
A stochastic approach for designing two-tiered
emergency medical service systems

Rania Boujemaa1 • Aida Jebali2 • Sondes Hammami1,3 •

Angel Ruiz4 • Hanen Bouchriha1

Published online: 22 March 2017

� Springer Science+Business Media New York 2017

Abstract Emergency medical services (EMS) systems provide out-of-hospital

acute medical care and transportation to the appropriate health care provider to

patients with illnesses and injuries. The objective of EMS systems is to satisfy

demand requests by providing timely first care medical assistance to patients at the

incident scene. This paper aims at designing a robust two-tiered EMS system while

accounting for the inherent uncertainty of the demand. A two-stage stochastic

programming location-allocation model is proposed to simultaneously determine

the location of ambulance stations, the number and the type of ambulances to be

deployed, and the demand areas served by each station. This problem is then solved

efficiently using the sampling average approximation algorithm. Computational

experiments highlight the performance of the proposed solution approach and its

practical applicability.
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1 Introduction

Emergency medical services (EMS, for short) are a critical component of any

healthcare system. Over the last four decades, the design of EMS systems has

received the scientific community’s growing attention due to its crucial role in

saving lives. The implementation of an efficient EMS system can reduce human

suffering and economic losses resulting from disabilities due to injuries and sudden

illnesses by providing the fastest and the highest quality of healthcare services

available in a pre-hospital setting. The effectiveness and efficiency of an EMS

system are gauged through the response time, i.e. the time between an emergency

call and the ambulance’s arrival at the incident scene. There is a common consensus

that out-of-hospital care must be provided in a timely manner, mainly for life-

threatening emergencies.

Even though only a few studies have discussed the relationship between the

response time of EMS and the lives saved (Blanchard et al. 2012), the current

findings underline the importance of reducing the response time to increase the

likelihood of patient survival. For instance, O’Keeffe et al. (2010) claimed that the

response time is the most important predictive factor for patient survival. They

demonstrated that the estimated effect of a 1 min reduction in response time

improved the odds of survival by 24%. Moreover, Gonzales et al. (2009) established

that an increased EMS response time is associated with higher mortality rates.

Furthermore, it has been shown that using first responders (usually fire and rescue

services) to reduce response time increases survival rates (Sund et al. 2011).

The response time achieved by an EMS system depends on several factors. Some

of them are defined by the system designer, like the number and the locations of

EMS stations (hereafter, EMS and ambulance stations will be used interchange-

ably), the number and type of ambulances assigned to each station and the

ambulance dispatch policy (the assignment of an available ambulance to a call), but

others are random (such as traffic conditions, the number of ambulances available

when the call is received, etc.). A wide stream of research has been dedicated to

study the design and the deployment of EMS systems, mostly seeking to achieve

two objectives: provide an acceptable response time and contain the costs related to

the system’s operation (Beraldi et al. 2004). Some papers investigate EMS facility

location problems at the strategic level, aiming at ensuring the best demand

coverage to the population within a given geographical area. Other works consider

the tactical decision level that aims to define the type and the number of resources to

allocate to each EMS station. But the majority of the literature is dedicated to the

operational level of EMS systems management. The latter addresses the ambulance

dispatching and relocation problem, which aims at deciding which ambulance to

assign to each demand request and, where to locate available ambulances at the

short run. Markedly, the design and management of an EMS system bear

challenging problems, especially when subjected to economic constraints and

different uncertainty sources.

In this paper, the emphasis is placed on the EMS system’s design, hereafter,

referred to as the ambulance location-allocation problem. This involves a strategic-
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tactical decision that encompasses the selection of ambulance base stations to open

and the number of ambulances to house at each of these stations. But unlike most of

the works addressing such strategic-tactical decision level problem, uncertainty on

the demand is considered explicitly. Three decisions are tackled jointly: (1) where to

site ambulance stations (2), which demand zones will be served by each ambulance

station and vice versa, and (3) the type and the number of ambulances to assign to

each station. Two types of ambulances are considered: (1) basic life support (BLS)

ambulances equipped with basic equipment and (2), advanced life support (ALS)

ambulances able to perform life-saving procedures in addition to all the procedures

performed by BLS ambulances. That is, ALS ambulances can respond to a call

requesting a BLS care level. Henceforth, the paper addresses the design of two-

tiered ‘‘successively inclusive’’ EMS systems while accounting for demand

uncertainty. The problem is formulated as a two-stage stochastic programming

model and solved using the sample average approximation (SAA) algorithm. The

proposed model aims at ensuring an efficient and cost-effective coverage of the

demand within a threshold response time while accounting for demand uncertainty.

The main contribution of this paper stems from the novelty of the proposed

model. It is worth noting that the literature related to EMS system design underlines

the paucity of papers that handle the design of two-tiered EMS systems under

demand uncertainty. This work is designed to start filling this gap.

The remainder of this paper is organized as follows: Sect. 2 presents the relevant

literature related to our study. Section 3 comprises the problem’s description and

mathematical model’s formulation. The SAA algorithm is detailed in Sect. 4.

Section 5 is devoted to the presentation and discussion of the experimentation

results. Finally, concluding remarks and directions for future research are given in

Sect. 6.

2 Literature review

Various modelling approaches have been devoted to the study of the ambulance

location-allocation problem. The proposed models are classified within the wide

body of the literature dedicated to capacitated facility location problems (CFLP). It

is, however, worth noting that extensive literature reviews on facility location

models (Current et al. 2001; Snyder 2006) reveal that facility location models are

application specific and that a generic and basic model that can be adapted to all

potential applications does not exist (Current et al. 2001). For instance, capacity

constraints in ambulance location-allocation models should prevent the assignment

of an incoming call to a busy ambulance. This feature related to ambulance

congestion conspicuously distinguishes the ambulance location-allocation model

from the other facility location models. Therefore, we will focus on the literature

stream devoted to the design of EMS systems. Furthermore, we do not aim to review

all developed approaches, but rather consider the approaches that are most relevant

to our research. The focus will be henceforth placed on papers that either tackle

ambulance location-allocation problems while accounting for demand uncertainty,

or address the design of two-tiered EMS systems.
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As far as uncertainty is concerned, the earliest papers addressed the randomness

of the availability of emergency vehicles. The proposed models considered the

probability of each ambulance being unavailable to respond to a call, referred to as a

busy fraction (Daskin 1983; ReVelle and Hogan 1989). The shortcoming of these

models is related to the estimation of emergency vehicles’ busy fractions that are a

priori unknown as they depend on ambulance location’s plan and the demand.

Therefore, EMS systems design has attracted significant attention in the recent years

to deal with demand uncertainty in order to incorporate the randomness of EMS

systems in an explicit way. Some other works considered the randomness of

ambulances travel time (Ingolfsson et al. 2008; Erkut et al. 2008).

Three main approaches have been proposed for ambulance location-allocation

under demand uncertainty: (1) stochastic programming models, (2) robust

programming models (Zhang and Jiang 2014; Lam et al. 2016) and (3), queuing

models (Larson 1974, 1975; Iannoni et al. 2011; Geroliminis et al. 2011).

Obviously, stochastic programming models for ambulance location-allocation are

those that are particularly tied to our work. In this kind of model, contrarily to robust

optimization, it is assumed that the probability distributions governing the data are

known or can be estimated.

To design a reliable EMS system, Ball and Lin (1993), Beraldi et al. (2004),

Beraldi and Bruni (2009) and Noyan (2010) developed chance-constrained

stochastic programming models where the main uncertainty was assumed to be

due to the stochastic call arrival process. The reliability is represented by the EMS’s

capability to guarantee a target service level while ensuring that demand coverage is

kept above a specified value of probability for all demand areas. EMS’s reliability is

enforced in the proposed models by the chance constraints. In Ball and Lin (1993),

the authors developed a reliability model where system failure is entailed by a

vehicle’s unavailability to respond to a request within acceptable time. Based on a

bound on the probability of system failure, the authors transformed their initial

model into a 0–1 integer programming optimization model. However, as it was

pointed out by Erkut et al. (2008), the probability of having an available vehicle

within a standard time is seldom used in practice. Instead of focusing on the

randomness in the availability of vehicles, Beraldi et al. (2004), Beraldi and Bruni

(2009) and Noyan (2010) focused on the demand satisfaction’s randomness that

allows for directly determining the service level, i.e., the fraction of calls covered

within a response time below a predetermined threshold, which is a common

performance measure used by EMS managers. In Beraldi et al. (2004), the authors

provided a deterministic equivalent formulation of the chance constraints using the

so-called p-efficient points of a joint probability distribution function. This

formulation is based on the assumption that the demand is independent. The latter

can be relaxed when a scenario-based formulation is devised (Beraldi and Bruni

2009; Noyan 2010). However, it is worth noting that the demand independence

assumption is well justified in normal operating conditions. A correlation among

demand points can only be established in the case of large-scale emergency

situations (Beraldi et al. 2004). Beraldi and Bruni (2009) introduced chance

constraints in the traditional two-stage stochastic programming framework. The

facilities’ location and the definition of the corresponding capacities present the

126 R. Boujemaa et al.

123



first-stage strategic decisions. Once uncertainty has been resolved, tactical decisions

concerning the allocation of demand points to facilities are taken while considering

non-splittable demand, i.e., each demand point must be served by exactly one

ambulance station under each scenario. In order to account for the cost-reliability

trade-off, the authors introduce chance constraints. Henceforth, the decision makers

can assess EMS system costs for different reliability levels. In Noyan (2010), the

author proposed two models that account for target service level by including risk

measures on random unmet demand. The first model incorporates the integrated

chance constraints (ICCs) and the second one includes ICCs and a stochastic

dominance constraint to account for the largest acceptable expected unmet demand.

He modelled the random demands using the scenario approach. With the addition of

ICCs constraints, the unmet demand is capped to a predefined nonnegative risk

aversion parameter that represents the largest acceptable expected unmet demand

value. It is worth noting that in the two-stage stochastic programming model, the

ICCs also serve to restrict the risk to the solvability of the second-stage problem. In

order to address the complexity inherent to the two-stage formulation, the author

introduced the ICCs in the single-stage formulation, where it is assumed that the

assignment of vehicles to demand nodes is scenario-independent. However, this

single-stage formulation incurs a significant increase of the total system’s cost

compared to its counterpart two-stage formulation. More recently, Zhang and Li

(2015) devised a novel stochastic model with chance constraints to design EMS

systems by considering the randomness in the maximum number of concurrent

demands occurring at a demand site over a day. The original model is transformed

into a conic quadratic mixed-integer program by approximating the chance

constraints as a second-order cone constraints. The obtained model is then solved by

a commercial solver for problem instances of practical sizes. Zhang and Jiang

(2014) proposed a bi-objective robust optimization model to design a cost-

responsiveness efficient EMS system while considering the maximum number of

concurrent demands occurring at a demand site over a day. This kind of formulation,

contrarily to the stochastic programming approach, is used when there is little

probability information on the uncertainty of the demand. The latter is accounted for

in the robust optimization model through the definition of ellipsoidal uncertainty

sets. In Nickel et al. (2015), the authors developed a scenario-indexed model to

locate and size ambulances based on stochastic demand. The objective was to

minimize the total cost associated with the EMS facilities. Nevertheless, the

objective function does not consider the minimization of the expected costs of

ambulance deployment. A pre-specified coverage level is enforced by ensuring that

the expected number of ambulances allocated to a demand point is greater than or

equal to the product of the considered service level factor and the expected demand.

A sampling approach is proposed to solve the problem. Through numerical

experiments conducted on small-sized problem instances, the authors highlighted

the relevance of using a stochastic approach to design EMS systems. Lam et al.

(2016) proposed a two-stage stochastic programming model to find an ambulance

deployment that minimizes the overall shortfall in demand coverage. They

reformulated their problem as a robust mathematical program by replacing the

chance constraints with a set of deterministic constraints based on the Poisson
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arrival rates and Markov inequality and solved it using a standard solver. Van Essen

et al. (2014) presented a two-stage stochastic program for the joint strategic and

tactical ambulance planning. At the first-stage, the model determines the location of

ambulance bases and the number of ambulances to assign to each opened ambulance

base. In a second-stage, the model considers all the potential demand scenarios and

specifies which ambulance to dispatch to which emergency call. As an ambulance is

busy for about 1 h when responding to an emergency, the model incorporates

scenarios based on the number of hourly incoming emergency calls. The demand

scenarios are generated from a stochastic Poisson process. The authors sought to

minimize the weighted combination of the number of located ambulances and the

number of bases. The fraction of demand coverage, which does not have to be the

same for each region (differs for urban and rural areas), is accounted for through the

constraints. The problem is then solved by adopting a two-stepped heuristic

approach: the first step solves the strategic level (location of ambulance bases’

decision) and the second step considers the tactical level (number of ambulances’

decision). The authors considered different types of demand resulting in different

coverage requirements but covered by one type of vehicle.

As it can be noticed, all the aforementioned papers assumed that the ambulances

were equally equipped. The papers that considered different types of ambulances

developed deterministic and hypercube models. The first models were the tandem

equipment allocation model (TEAM) and the facility location equipment emplace-

ment technique (FLEET) model proposed in Schilling et al. (1979). These two

models extended the maximal covering location problem (MCLP) presented in

Church and ReVelle (1974) by enforcing the hierarchy between the two types of

vehicles considered. A demand node was covered only if it was equipped with the

two types of vehicles with the prescribed standards. The TEAM supposed that

specific equipment could only be located in tandem with basic equipment.

Conversely to the TEAM model, the FLEET model considered that the two-vehicle

types were free to be located either in tandem or individually. These models were

deterministic and were applied to locate vehicles of the Fire Protection System in

the Baltimore City. ReVelle and Marianov (1991) and Marianov and ReVelle

(1992) extended the model’s framework to the fire protection system while

considering the busy fraction. Their model sought to distribute standard and specific

vehicles in order to maximize the population served by both types of vehicles within

specified time standards, either with independent availabilities or with a joint

availability. Mandell (1998) proposed a probabilistic covering-type model for two-

tiered EMS systems in which it was not necessary to restrict the sites of ALS units to

those sites where a BLS unit is located. A call’s response was adequate if: (1) an

ALS ambulance arrived within time tB or (2) a BLS ambulance arrived in tB time

and an ALS ambulance arrived within time tA (tB\ tA). Hence, the model did not

consider multiple types of calls and assumed the same response time standard tB for

every call. The model took server availability into account through a two-

dimensional queuing model, thereby avoiding the need to assume the independence

of server busy probabilities. Maximizing the expected coverage was used as the

objective function. More recently, McLay (2009) extended the maximum expected

coverage location problem (MEXCLP) introduced by Daskin (1983) to optimally
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locate servers for public service applications to include two types of medical units

(the ALS non-transport Quick Response Vehicles (QRV) and the BLS) and multiple

customer types (based on case acuity, an emergency call is classified of Priority 1, 2

or 3). A Hypercube queuing model is developed to estimate the busy probabilities of

each vehicle type and the fraction of time where calls of a given type are assigned to

their preferred server type. The model supposed that each type of demand arrived

according to a Poisson process. The results of the hypercube model were then used

to input an integer programming model (referred to as MEXCLP2) that determined

the number of ALS QRV and BLS vehicles to locate at each facility. The objective

was to maximize the expected number of Priority 1 calls (life-threatening calls)

satisfied within a given response time threshold. However, such approaches require

defining the possible combinations of medical units that might be dispatched and

solving the problem for each of these combinations. Given that the number of

combinations significantly increases in real-life problem instances, these approaches

become of little practical use because of their computational intractability.

The literature discussed above shows that there are some recent papers that

model the ambulance location-allocation problem as a two-stage stochastic

programming model with recourse. These papers either reformulate the problem

as a deterministic robust model (Lam et al. 2016) or solve it using heuristics (Van

Essen et al. 2014). In all cases, limited discussion on the quality and the

characteristics of resulting solutions is provided.

Moreover, the models that used stochastic programming to deal with the

ambulance location-allocation problem do not consider the two types of commonly

used ambulances in EMS systems. The papers that address this realistic feature

develop deterministic models that can use input from queuing models to take the

dependencies between ambulances (servers) into account.

In this paper, we propose to investigate the ambulance location-allocation

problem with two types of vehicles under demand uncertainty. To directly deal with

this uncertainty, we propose a cost-based two-stage stochastic program with

recourse where the demand is assumed to be a random variable with known

probability distribution. This model is solved using the SAA algorithm that allows

for computing lower and upper bounds for problem solutions and providing the

corresponding optimality gaps. To the best of our knowledge, this is the first paper

that informs on the quality of the generated solutions. Hence, the proposed solution

approach is a valuable contribution in itself. A detailed problem formulation and

solution approach is detailed in the following two sections.

3 The ambulance location-allocation model

3.1 Problem description

In this paper, we address the design of a two-tiered EMS system under demand

uncertainty. The EMS system is equipped with two types of ambulances (ALS and

BLS units). Life-threatening calls, such as those involving a cardiac arrest require an

ALS care level. Conversely, non-life-threatening calls require a BLS care level. An

A stochastic approach for designing two-tiered emergency… 129

123



ALS can be used to serve a non-life-threatening call. However, a BLS is under-

equipped for a life-threatening call. The target response time for a life-threatening

call is obviously shorter than that of a non-life-threatening call.

A two-stage stochastic programming model with recourse is proposed to locate

ambulance stations, make decisions on number of vehicles of each type to be housed

at each opened station, and the allocation of ambulances to demand points. Based on

the time horizon of impact, the location of ambulance stations and the definition of

their capacities are first-stage decisions. These decisions cannot be changed on the

short run. Conversely, the allocation of ambulances to demand zones is decided

based on demand realization, and thus constitutes a second-stage decision. The

number of life-threatening calls and non-life-threatening calls coming from a

demand point within a defined time interval is assumed to follow a Poisson

distribution (Ingolfsson et al. 2008). An ambulance is busy for a certain amount of

time when responding to an emergency call. Similarly to most studies in this area,

namely Beraldi et al. (2004), Beraldi and Bruni (2009), Noyan (2010), Van Essen

et al. (2014) and Zhang and Jiang (2014), we assume that 1 h is a reasonable time

requirement for a service trip. Based on this assumption, the proposed model

formulates the ambulance location-allocation problem over a horizon of 1 h and

does not explicitly consider time. In this formulation, each ambulance can be

assigned to at most one emergency call over 1 h (Van Essen et al. 2014).

The uncertainty related to the number of emergency calls coming from each

demand point over 1 h is denoted by a scenario n. A scenario defines the vector of

outcomes of two independent random variables: the number of life-threatening calls

and the number of non-life-threatening calls arriving to each demand point over 1 h.

The set of scenarios N is supposed to be finite and PðnÞ, the probability distribution

of scenario n 2 N is discrete.

The objective is to minimize the location-allocation costs incurred by the

system’s infrastructure (the fixed cost of setting up the elected ambulance stations

and the fixed per-unit capacity cost related to the cost of ambulances) and the

expected transportation and penalty cost. The latter accounts for unsatisfied demand.

It is therefore tied to the reliability of the EMS system to provide adequate demand

coverage.

We should point out that, as we consider 1 h horizon, the strategic cost incurred

by the opening and the per-unit capacity cost needs to be related to the incumbent

time. Thus, the depreciations presented in the first-stage cost are converted to hourly

costs. Moreover, the tactical cost is composed of the expected transportation and

penalty costs entailed by the assignment of ambulances and the unsatisfied demands

within 1 h time.

At this point, it is worth noting that only the transportation costs between the

ambulance station and the location of the incident scene (the demand point) are

accounted for. This can be justified by the fact that the location of ambulance

stations does not depend on the decision regarding the hospital to which the patient

will be transported and admitted. Indeed, this decision is made at a later stage by

involving more accurate information on the patient case, hospital network and

resource availability. Additionally, given that the transportation cost is proportional

to the distance and the time between ambulance station and demand zone, its
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minimization tends to favour the design of an EMS system that tries to reduce the

response time. As it can be noticed, even though the proposed model is not intended

to tackle the ambulance operational planning level, the consideration of transporta-

tion costs entails an ambulance assignment to emergency calls in adherence with the

closest ambulance dispatch rule.

Additionally, it is worth mentioning that, in cases where the ambulance service

trip time differs from 1 h, it suffices to consider the Poisson distribution that reflects

the number of life-threatening calls and non-life-threatening calls coming within

this time frame. Similarly, the opening and the per-unit capacity costs should be tied

to the considered horizon.

We consider a finite set of demand points and a set of potential stations where

ambulances may be located. A demand point can only be covered by an ambulance

station if the average travelling time between the demand point and the ambulance

station is within a threshold value. Given that life-threatening calls may occur at any

demand point, this threshold value is set to the target response time for this type of call.

The two-stage stochastic programming EMS model is described in the following

paragraph.

3.2 A two-stage stochastic programming model

Let us introduce the following notation for our two-stage stochastic program with

recourse, referred to as (SPEMS). We begin by introducing the parameters of the

model (Table 1).

The following decision variables are used in the model formulation, with the two

latter variables pertaining to the second-stage model (Table 2).

The proposed model assumes that each demand point can be served by more than

one ambulance station (splittable demand), and that the ambulances housed at a

given ambulance station are not dedicated to serve a specific demand point. Given

that the variable Xn
ijkl also represents the number of ambulances of type k located at

site j that serve calls of type l occurring at demand point i under scenario n, the total
number of vehicles of type k allocated to the ambulance station j is determined by:

max
n¼1:: Nj j

X

i2I

X

l2L
Xn
ijkl:

At this point, we can present the complete formulation of the two-stage stochastic

program with recourse (SPEMS):

Min
X

j2J
fjYj þ

X

j2J

X

k2K
ZjkVk þ

X

n2N
pnQ Z; Y ; nð Þ ð1Þ

Subject to:

X

j2J
Zjk �Pk 8k 2 K ð2Þ
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Yj 2 0; 1f g 8j 2 J ð3Þ

Zjk 2 Zþ 8j 2 J; 8k 2 K ð4Þ

With:

Table 1 Indices and parameters

Notation Description

I Set of demand points

i Demand points index, i ¼ 1. . . Ij j
J Set of potential locations

j Index of potential locations for an ambulance station, j ¼ 1. . . Jj j
L Set of demand types (life-threatening calls and non-life-threatening calls)

l Demand types index, l ¼ 1. . . Lj j
K Set of ambulance types (ALS and BLS)

k Ambulance types index, k = 1…|K |

N Set of scenarios

n Scenarios index, n = 1…jNj
Dkl 1 If ambulance of type k can cover demand of type l; 0 otherwise

dijk Travelling time between ambulance station j and demand zone i by ambulance of type k

Rl Response time threshold for a call of type l

Nijkl 1 If a call of type l occurring at demand point i can be covered by an ambulance of type k

located at station j within response time threshold Rl (i.e. Nijkl = 1 if dijkDkl �Rl); 0

otherwise

Pk Maximum number of ambulances of type k that can be allocated to the EMS system

dnil
Number of calls of type l arriving from demand point i under scenario n

fj Fixed cost of opening ambulance station j

Vk Fixed cost of ambulance of type k

Wijk Travelling cost between ambulance station j and demand point i using ambulance of type k

El Penalty cost for not satisfying a call of type l

pn Probability of scenario n

M A sufficiently large number

Table 2 Decision variables

Notation Description

Yj 1 If ambulance station j is open; 0 otherwise

Zjk Number of ambulances of type k to be housed at station j

Xn
ijkl

Number of calls of type l occurring at demand point i that are covered by ambulances of type k

located at site j under scenario n

Un
il

Number of unsatisfied calls of type l coming from demand point i under scenario n
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Q Z; Y; nð Þ ¼ Min
X

i2I

X

j2J

X

k2K

X

l2L
WijkDklX

n
ijkl þ

X

i2I

X

l2L
ElU

n
il ð5Þ

X

i2I

X

k2K

X

l2L
Xn
ijkl �MYj 8j 2 J; 8n 2 N ð6Þ

dnil �Un
il þ

X

j2J

X

k2K
NijklX

n
ijkl

8i 2 I; 8l 2 L;
8n 2 N

ð7Þ

Zjk �
X

i2I

X

l2L
Xn
ijkl

8j 2 J; 8k 2 K;
8n 2 N

ð8Þ

Un
il;X

n
ijkl 2 Zþ 8i 2 I; 8j 2 J; 8k 2 K; 8l 2 L; 8n 2 N ð9Þ

The objective function (1) minimizes the sum of the first-stage costs and the

expected second-stage costs. The first-stage costs are composed of the fixed cost of

opening ambulance stations and the per-unit capacity cost. The second-stage costs

are composed of the expected travelling cost between the demand points and the

ambulance stations and, the penalty cost incurred by unsatisfied demand.

Constraints (2) respect the maximum number of ambulances that can be allocated

to the EMS system. This number can translate to the maximum budget that can be

allocated to ambulance acquisition or the number of available crews. Constraints (3)

and (4) express the domain of the first-stage decision variables. Constraints (6)

indicate that calls occurring at a demand point can only be served by an open

station. Constraints (7) determine the number of unsatisfied demands. Note that the

combination of constraints (7) with the objective function ensures that Xn
ijkl takes the

value 0 if a call of type l occurring at demand point i cannot be served by an

ambulance of type k located at station j, while respecting the considered target

response time (i.e. Nijkl = 0). Moreover, this combination forces Xn
ijkl to be equal to

the number of calls of type l occurring at demand point i that are served by an

ambulance of type k housed at station j. Additionally, the term in the objective

function pertaining to the penalty cost forces the decision variable Un
il to be equal to

the number of calls of type l occurring at demand point i that are not served under

scenario n. Constraints (8) guarantee that the total number of ambulances allocated

to demand points under a given scenario is less or equal to the total number of

ambulances available in the EMS system. Constraints (9) represent the integrality

constraints of the second-stage decision variables.

The majority of the papers that formulate the ambulance location-allocation

problem use stochastic programming recourse to chance constraints in order to

maintain the risk of not satisfying the demand under a prescribed threshold.

Nevertheless, except in some special cases, chance-constrained models are

computationally intractable (Luedtke and Ahmed 2008). Even moderate-sized

problems are very difficult to solve using off-the-shelf solvers (Ahmed and Shapiro

2008). As an alternative, in the current model, the risk of not satisfying the demand
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is restricted by enforcing a penalty cost on the unmet demand. The use of a cost-

based modelling approach allows for solving the ambulance location-allocation

problem at hand within a reasonable computing time while maintaining a high

service level.

One can also see from the literature review presented above that there is diversity

in terms of protocols used for the deployment of ambulances in a two-tiered EMS

system. These protocols stem from the EMS system considered in each of these

studies. Indeed, the deployment of ambulances in a two-tiered EMS system depends

on the level of ambulance equipment as well as the skills of the crew assigned to

each type of ambulances. In this paper, the ambulance deployment protocol is

inspired from the Tunisian EMS system. However, the proposed model can be

slightly modified and/or extended to adapt to other ambulance deployment

protocols. For example, let us consider that for a life-threatening call (l = 2), both

an ALS (k = 2) and a BLS (k = 1) ambulances are required. This protocol is

particularly used when the ALS is a non-transport quick response vehicle (McLay

2009). A non-life-threatening call (l = 1) cannot be served by an ALS. It is covered

if a BLS arrives to the patient within a time inferior or equal to the response time

standard (R1). For life-threatening calls an ALS or a BLS should arrive to the patient

within the specified response time standard (R2), with a preference for the ALS

vehicle arriving first at the incident scene. In all cases, the BLS and the ALS must

arrive to the scene within or under a given time threshold R21 and R22, respectively.

Without loss of generality, let us define the set R ¼ R2;R1;R22;R21f g of time

thresholds arranged in ascending order given that R2 \R1 \R22 B R21. Let us

denote by R rð Þ the rth element (r ¼ 1. . .4) of the set R.

Let us replace the parameter Nijkl by Nijkr that takes the value 1 if demand point i

can be covered by an ambulance of type k located at station j within time threshold

r; 0 otherwise. In order to accommodate the above-mentioned protocol, constraints

(7) will be replaced by constraints (7.1), (7.2), (7.3) and (7.4):

dnil �Un
il þ

X

j2J

X

k2K
NijkrX

n
ijkl 8i 2 I; 8l 2 L; r=R rð Þ ¼ Rl; n 2 N ð7:1Þ

Xn
ij21 ¼ 0 8i 2 I; 8j 2 J; 8n 2 N ð7:2Þ

X

j2J
Nij11X

n
ij12 �

X

j2J
Nij23X

n
ij22 8i 2 I; 8n 2 N ð7:3Þ

X

j2J
Nij21X

n
ij22 �

X

j2J
Nij14X

n
ij12 8i 2 I; 8n 2 N ð7:4Þ

Similarly to constraints (7), constraints (7.1) determine the unsatisfied demand.

The combination of constraints (7.1), (7.2) and the objective function ensures that

an adequate response to a non-life-threatening call if a BLS arrives to the patient

within response time threshold R1. The combination of constraints (7.1), (7.3), (7.4)

and the objective function ensures that a life-threatening call (l = 2) is served if: (1)

a BLS (k = 1) arrives within R2 (r = 1) and an ALS (k = 2) arrives within R22
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(r = 3) or (2) an ALS (k = 2) arrives within R2 (r = 1) and a BLS (k = 1) arrives

within R21 (r = 4). More specifically, constraints (7.3) and the objective function

ensure that all life-threatening calls coming from a demand point and served by a

BLS within R2 are also served by an ALS within R22. In the same way, constraints

(7.4) and the objective function ensure that all the life-threatening calls coming from

a demand point and served by an ALS within R2 are also served by a BLS within

R21.

The proposed changes aim to demonstrate how the proposed model can

accommodate other possible ambulance deployment protocols that can be used in

two-tiered EMS systems. Nevertheless, the rest of the paper will be devoted to

investigating the design of a two-tiered EMS system in accordance with the

ambulance deployment paradigm adopted in Tunisia.

4 Solution approach

A typical problem instance in a real-life case entails a large number of scenarios.

Thus, solving the proposed (SPEMS) would be computationally intractable. To

overcome this challenge, we propose to use the SAA, which allows for finding a

good solution while considering a modest number of scenarios (Ruszczynski and

Shapiro 2004). Random samples with S (S\ Nj j) scenarios (or realizations) of the
uncertain parameters are generated using Monte Carlo simulation technique and

integrated in the model. The expected value of the recourse costs (travelling and

penalty costs) is approximated by the average of these scenarios. The following

mathematical model describes the SAA problem of the (SPEMS) with a sample size

S. The index s will be used hereafter to denote a scenario included in a sample of

size S (s ¼ 1. . .S).
As it can be noticed, the integrality constraints on second-stage variables Us

il and

Xs
ijkl are relaxed. Indeed, given the following conditions: (1) the matrix defining the

feasible region of Us
il and Xs

ijkl is totally unimodular, (2) Yj, M and dsil are integer

numbers; the linear relation of Us
il and Xs

ijkl will have integer solutions (Wolsey

1998).

Min
X

j2J
fjYj þ

X

j2J

X

k2K
ZjkVk

þ 1

S

X

s2S

X

i2I

X

j2J

X

k2K

X

l2L
WijkDklX

s
ijkl þ

X

s2S

X

i2I

X

l2L
ElU

s
il

" #
ð10Þ

Subject to:

X

j2J
Zjk �Pk 8k 2 K ð11Þ

Yj 2 0; 1f g 8j 2 J ð12Þ
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Zjk integer 8j 2 J; 8k 2 K ð13Þ
X

i2I

X

k2K

X

l2L
Xs
ijkl �MYj 8j 2 J; 8s 2 S ð14Þ

dsil �Us
il þ

X

j2J

X

k2K
NijklX

s
ijkl 8i 2 I; 8l 2 L; 8s 2 S ð15Þ

Zjk �
X

i2I

X

l2L
Xs
ijkl 8j 2 J; 8k 2 K; 8s 2 S ð16Þ

Us
il;X

s
ijkl � 0 8i 2 I; 8j 2 J; 8k 2 K; 8l 2 L; 8s 2 S ð17Þ

The optimal solutions of the SAA problem converge with probability one to an

optimal solution of the original problem as the sample size S increases (Kleywegt

et al. 2001). Nevertheless, solving the SAA problem with a large sample size S

would incur an excessive computational burden. Thus, choosing the sample size

requires a trade-off between the quality of an optimal solution of the SAA problem

and the computational time needed to obtain it. To overcome this shortcoming,

Kleywegt et al. (2001) proposed to solve the SAA problem repeatedly by generating

M independent samples, each of a reasonable size S. Indeed, solving the considered

M SAA problems, each with a sample of size S, and retaining the best solution

among the M obtained ones can be more efficient than increasing the sample size, S.

Henceforth, an optimality gap of an obtained SAA solution can be estimated and

used to select the best solution. The details of the general SAA algorithm can be

found in Kleywegt et al. (2001). The algorithm is implemented in this paper with

some modifications to fit the features of (SPEMS).

The procedure for the implemented SAA algorithm is described below:

Step 1 For m ¼ 1. . .M

Step 1.1 Generate a sample of size S

Step 1.2 Solve the associated SAA problem (i.e. model 10–17) and

record its optimal objective value #̂m
S and the optimal first-stage

solution t̂mS
Step 1.3 Generate a sample of size S0. Typically S0 is chosen to be quite

larger than S (S0 [ S) and independent of the samples used in

the SAA problems

Step 1.4 Estimate the true objective value ĝS0 t̂
m
S

� �
of the SAA optimal

first-stage solution t̂mS and its variance r2
ĝS0 t̂m

Sð Þ by (18)

r2
ĝS0 t̂m

Sð Þ ¼
1

S0 � 1ð ÞS0
XS0

s¼1

ĝS t̂mS
� �

� ĝS0 t̂mS
� �� �2 ð18Þ
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Step 2 Compute �#M
S and its variance r2�#M

S

over the M replications by (19) and (20)

�#M
S ¼ 1

M

XM

m¼1

#̂m
S ð19Þ

r2�#M
S
¼ 1

M � 1ð ÞM
XM

m¼1

#̂m
S � �#M

S

h i2
ð20Þ

Step 3 For each solution t̂mS , m ¼ 1. . .M, compute the optimality gap ĝS0 t̂mS
� �

�
�#M
S and a corresponding estimate of variance r2gap ¼ r2

ĝS0 t̂m
Sð Þ þ r2�#M

S

. We

should point out that �#M
S and ĝS0 t̂

m
S

� �
, respectively, provide a statistical

lower and upper bounds on the optimal objective function of the original

problem (Norkin et al. 1998; Mak et al. 1999).

The confidence interval for the optimality gap at a given solution is calculated as:

ĝS0 t̂mS
� �

� �#M
S

� �
þ Zargap ð21Þ

With Za ¼ U�1 1� að Þ, where U is the cumulative distribution function of the

standard normal distribution.

After completing step 3, we have to inspect the values of the optimality gap and

its variance. If these values are too large, one must repeat the procedure with larger

values of S and M. Readers can refer to (Kleywegt et al. 2001) for a more detailed

description of the SAA algorithm.

5 Numerical experiments

The numerical experiments were carried out on a dual Intel Xeon X5650 processor

2.66 GHz and 72 GB DDR3 ECC Reg Memory RAM. The models were

implemented in MS Visual C?? and linked with ILOG CPLEX 12.3 optimization

library.

The test problems considered in the experimentation come from a real-life case

study arising in the Northern Region of Tunisia (referred to as SAMU 01). In

Tunisia, the calls received by the EMS system are classified as follows: (1) calls that

do not require an ambulance (code 1); (2) calls that require transportation service

without any emergency (code 2); (3) calls associated with a non-life-threatening

incident (code 3) and (4) calls involving danger to human life (code 4). Markedly,

the degree of priority associated with each of these calls is different. The emergency

calls requesting an ambulance and a medical team are those of codes 3 and 4.

Obviously, the highest priority is given to code 4 calls. Calls of codes 1 and 2 do not

need an ambulance from the EMS system and are oriented to the appropriate

services. To satisfy calls of codes 3 and 4, a team composed of one or two nurses

and an emergency physician, and an adequately equipped ambulance are assigned to
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serve the patient. Two types of ambulances could be used: (1) BLS ambulances and

(2) ALS ambulances. Only the crew of the ALS ambulance type includes an

emergency physician. This type of ambulance is intended to serve patients of code 4

as it can provide cardiac and medical monitoring and ensure the patient’s treatment

during transport to the hospital. ALS ambulances can also cover demand of code 3.

However, the BLS ambulance type can only cover the demand of code 3. The

response time threshold is set to 20 min for emergency calls of code 3 and 15 min

for emergency calls of code 4.

5.1 Data description

In this section, we will present the necessary details for our model: data related to

potential sites for ambulance stations, demand zones and vehicles. The Northern

Region of Tunisia is divided into seven governorates, where each of them is further

divided into a number of delegations. Henceforth, the demand points represent the

different delegations, while the potential sites for ambulance stations, are proposed

by the SAMU 01 manager, and correspond to the region’s hospitals. Therefore, 31

potential ambulance stations’ sites and 78 demand points are considered. SAMU 01

historical data is used to determine the average hourly demand of codes 3 and 4

associated with each demand point. It is worth noting here that, in the Northern

Region of Tunisia, the demand of code 4 contributes up to 90% of the total demand.

The number of incoming calls of codes 3 and 4 for each demand point are

independently drawn from a Poisson distribution. It is important to note here that the

hourly demand’s variations over the course of the day and from one season to

another can be directly accounted for in the model by generating demand

realizations for different hourly time periods of the year.

The maximum number of ALS and BLS units that can be acquired by the EMS

system is set to 80. The per-unit capacity cost is set to 7.412 (resp. 6.156) Tunisian

Dinar (TND) per hour for ALS (resp. BLS). Note that, in the considered base case,

the ALS cost is 20% higher than the BLS cost. The hourly capacity of each

ambulance type is set to one. In fact, as it has been mentioned earlier, an ambulance

can only cover one demand within 1 h.

The travelling time between each demand point and potential ambulance site is

determined based on the distance between the two locations and the average speed

of the ambulance. The ALS ambulance is faster than BLS (the speed of BLS is

assumed to be approximately equal to 0.85 * the speed of ALS). The transportation

cost depends on the distance and is equal to 1.2 TND/km for ALS and 0.8 TND/km

for BLS (this cost is based on fuel and maintenance costs of each ambulance type).

As far as penalty costs are concerned, they are given relatively large values (in

comparison to other costs) in order to prevent the violation of demand coverage

constraints as much as possible. Thus, the penalty for an unsatisfied code 3 call

(resp. code 4) is set to 300 TND (resp. 500 TND). Moreover, as it can be noticed,

penalty cost values are used to enforce a higher priority for demand of code 4 over

that of code 3.
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5.2 Design of the EMS system

In this section we describe the obtained results. We choose to solve it using 10

replications (M = 10). For the SAA problems, we use sample sizes of S = 5, 10,

20, 50, 100 and 200 scenarios. We estimate the ‘‘true objective value’’ of each SAA

optimal solution by simulation with S0 = 1000.

Table 3 reports the average computing time (Avg. CPU) in seconds, the produced

Lower Bound (LB) and Upper Bound (UB) in Tunisian Dinar (TND) and their

respective standard deviation (Std.). As expected, it can be seen that, when the

sample size S increases, the LB increases whereas the UB decreases, leading to a

tighter optimality gap. The CPU increases with higher sample sizes. However, it

remains reasonable for a sample size S = 200. In addition, Table 3 shows

reasonable standard deviation of the bounds. Therefore, we can conclude that 10

replications are enough to obtain a reasonable confidence interval of the bounds. If

the standard deviations are too large, then the value of M must be augmented

(Kleywegt et al. 2001).

Table 4, presents the estimator for the optimality gap, as well as its 95%

confidence interval for the different sample sizes. The estimator for the optimality

gap is the difference between UB and LB. These results show the convergence of

the SAA solutions. As it can be seen from Fig. 1, the optimality gap diminishes as

the sample size increases, meaning that better solutions are obtained for larger

sample sizes. For the problem at hand, a near-optimal solution of 0.5% optimality

gap is obtained with sample size S = 200. The results for the optimality gap

indicate that the solutions produced by the SAA algorithm scheme are good enough

to be used in a practical application.

Figure 2 depicts the total cost (TC), the first-stage cost and the expected second-

stage cost as a function of the sample size, showing the trade-off between the cost’s

components. Indeed, when the sample size increases, it can be seen that first-stage

cost increases whereas the expected second-stage cost decreases. This behavior is

explained by the nature of the simulation scheme: when larger samples are used,

more robust solutions are produced but they require the use of a larger number of

facilities and vehicles, thus increasing the first-stage cost. Consequently, the penalty

cost is reduced by the higher reliability of the EMS system. This result points out the

value of a well-dimensioned infrastructure to achieve better robustness.

Table 3 Statistical lower and

upper bounds for M = 10 and

S0 = 1000

Sample size S Avg. CPU (s) Lower bound Upper bound

LB Std. (%) UB Std. (%)

5 1 497 3.00 1417 2.00

10 2 538 1.80 822 2.00

20 7 568 1.50 769 2.00

50 19 627 1.50 684 1.00

100 38 650 1.00 673 0.96

200 76 660 0.40 663 0.85
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In order to evaluate the added value of dealing with stochastic representation of

the demand instead of its average value, other simulation experiments were

performed. The deterministic version was obtained by replacing the random

parameters by their means and then solving the resulting problem. Table 5 reports

the costs produced by the deterministic version (EVP) and the stochastic one (SAA),

confirming that the SAA solution outperforms the one obtained for the EVP in terms

Table 4 Estimated optimality gap and variance

Sample size S Estimated optimality gap 95% confidence interval

Gap % Std. (Gap) Min % Max %

5 920 [100.0 37 847 [100.0 992 [100.0

10 284 53.0 23 239 44.0 329 61.0

20 201 35.0 21 160 28.0 242 43.0

50 57 9.0 18 22 3.0 92 15.0

100 23 4.0 13 -2 -0.3 48 7.0

200 3 0.5 9 -15 -2.0 21 3.0
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of reliability. As it can be noticed, the penalty cost of EVP solution is much larger

than the one incurred by the SAA solution. Subsequently, the percentage of covered

demand is higher when a stochastic approach is adopted for the design of the EMS

system. The latter favours system reliability at the expense of higher first-stage

costs.

5.3 Sensitivity analysis

A sensitivity analysis is conducted in order to investigate the behaviour of the

proposed two-tiered EMS system. A sensitivity analysis is a procedure that allows

for determining how sensitive the optimal solution is to changes in data values that

could stem from inappropriate predictions. Some input data are based on estimates

from data analysis and expert opinions, thus, the real values are probably higher or

lower than these estimates. In the sensitivity analysis, the following parameters are

particularly considered: the penalty cost, the demand and the ambulance service trip

time. Moreover, some experiments are conducted in order to investigate the effect

of the response time threshold on the configuration of the EMS system. Additional

tests are performed in order to see how the EMS configuration is impacted by the

demand distribution among code 3 and code 4, and ambulances per-unit capacity

costs. Table 6 reports the characteristics of the different tests carried out with an

attempt to investigate the variation of the aforementioned parameters. For each test,

the following information is provided: the statistical lower bound (LB) in (TND),

the upper bound (UB) in (TND), the average upper bound (AUG) in (TND), the

average first-stage cost (AFS) in (TND), the average second-stage cost for solutions

without penalty costs (ACS) in (TND), the average penalty cost (AP) in (TND), the

demand covered (DC) in percentages, the number of opened stations (NS), the

number of ambulances of type ALS (NALS) and BLS (NBLS) and the location of

ambulance stations proposed by the obtained solutions of the tests (N�C), as

reported in Table 7. All SAA problems are solved with M = 10, S = 200 and

S0 = 1000.

The results obtained are summarized in Table 8. The effects of varying the

considered parameters on the configuration of the EMS system and its performance

are illustrated in Figs. 3, 5 and 6.

Figure 3 delineates the effect of penalty costs on the EMS system’s configuration

and performance. The penalty cost is multiplied by a factor lying between 0.125 and

2. The results obtained for tests 2–6 are summarized in Table 8.

Table 5 EMS system costs associated with the SAA and EVP solutions and its performance

Penalty cost

(TND)

Opening cost

(TND)

Capacity cost

(TND)

Travelling cost

(TND)

Demand covered

(%)

EVP 1267 148 146 122 81.0

SAA 43 157 317 146 99.3
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As it can be noticed, when the penalty cost increases, on one hand the EMS

system cost increases and, on the other hand, the percentage of covered demand

increases. Thus, an increase in the penalty cost favours the design of a more reliable

Table 6 Characteristics of the tests

Test Characteristics

1 Base case

2 Base case penalty cost * 0.125

3 Base case penalty cost * 0.25

4 Base case penalty cost * 0.5

5 Base case penalty cost * 1.5

6 Base case penalty cost * 2

7 Base case demand * 1.4

8 Base case demand * 1.8

9 Base case demand * 0.8

10 Base case demand * 0.6

11 Response time threshold in minutes (15–10)

12 ALS cost = 1.4 * BLS cost

13 ALS cost = 1.8 * BLS cost

14 Demand of code 3 (50%)-Demand of code 4 (50%); ALS cost = 1.2 * BLS cost

15 Demand of code 3 (50%)-Demand of code 4 (50%); ALS cost = 1.4 * BLS cost

16 Demand of code 3 (50%)-Demand of code 4 (50%); ALS cost = 1.8 * BLS cost

17 Demand of code 3 (90%)-Demand of code 4 (10%); ALS cost = 1.2 * BLS cost

18 Demand of code 3 (90%)-Demand of code 4 (10%); ALS cost = 1.4 * BLS cost

19 Demand of code 3 (90%)-Demand of code 4 (10%); ALS cost = 1.8 * BLS cost

20 Ambulance service trip time 45 min

21 Ambulance service trip time 75 min

Table 7 Location of ambulance stations proposed by the solutions of the tests

N�C Open stations

1 2, 3, 4, 5, 6, 15, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

2 2, 3, 4, 5, 6, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

3 2, 5, 6, 16, 22, 23, 25, 27, 28, 30, 31

4 2, 3, 4, 5, 6, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

5 2, 3, 5, 6, 16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

6 2,3,5,16, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

7 2, 3, 4, 5, 6, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

8 2,3,5,16, 22, 23, 24, 25,27, 28, 29, 30, 31
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EMS system. However, since the coverage is already very good, managers should

wonder if this improvement is worth the additional cost. Furthermore, the results

show that a penalty cost increase has a little impact on the number of BLS and

Table 8 Results obtained for the different tests with S = 200, M = 10 and S0 = 1000

Test LB UB AUG AFS ACS AP DC (%) NS NALS NBLS N�C

1 660 663 678 475 147 43 99.3 17 42 1 1

2 522 523 557 250 121 152 82.0 11 20 0 3

3 589 591 605 385 151 58 97.0 16 33 0 2

4 629 630 637 427 152 58 99.0 16 39 0 2

5 677 687 711 486 152 73 99.4 17 43 1 1

6 679 690 837 494 152 191 99.7 17 46 1 1

7 795 808 831 544 212 75 99.3 17 50 1 1

8 916 934 1021 606 274 141 99.5 17 60 2 1

9 578 592 603 412 135 45 99.1 15 37 0 5

10 527 578 535 352 98 75 98.2 15 28 1 5

11 720 731 739 508 150 73 98.7 18 46 0 4

12 705 717 788 499 145 72 98.9 17 39 1 1

13 809 811 830 584 150 70 99.0 17 38 1 1

14 601 611 625 401 168 41 99.3 14 32 6 6

15 637 654 668 455 150 48 99.2 15 31 8 5

16 712 726 797 519 143 64 98.9 16 29 8 7

17 523 533 543 355 126 52 98.9 14 16 19 8

18 550 554 603 378 127 49 99.0 13 15 21 8

19 578 584 680 392 129 62 99.0 13 13 21 8

20 459 464 529 316 120 27 99.5 16 37 0 2

21 877 894 985 667 184 43 99.5 17 50 1 1
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opened stations. Conversely, the number of ALS required for the EMS system

clearly increases when the penalty cost increases. This explains the EMS system

cost’s increase and demand coverage’s improvement. Additionally, in Fig. 4, one

can see that an increase in the penalty cost incurs an increase in the average

optimality gap. Henceforth, with an increase in the penalty cost, the quality of the

SAA solution can be improved by considering in the SAA algorithm a larger sample

size (S) and/or larger number of replications (M).

Emergency demand values are derived from the considered real-life case study.

These values might increase in the future due to an increase in the number of

inhabitants or/and due to an aging population. Moreover, the demand might

decrease because of a decrease in the number of inhabitants or the implementation

of more effective and adequately coordinated preventive care. Henceforth, we

conducted a sensitivity analysis to test the effect of an increase/decrease of the

demand on the optimal configuration. The results for test 7, 8, 9 and 10 are reported

in Table 8. They show the optimal configuration of the EMS system when the

demand is increased by 40 and 80% and then decreased by 20 and 40%,

respectively. It should be noted that an increase in the demand value does not affect

the decisions pertaining to the opened ambulance stations. However, it impacts the

number of ambulances required by the EMS system. Conversely, with a decrease in

the demand, the number of opened ambulance stations is reduced. However, an

increase or a decrease in the demand clearly impacts the number of ambulances

required by the EMS system. As it can be seen in Fig. 5, the number of ambulances

required increases along with the demand. Moreover, as it can be observed in Fig. 5,

an increase of the demand entails an increase in the percentage of covered demand.

This means that the increase in unsatisfied demand is lesser than the increase in the

demand. We should point out that, by an increase of 80% on the current demand, the

EMS system should be equipped with 60 ALS and 2 BLS. The proposed

configuration allows for a coverage of 99.5% of the demand within the required

response time threshold.

Test 11 was performed to assess the effect of the response time threshold on the

EMS configuration, while shortening the required response time from 20 to 15 min

(i.e. 20 and 15 min are the response time threshold to cover demand of codes 3 and

4, respectively) to 15–10 min. The results related to test 11 in Table 8 show that a

decrease in the response time threshold incurs an increase in the EMS system’s cost.

With the considered decrease in response time threshold, the number of opened
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ambulance stations is increased from 17 to 18 and the EMS system should acquire a

larger number of ambulances. This partially explains the EMS system cost’s

increase. Indeed, there is an increase in the penalty cost even though more resources

are allocated to the EMS system. This highlights that a lower response time

threshold makes it more challenging to improve the reliability of the EMS system

(Fig. 6).

The results obtained for the base case point out that the number of BLS type

ambulances is much lesser than the number of ALS type ambulances, even when the

demand is increased by 80%. This can be explained by the flexibility of the ALS

that can respond to code 3 and 4 calls, but more importantly by the fact that 90% of

the calls are of code 4. In this case, it would be preferable to opt for an all-ALS EMS

system that, contrarily to its two-tiered counterpart, does not require the

implementation of a sophisticated triage system that can effectively identify the

type of ambulance to dispatch to an incoming call (Stout et al. 2000). These results

spark the interest for investigating how the EMS configuration changes based on (1)

the distribution of the demand and (2) the per-unit ALS cost. In the base case, the

per-unit cost of ALS is 20% higher than that of a BLS. However, the per-unit ALS

capacity cost becomes higher if the ALS is equipped with more cutting-edge

equipment and devices. Tests 12–19 are performed in order to investigate the effects
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of demand distribution and the level of ALS equipment/technology (that translates

into per-unit ALS cost) on the EMS configuration.

As it can be observed from Fig. 7, the number of BLS ambulances required by

the EMS system augments when the percentage of the code 3 demand increases.

Moreover, the number of ambulance stations decreases when the percentage of the

code 3 demand increases. This can be explained by the fact that the response time
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threshold for a code 3 call is higher than the one associated with a code 4 call. The

increase of the per-unit ALS capacity cost is generally followed by a slight decrease

in the number of ALS units counter a slight increase in the number of BLS units.

Hence, the EMS configuration is barely affected by the ALS per-unit capacity cost.

In particular, these results stress the interest of considering a two-tiered EMS system

when the code 3 demand is relatively important (such as, the cases with a code 3

demand that represents 50 and 90% of the total demand).

According to the ambulance operator, 1 h is a reasonable ambulance service trip

time. Nevertheless, it remains interesting to know how the ambulance service trip

time affects the EMS configuration. Tests 20 and 21 have been conducted in this

perspective while assuming ambulance service trip times of 45 and 75 min,

respectively. The data used in these tests has been adjusted as follows: (1) the

demand is generated while considering the average number of incoming calls over

45 min (resp. 75 min), and (2) the opening and the per-unit capacity costs are those

associated with a horizon of 45 min (resp. 75 min). Remarkably, one can see from

Fig. 8 that the number of ambulances increases with the service trip time.

Additionally, the number of opened ambulance stations is lesser when the service

trip time is 45 min.

5.4 Evaluation of the EMS configuration

The proposed stochastic model and solution approach are aimed at designing a

reliable two-tiered EMS system. The model does not tackle the dynamics of EMS

systems operations, as this would require the addition of the time dimension through

the division of the horizon of 1 h into time segments of 1–3 min (Naoum-Sawaya

and Elhedhli 2013) in order to account for the arrival time of emergency calls.

Markedly, this integration would result in a computationally intractable model that

cannot be used in practice. In order to account for system dynamics, simulation

experiments are carried out to evaluate the performance of the proposed EMS

configuration and confirm the quality of the obtained SAA solution. The simulation

is also used to evaluate the performance of the deterministic solution (EVP solution)

and compare it to the one generated by the SAA algorithm. This comparison

provides another evaluation on the benefit of a stochastic model over its

computational efforts.
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In particular, the simulation allows the evaluation of the service level of the EMS

system proposed by these two solutions, which is a performance measure commonly

used by EMS managers. The service level certainly depends on the EMS system’s

configuration, but also on the time and location of the incoming calls, the ambulance

service trip time and ambulance dispatching decisions. The latter pertains to the

determination of the ambulance to assign to a received emergency call. Typically,

the objective is to minimize the response times for all emergency calls received in

the course of a given day (Schmid 2012; Aboueljinane et al. 2012). Various

dispatching rules are proposed in the EMS simulation literature. However, most

works use the ‘‘closest available ambulance dispatch’’ rule (Kergosien et al. 2015;

van Buuren et al. 2012; Aboueljinane et al. 2012; Maxwell et al. 2009; Ingolfsson

et al. 2003; Fitzsimmons 1971) and its variants, namely the ‘‘closest available

vehicle with preemption’’ rule (Savas 1969; Lubicz and Mielczarek 1987), the

‘‘closest base’’ rule (Iskander 1989), the ‘‘lower response vehicle’’ rule (Silva and

Pinto 2010), the ‘‘nearest available vehicle conditioned by call priorities’’ rule

(Aringhieri et al. 2007) and the ‘‘regionalized response’’ rule (Swoveland et al.

1973; Su and Shih 2003). In addition to these simple rules, some papers devise more

sophisticated algorithms to address the dynamic ambulance relocation and/or

dispatching problem (Andersson and Värbrand 2007; Schmid 2012; Jagtenberg

et al. 2015). For a more detailed survey on ambulance dispatching rules, we refer the

reader to the literature reviews presented in Aboueljinane et al. (2012) and Bélanger

et al. (2015).

Even though the proposed stochastic model focuses on the strategic-tactical

ambulance planning problem, it indirectly tackles ambulance dispatching by

favouring the closest ambulance dispatch rule through the consideration of

transportation costs. In addition to the closest available ambulance dispatch rule,

we consider that the emergency calls are served on a first-come first-served basis

without preemption. In the considered two-tiered EMS system, a higher priority is

given to code 4 calls over those of code 3. Hence, code 4 calls are the first to be

assigned to the available ALS ambulances. Moreover, when a code 4 call occurs, the

closest ALS ambulance is dispatched to the emergency scene. When a code 3 call

occurs, the closest BLS ambulance is dispatched unless all BLS ambulances are

busy; in this case the closest ALS is dispatched.

The simulation is coded in MS Visual C??. Arbitrarily, the run length is set to

24 consecutive hours. This allows to determine an estimate of the average daily

service level. Thirty replications are performed for statistical evaluations.

From the obtained simulation results reported in Table 9 and those presented in

Fig. 9, one can see that the EMS configuration proposed by the SAA solution

Table 9 Simulation results
Service level (%)

Min Avg. Max Std.

EVP 54 58 62 2.11

SAA 87 92 100 4.13
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outperforms the one given by the EVP solution in terms of service level. More

importantly, the results show that an average service level of 92% can be achieved

for the SAA EMS system. At this point, it is worth noting that the targeted average

service level for the EMS system under study is 90%, and the obtained EMS

configuration is deemed satisfactory by the EMS system planners. Furthermore, it

might be useful to recall here that the simulation is used to provide a service level

estimate based on simple ambulance dispatch rules and that the dynamic relocation

is not considered. Henceforth, this service level can be improved if more

sophisticated algorithms are developed for dynamic ambulance dispatching and

relocation.

6 Conclusion

In this paper, we proposed a two-stage stochastic programming model for the design

of a two-tiered EMS system under demand uncertainty. The objective was to find

the configuration of the EMS system that minimizes the total cost composed of the

ambulance station opening cost, per-unit capacity cost, transportation cost and

penalty cost associated with demand unsatisfaction. A sample average approxima-

tion algorithm was then proposed to solve the considered problem. Numerical

experiments were carried out to assess the performance of the proposed stochastic

approach. Experimental results based on a real-life case study demonstrated the

convergence of the proposed algorithm and its usefulness in practice. Moreover,

they pointed out the relevance of using a stochastic approach instead of a

deterministic one to improve the robustness of the EMS system. Finally, a

simulation study was conducted to evaluate the performance of the EMS system

while accounting for its dynamics. The simulation showed that the SAA solution

outperformed the deterministic one. The current work addressed the design of the

EMS system. Future research will offer a more in-depth investigation of the

dynamic ambulance dispatching and relocation problem encountered at the

operational decision level. A comprehensive assessment of the EMS system will

be conducted in order to gauge the significance of the design decisions and various

ambulance dispatching and relocation strategies on system performance.
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are in emergency logistics, healthcare management, and medical emergency planning. He is member of

the Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT)

and head of the CIRRELT’s Laboratory on Healthcare Networks.

Hanen Bouchriha is a Professor in industrial Engineering at National Engineering School of Tunis

(ENIT). She obtained her HDR in Industrial Engineering from ENIT in April 2011. She holds a Ph.D. in

Industrial Engineering from Grenoble Institute of Technology (France) in October 2002. Prior to joining

ENIT, she was a Postdoctoral researcher at For@ac Research Consortium, Laval University (2002–2004).

She served as the Head of industrial engineering department, ENIT (September 2012–July 2014) and a

Member of the scientific board of ENIT (2008–2014). Her main research interests lie in developing

optimization tools for Supply Chain configuration and planning with many application areas: Pulp and

Paper supply chain, Textile supply chain, recycling waterway sediments networks and hospital networks.

152 R. Boujemaa et al.

123

http://dx.doi.org/10.1007/s10198-011-0338-7
http://dx.doi.org/10.1016/0038-0121(73)90033-5
http://doc.utwente.nl/87377
http://dx.doi.org/10.1016/j.apm.2013.07.028
http://dx.doi.org/10.1007/s10479-014-1758-4

	A stochastic approach for designing two-tiered emergency medical service systems
	Abstract
	Introduction
	Literature review
	The ambulance location-allocation model
	Problem description
	A two-stage stochastic programming model

	Solution approach
	Numerical experiments
	Data description
	Design of the EMS system
	Sensitivity analysis
	Evaluation of the EMS configuration

	Conclusion
	Acknowledgements
	References




