 825

11 1 1 360 14

3 180

12 2 1 525 14

3 175

13 1 6 1040 13

4 1760 7

10 320 0

10 400

14 2 3 80 10

5 360

Total 15,430 207
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obtained. The roulette wheel values shows that solution number 3 have more

probability to take part in crossover. Then random numbers are generated. From the

random number generated, the decision regarding reproduction of the solution is

taken. For example, for the first solution, the random number generated is 0.16

which lies between the cumulative ranges of 0–0.255. So, the first solution will be

continued for crossover. Similarly, for the second solution, the random number

generated is 0.713 which lies between the cumulative ranges of 0.472–0.756. Hence,

the second solution will be discarded and it will be replaced by third solution. Thus,

using the roulette wheel selection method, the solutions selected for reproduction

will undergo crossover (Fig. 2).

Step 4 Crossover:

In crossover procedure two solutions are selected at random and then crossover is

done at single point as shown in Fig. 3. In the present case, the maximum process

plans can be 1, 2, 3 or 4 and the number of operations in each process plan are not

same. Hence, crossover location is set at the end of process plan and not after every

operation. There are 14 products are to be manufactured. To perform crossover, two

parent strings are selected randomly and a random number is generated between 2

and 14 numbers. For example, if a random number 2 is selected, then crossover is

performed as shown in Fig. 3.

Step 5 Mutation:

Mutation is carried out by considering mutation probability of 0.1 i.e. single point

mutation. A random site is selected for mutation. Then from the available set of

machine numbers, only a random machine number is selected and mutation is

carried out. The mutation operation is explained in Fig. 4. In this figure operation 1

of process plan 2 of product 1 will undergo mutation. This operation can only be

performed on machine number 2 or 3 or 6 as given in Table 2. So, the number 2 can

be flipped with either 3 or 6.

After mutation operation, objective values are calculated. This will complete one

iteration. As the objective is to find minimum values, the minimum value of this

Table 5 Objective values calculated according to Eq. 8

Sr. no. Initial random solutions (chromosome) Objective

function

value

1 1(2){2, 4}, 2(3){10, 1}, 3(2){7, 1, 4, 7}, 4(1), {4, 1}, 5(1){10, 8, 2}, 6(1){2,

7, 10, 2}, 7(2){10, 1}, 8(1){2, 1, 7}, 9(1){6, 9}, 10(3){8, 6}, 11(1){1, 3},

12(2){1, 3}, 13(1){6, 4, 10, 10}, 14(2){3, 5}

25,419

2 1(1){3, 7, 4}, 2(1){1, 6}, 3(2){7, 1, 5, 1}, 4(1){5, 7}, 5(1){10, 8, 2}, 6(1){1,

6, 4, 2}, 7(2){2, 8}, 8(1){2, 9, 3}, 9(1){9, 2}, 10(1){5, 3}, 11(1){1, 7},

12(2){4, 3}, 13(1){6, 2, 9, 10}, 14(2){8, 5}

29,909

3 1(2){2, 10}, 2(3){3, 1}, 3(1){5, 9}, 4(1){5, 1}, 5(3){6, 4}, 6(1){10, 7, 8, 5},

7(2){10, 4}, 8(2){6, 1}, 9(1){6, 10}, 10(2){5, 4, 5}, 11(1){7, 4}, 12(2){1,

7}, 13(1){8, 2, 1, 5}, 14(1){2, 8}

22,828

4 1(1){3, 8, 3}, 2(2){2, 9, 5}, 3(1){4, 9}, 4(2){7, 4, 6}, 5(2){3, 10}, 6(1){2, 7,

10, 2}, 7(2){2, 1}, 8(2){6, 7}, 9(1){3, 2}, 10(2){5, 6, 5}, 11(1){7, 3},

12(2){6, 9}, 13(1){6, 4, 9, 5}, 14(2){3, 5}

26,603
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iteration is noted down. The same procedure is followed for another iterations. The

minimum objective value will give optimum solution. If there is no change in

solution observed for 50 solutions, then the process is terminated.

After carrying out different iterations the optimum solution is obtained. The

optimum solution is given in Table 7. In Table 7, for part 1, process plan 2 is

selected and first operation is performed on machine 2 and second operation is

performed on machine 1.

Paulo et al. (2002) have only considered operation allocation and material

handling selection problem. To optimise the material flow of the problem, 20

random solutions are generated as per Eq. 8. There are 14 part types which have

different process plans. Each part can be manufactured by following any one of the

process plan. There are maximum four operations and these operations can be

performed on 10 machines. The available time units for machine j = 3 and j = 7 are

480 units and for the remaining machines it is 980 units.

The part selection and operation allocation problem was solved with real coded

genetic algorithm. The optimum solution was obtained and shown in Table 7 and

the material flow for the same process plan is explained in Table 8. The part which

is having minimum processing time will be processed first and then the part having

second minimum processing time will be processed next i.e. shortest processing

time (SPT) scheduling priority rule is used. Likewise, according to the processing

Table 6 Fitness function calculation

Sr. no. Objective

value

Fitness

function

% of

total

Cumulative Random

number

Reproduction

1 25,419 3.93E-05 25.52 0.255 0.16 1

2 29,909 3.34E-05 21.69 0.472 0.713 3

3 22,828 4.38E-05 28.41 0.756 0.812 4

4 26,603 3.76E-05 24.38 1.000 0.512 3

Total 1.54E-04

26%

22%28%

24%

Chart Title

1

2

3

4

Fig. 2 Roulette wheel example
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time of the parts they are selected and processed on different machines. In Table 8,

the product 1 is having two operations and first operation having processing time of

180 units will be performed on machine 2 and then second operation having

processing time of 120 units will be performed on machine 1. But, as the product 14

is having first operation of 120 units, it will be processed first (as it is minimum one)

on machine 2. So, machine 2 will process first operation of product 14 for 120 units

and meanwhile operation 1of product 1 will have waiting time of 120 units. When

the first operation on machine 2 is over then operation 1 of product 1 will be taken

for processing which is having processing time of 180 units. So, the completion time

for operation 1 of product 1is 120 ? 180 = 300 units. So, product 1 is ready at 300

units for further operation 2. But, as machine 1 is busy in processing another

operations and it will be finish operations at 460 units. So, operation 2 of product 1

will have a total waiting of 460 units. It has processing time of 120 units, so, the

Product no. 1 2

Process Plan 1 2 1 2 3 

Operation No. 1 2 3 1 2 1 2 1 2 3

1 2 4 1 6

(a) Before mutation

Product no. 21

Process Plan 1 2 1 2 3 

Operation No. 1 2 3 1 2 1 2 1 2 3

1 2

1 2

1 3 4 1 6

(b) After mutation

Fig. 4 Mutation procedure

Product no.

Process Plan 1 2 1 2 3 

Operation No. 1 2 3 1 2 1 2 1 2 3

1 2 4 10 4 10
2 3 7 4 1 6

(a) Before crossover, parent solutions

Product no.

Process Plan 1 2 1 2 3 

Operation No. 1 2 3 1 2 1 2 1 2 3

1 2

1 2

1 2 4 1 6
2 3 7

21

21

14 0 4 10

(b) After crossover, child solutions

Fig. 3 Crossover procedure
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completion time is 460 ? 120 = 580 units. The same is shown in Fig. 5 with the

help of Gantt’s chart.

In Table 8, following notations are used:

S = start time,

O = operation or processing time,

W = waiting time,

F = finish time.

A Gantts chart for the optimum process plan is shown in Fig. 5. Scheduling is

based on shortest processing time (SPT) rule. For product 12 (P12), the first

operation will be processed on machine 6 (M6) and after finishing first operation at

105 units, the second operation of product 12 (P12) will be started at 105 units and

finished at 315 units on machine 3 (M3). For machine number 3, there are two

operations. But, due to waiting, the first operation will start at 105 units and finish at

315 units. Whereas, second operation start at 315 units and finish at 555 units.

In Table 9, the optimum solutions based on the proposed model, Paulo et al.

(2002) is presented. The sequence of operations 1(2) {2,1} means for part 1, process

plan 2 is selected and sequence of operations to be carried out is on machine 2 and

then machine 1. Though the Operation cost and material handling cost is high by the

proposed methodology, but waiting cost is less as compared to the optimum solution

of Paulo et al. (2002). The total cost is obtained by adding operation cost ($9755),

material handling cost ($150), machine set up cost ($2470) and waiting cost ($2664)

by using objective function explained in Eq. 8. So, the total cost by the proposed

methodology is $15,039, whereas the total cost of Paulo et al. (2002) is $15600.This

shows that Paulo et al. (2002) have considered a mathematical model only for

operation allocation problem which is not suitable in real time scheduling system.

Figure 6 shows the convergence of RCGA for the present case study.

Table 7 Optimum solution of the present case study

Part no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Process plan 2 1 1 1 2 1 2 1 1 1 1 2 1 1

Machine 1 2 1 2 3 2 3

Machine 2 1 1,4 1

Machine 3 2 2

Machine 4 1 1 3

Machine 5 2 1 2,4

Machine 6 1 1

Machine 7 2 2 1

Machine 8 2 2 2

Machine 9 1,2 2

Machine 10 1 1 1
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4.3 Case study based on integrated operation allocation and material
handling equipment selection and scheduling problem

The second case study is based on an operation allocation and material handling

equipment selection problem of Mahdavi et al. (2011). In this work, an operation

allocation and material handling equipment selection problem of Mahdavi et al.

(2011) is considered to optimise material flow under integrated operation allocation,

material handling equipment selection problem and scheduling problem. The

modified objective function is:

Minimise ¼
XN
i¼1

di
Xpi
p¼1

XSðipÞ
sðipÞ¼1

X
j2jips

OCjsðipÞ :XjsðipÞ þ
XN
i¼1

Xpi
p¼1

XSðipÞ
sðipÞ¼1

XM
j¼1

SCjsðipÞ::XjsðipÞ

þ
XN
i¼1

di
Xpi
p¼1

XSðipÞ
sðipÞ¼1

XM
j¼1

XH
h¼1

XE
e¼1

ðMHhjesðipÞ þ RCjsðipÞ Þ:ðYjhesðipÞ Þ

þ
XN
i¼1

Xpi
p¼1

XSðipÞ
sðipÞ¼1

XM
j¼1

WcjsðipÞ

ð14Þ

Constraints

1) Each part type should be processed just under a particular process plan.

Xpi
p¼1

wðipÞ ¼ 1 8i ð15Þ
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Fig. 5 Gantts chart for the optimum process plan
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2) Make sure that at most one machine should be selected to perform operation

M:kj �
XSðipÞ
sðipÞ¼1

XjsðipÞ 8j ð16Þ

3) This constraint guarantees that the operations allocated to any machine cannot

exceed the machine’s capacity

XN
i¼1

di
Xpi
p¼1

XsðipÞ
s¼1

tjsðipÞ :XjsðipÞ � TjkjCj 8j ð17Þ

4) The remaining time on each machine should be greater or equal to the time

required by the next operation s(ip) to be assigned to this machine

di:tjsðipÞ :XjsðipÞ � trjsðipÞ 8sðipÞ ; j ð18Þ

5) Each operation s(ip) of the selected process plan is assigned to only one of the

available machines
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Fig. 6 Convergence graph for RCGA
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X
j2jsðipÞ

XjsðipÞ ¼ wðipÞ 8sðipÞ ð19Þ

6) The remaining time on any machine after any assignment of operation should

be more or equal to zero:

trjsðipÞ � 0 8sðipÞ ; j ð20Þ

7) Once a machine is selected for operation s(ip), then all the material handling

operation h corresponding to (sj) have to be performed

XjsðipÞ ¼ vjhsðipÞ 8j; h; sðipÞ ð21Þ

8) This constraint ensures that, once a machine is selected for operation s(ip),

then all the material handling operation h corresponding to (sj) have to be

performed.

XN
i¼1

Xpi
p¼1

XsðipÞ
s¼1

XM
j¼1

X
e2EjsðipÞ

XjsðipÞ � kj 8j ð22Þ

9) If machine j is selected, then at least one operation has to be allocated to that

machine.

XN
i¼1

Xpi
p¼1

XsðipÞ
s¼1

XjsðipÞ � kj 8j ð23Þ

There exist N part types (i = 1,…, N), which can be sequenced in N! ways and

set of machines labeled (j = 1,…, M) where the demand di of a given part type i is

assumed to be uniform over the planning period. Each part type can be processed

under the different process plans (p = 1,…, pi). The operations of a process plan pi

are represented by the indices S = 1,…, S(ip). All together M 9 S(ip) combinations

of machine-operation allocation are possible for one of the part type sequence.

Hence, for N! part type sequences the total number of possible allocation

N!M 9 S(ip). However some of these allocations are not possible because they are

not able to satisfy system constraints.

For example, as shown in Table 10, the first part type has two different process

plans (p1 = 2) and (p2 = 2), (p3 = 1), (p4 = 2). There is j = 1, 2,…, 6 machines,

each with a capacity of 480 s during the planning period. The capabilities of the
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machines to perform the operations of the part types are illustrated too. For

example, part type i = 1 has p1 = 2 process plans. Under process plan p = 1, this

part type has s(11) = 2 operations with the indices s [{1,2}, whereas under process
plan p = 2, it has s(11) = 3 operations, with indices s[{1,2,3}. Operation s = 1 of

process plan p = 1 for part type 1 can be completed on any of the machines

j[j111 = {2,3} while operation s = 2 can be completed on any of the machines

j[j112 = {1,4,5,6} and operation s = 1 from process plan 2 of part type 1 can be

completed on any of the machines j[j121 = {1,3,4}.

The mathematical model is based on optimisation of total cost which is based on

operation cost, set up cost, material handling cost, robot cost and waiting cost. In

Table 10, the values of demand, operation cost, material handling cost, robot cost

and operation time are given. The set up cost of machine 1 is $225, machine 2 is

Table 11 Optimum process plan for the second case study

Process

plan

Part 1 Part 2 Part 3 Part 4 Operation

time (a)

Completion

time (b)

Waiting

time

(c = b - a)1 1 1 2

Operations 1 2 1 2 1 2 1 2

S M1 150 0 365 365 0

P 120 245

W 245 0

F 365 245

S M2 0 0 0

P

W

F

S M3 0 0 375 375 0

P 150 225

W 0 150

F 150 375

S M4 375 0 255 450 195

P 75 180

W 180 0

F 450 180

S M5 0 0 0

P

W

F

S M6 245 180 460 640 180

P 280 180

W 360 0

F 640 360

Total 1455 1830 375
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$250, machine 3 is $150, machine 4 is $275, machine 5 is $800 and machine 6 is

$150.

The revised mathematical model presented in Eq. 14 is used to optimise the

material flow of this problem. The optimum material flow obtained by the process

plan is given in Table 11. In Table 11, following notations are used: S = start time,

P = operation or processing time, W = waiting time, F = finish time

As shown in Table 12, the sequence of operation is given by 1(1) {3, 1} which

indicates that for part 1, process plan 1 is selected and first operation is performed

on machine 3 and the second one is on machine 1. The optimum process plan

obtained by proposed methodology is 1(1){3,1}, 2(1){1,6}, 3(1){3,4}, 4(2){4,6}.

The operation cost is $1530, robot cost is $1650, material handling cost is $1046, set

up cost is $800 and waiting cost is $375 which is assumed and equal to total waiting

time. So, the total cost is $5401 as compared to $10,899 which is given by one of the

process plan of Mahdavi et al. (2011). Though the optimum total cost given by

Mahdavi et al. (2011) is $7139, which is much higher than optimum total cost

obtained by proposed methodology and there is about 24% reduction in the total

cost.

5 Conclusions

In this research work, an integrated production planning and scheduling problem is

presented. A mathematical model for waiting time of product and machine for the

real time scheduling system is proposed. This model is based on SPT scheduling

rule. This mathematical model is verified by considering two case studies. In the

first case study, Paulo et al. (2002) have considered two mathematical models, one

for an operation allocation and second one for material handling system selection. In

this case study, the objective function considered is to minimise the total cost i.e.

material flow of the system. To optimise the material flow, real coded genetic

algorithm (RCGA) is proposed.

In the second case study, a mathematical model of Mahdavi et al. (2011) is

considered which considered an integrated approach of an operation allocation and

material handling equipment selection problem. But, author have not considered the

waiting time in the real time scheduling. The optimum process plan selected by the

author does not remain optimum in the real time scheduling.

In this work, real coded genes are used to generate variables of solution for part

type selection and operation allocation problem. Only one gene is sufficient to

represent each operation. So, the chromosome length required in RCGA is 30–50%

less as compared to binary coding. Thus, there is a reduction in computational time

and burden to handle large variables.
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