Flex Serv Manuf J (2018) 30:884-923 @ CrossMark
https://doi.org/10.1007/s10696-017-9279-5

A novel flexible model for lot sizing and scheduling
with non-triangular, period overlapping and carryover
setups in different machine configurations

Masoumeh Mahdieh!® - Alistair Clark? -
Mehdi Bijari'

Published online: 24 January 2017
© Springer Science+Business Media New York 2017

Abstract This paper develops and tests an efficient mixed integer programming
model for capacitated lot sizing and scheduling with non-triangular and sequence-
dependent setup times and costs incorporating all necessary features of setup car-
ryover and overlapping on different machine configurations. The model’s formu-
lation is based on the asymmetric travelling salesman problem and allows multiple
lots of a product within a period. The model conserves the setup state when no
product is being processed over successive periods, allows starting a setup in a
period and ending it in the next period, permits ending a setup in a period and
starting production in the next period(s), and enforces a minimum lot size over
multiple periods. This new comprehensive model thus relaxes all limitations of
physical separation between the periods. The model is first developed for a single
machine and then extended to other machine configurations, including parallel
machines and flexible flow lines. Computational tests demonstrate the flexibility and
comprehensiveness of the proposed models.

Keywords Lot sizing - Scheduling - Period overlapping - Carryover setups -
Machine configurations

1 Introduction

The classic Capacitated Lot Sizing Problem (CLSP) does not sequence or schedule
products within a period (Bitran and Yanasse 1982; Haase 1996; Karimi et al.
2003). In addition, it does not allow a setup to be carried over from one period to the
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next, even when the last product in a period is the same as the first product in the
next period. Gopalakrishnan et al. (1995) developed a modelling framework for
formulating the CLSP with setup carry over by introducing additional binary
variables, and later incorporated sequence-independent and product-dependent
setup times and costs (Gopalakrishnan 2000). Different studies have demonstrated
that considering the setup carry-over significantly saves costs by decreasing the
number of setups and releasing production capacity (Gopalakrishnan et al. 2001;
Gupta and Magnusson 2005; Porkka et al. 2003; Sox and Gao 1999). This problem
also called the capacitated lot sizing problem with linked lot sizes (Suerie and
Stadtler 2003).

A further issue for capacitated lot sizing is to determine a sequence for all
products within a time period if setup times or costs are sequence-dependent. The
CLSP is called large bucket problem since several item can be produced per period
(Eppen and Martin 1987). Subdividing the (macro-) periods of CLSP into several
(micro-) periods leads to discrete lotsizing and scheduling problem (DLSP) which is
called a small bucket problem (Fleischmann 1990; Salomon 1991; Salomon et al.
1991, 1997).

The main serious restriction of the DLSP as a small-bucket formulation is not
allowing both setup time and production time within a period. Thus this article
focuses on the CLSP as a big-bucket formulation which is more flexible for
integrating lot sizing and sequencing decisions. The CLSP partitions the planning
horizon into a number of lengthy time periods, allowing setups of several products
within the same period (a “big bucket”). Gupta and Magnusson (2005) classified the
CLSP literature according to extensions on sequence dependency of setup costs and
times. They extended the framework proposed by Gopalakrishnan (2000) to include
sequence-dependent setup times and costs. Haase (1996) modelled the Capacitated
Lot sizing problem with Sequence-Dependent setup costs (CLSD) and included
setup times (Haase and Kimms 2000) by assuming predetermined -efficient
production sequences and null inventory for the production of an item in a period.
The general lot sizing and scheduling problem (GLSP) (Fleischmann and Meyr
1997) is very close to the CLSD but is more flexible since it eliminates the
restrictions of the CLSD. Meyr (2000) included sequence-dependent setup times,
resulting in the GLSPST and extended it to become the GLSPPL for parallel
machines (Meyr 2002).

In their recent well-structured review paper, Copil et al. (2016) presented the
historical development of the body of knowledge for simultaneous lotsizing and
scheduling problem and discussed the recent trends. The GLSP has been known as
the most flexible lotsizing and scheduling formulation in large buckets for
representing different environments under slight modifications (Koglar 2005; Koglar
and Siiral 2005). Moreover, the need for only triangular setups is relaxed in the
GLSP as it allows multiple lots of a product in a period as long as the lots of all
products do not exceed the number of micro-periods in a period. Non-triangular
setup times can happen in many industries such chemicals, food, beverages and oil.
For example, in the animal-feed industry, some product families can cause
contamination of other families so mixing equipment must be cleaned in order to
avoid it. Cleaning can result in substantial setups that consuming scarce production
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time. The amount of cleaning can often be minimised by producing an intermediate
cleansing or shortcut product which can give rise to non-triangular setup times. In
an alternative approach to the GLSP, Clark and Clark (2000) designed a mixed
integer programming (MIP) model for the simultaneous sequencing and sizing of
production lots on a set of parallel machines. They assumed non-triangular
sequence-dependent setup times, no setup costs and the possibility of backlogging
demand.

The problem of sequencing a set of lots with sequence dependent setups is related
to the travelling salesman problem (TSP) and the vehicle routing problem (VRP)
(Laporte 1992a, b). Almada-Lobo et al. (2007) presented two models for the CLSP
with sequence-dependent and triangular setup times and costs using the Miller-
Tucker-Zemlin (MTZ) subtour prohibition constraints (Desrochers and Laporte
1991). The main restriction of conventional TSP based models is permitting the
production of only one lot per product per period which may well not be optimal
when non-triangular setups exist. Clark et al. (2010) formulated a sequencing and
lotsizing model with non-triangular setup times based on the asymmetric travelling
salesman problem (ATSP) at an animal-feed plant. To solve the model, optimal
solution methods based on iterative subtour elimination and patching were
developed. In the ATSP-based models (Almada-Lobo et al. 2007; Clark et al.
2010), at most one lot per product can be produced in a period (and no subtour is
permitted), so in the case of non-triangular setup, any optimal multiple production
of a shortcut product is not allowed. Menezes et al. (2011) relaxed this restriction
and allowed production of multiple lots per period (and correctly including
connected subtours) by using an iterative model and method based on a potentially
exponentially number of subtour elimination constraints (to exclude disconnected
subtours).

Clark et al. (2014) presented a stronger formulation than Menezes et al. (2011)
for modelling the production of multiple lots of a product per period by using a
polynomial number of multi-commodity-flow-type constraints (Claus 1984) to
exclude disconnected subtours while allowing ones connected to the main sequence.
Guimaraes et al. (2014) proposed a two-dimensional framework to classify the
discrete time modeling approaches for lotsizing and scheduling problem. They also
present a new formulation using commodity flow based subtour elimination
constraints for the problem.

Setup overlapping has been studied by Suerie (2006) for small-bucket and by
Sung and Maravelias (2008) for big-bucket formulations, but with sequence-
independent setup times and costs. Belo-Filho et al. (2013) extended the model by
Suerie (2006) for small-bucket and proposed two models for the capacitated lot-
sizing problem with backlogging and setup carryover and crossover. Almada-Lobo
et al. (2007) incorporated setup carryover features for a capacitated lot sizing and
scheduling problem that allows a product to be set up at the end of one period and
the actual production to start in the next period. Menezes et al. (2011) modelled
setup cross-overs that allows a setup to start in one period and to end in the next
period.

In this article, the first mixed integer linear programming formulation is
presented for lot sizing and scheduling with non-triangular sequence-dependent
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setup times and costs that allows not only multiple lots of a product in a period using
just a polynomial number of constraints and incorporating all the necessary features
of setup carryover, as in Clark et al. (2014), but also overlapping of setups over
period boundaries. The inclusion of overlapping setups is the original contribution
of this article and permits modelling the production system more realistically by
relaxing all the limitations of physical separation between the periods.

Moving towards more flexible and realistic modeling in production planning
systems has been already attracted many researchers. To alleviate the problem of
physical separation in discrete time scale, an alternative approach called block
planning is proposed based on continuous representation of time (Giinther 2014;
Giinther et al. 2006). However, the degree of flexibility of proposed approach is
limited to necessity of the the grouping of product into setup families and the
production of product within a family in a pre-defined sequence.

For the first time, in this paper not only all the limitations of discrete time scale
modeling are relaxed but also practical assumptions are researched.Thus, a setup
can start at the end of a period and finish at the beginning of the next period, or a
setup can finish at the end of a period and production start in the next period.
Furthermore, an imposed minimum lot size can cross over periods, and the setup
state is conserved when no product is being processed over multiple periods. All
these features increase the model flexibility and lead to better solutions, particularly
under tight capacity conditions or whenever setup times are significant. The
extension of the model to parallel machines or a flexible flow line is presented and
discussed via computational tests.

The new model for single machine is developed in Sect. 2, allowing the
production of multiple lots while incorporating all the features of setup carryover
and overlapping. Moreover the effectiveness of multi-lot over single-lot production
by taking advantage of shortcut products and the usefulness of modelling the setup
overlapping under tight production capacity are both illustrated in some examples in
Sect. 2 and then computationally tested in Sect. 3. The model is extended to parallel
machines and flexible flow lines in Sect. 4 where the efficiency of each model is
discussed in detail with an example. The paper concludes in Sect. 5 with a
discussion of the model’s value and identifies remaining challenges and opportu-
nities for future research.

2 Modelling multiple lots and overlapping setups on a single machine
The model is initially based on Clark et al. (2014). The parameters and indices of
the model are:

J  Number of total products i, j, k.
T Number of periods ¢ in the planning horizon.

The input data required by the model are:

di Demand for product i realised at the end of period .
o Available capacity (time) in each period .
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st;  Time needed to setup from product i to product j.

sc;;  Cost of setting up from product i to product j.

b; Time needed to produce a unit of product i.

hi, Cost of holding a unit of product i in inventory from period ¢ to ¢ + 1.

8it Backlog cost per period for product i from period ¢ to ¢ + 1.

UB;; Upper bound C,/b; on the quantity of product i produced in period ¢.

io The product that is already setup at the end of period 0, i.e., the starting setup
configuration in period 1.

ml;  Minimum lot size imposed on product j.

The decisions made by the model are represented by following variables:

I; Inventory level of product i at the end of period .

Bi;  Backordered amount of product i at the end of period .

xi;  Production quantity of product i in period .

Slk, Number of units of slack capacity in period ¢.

xf The quantity produced in period ¢ of the first (crossover) lot of product i in
period ¢ if it was setup in period ¢ — 1, otherwise 0.

xt The quantity produced in period ¢ of the last (crossover) lot of product i in
period ¢ if its production continues into period ¢ + 1, otherwise 0.

vijr  Number of times that production is to be changed over from product i to
product j in period . Integer non-negative.

zi; ~ Number of times that product i is in a setup state in period ¢, Integer non-
negative.

o; =1 either because j-to-i is the last setup in previous periods to ¢ or because j-
to-i is the setup operation that overlaps from r — 1 to .

For all the products, the initial inventory (I;p) and the backlogs (Bjp) are set to be
zero at the start of the planning horizon.

2.1 The objective function and main constraints

The objective function minimises a weighted sum of backorders, inventory and
setup costs:

Minimise Z scijyije + Z higlyy + Z gitBir (1)
i it

ijt it

Constraint (2) balances inventory, backlogs, production and demand over
consecutive periods:

Lot = Bjr—1 +xjp — Ly + By = dj Vj,t (2)
Constraint (3) represents the limited capacity and calculates any slack capacity:

Z bixi; + ZStijyijt +slk, = C; V't (3)
i i
Constraint (4) enforces the appropriate setup before production:
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Xijt S UBjt X Zjt Vj,t (4)

Constraint (5) prohibits setup between the same products:
Y jjt = 0 v.] N (5)

Constraint (6) ensures that the machine is set up for exactly one product at the
beginning of each period. The initial setup configuration at first period is expressed
by constraint (7).

wy=1 Ve=1,..,T+1 (6)
%, =1 Vi=1 (7)

2.2 Imposing a minimum lot size

Some cleansing products k require a minimum lot size ml; to eliminate the previous
product’s contaminants, and also prohibits that a setup from i to j passes through
cleansing products k without any production. Constraints (8)—(11) achieve this and
also allow a minimum lot size to cross over the periods.

Recall that xﬁ is the quantity produced in period ¢ of the first (crossover) lot of
product j in period ¢ if it was setup in period t — 1, but is otherwise 0, as imposed by
constraints (8):

xi <UBjoy, Vit (8)

Similarly ijt is the quantity produced in period ¢ of the last (crossover) lot of
product j in period ¢ if its production continues into period ¢ + 1, otherwise 0, as

imposed by constraints (9).

ij S ];OC] t+1 VJ; t (9)

Then xL + xf, 11 18 the size of a crossover lot of a product j that has been started in

period ¢ and completed in period ¢ + 1. Constraints (10) oblige this crossover lot to
be of size at least ml;:

—|—x]F >mlioj1 Vit (10)

'jt

Lastly constraint (11) imposes minimum lot sizes for both crossover and non-

crossover lots using auxiliary variables th,xﬂ

Xjp — xF x> mly (g — o — 01) Vit (11)

=

Constraints (11) force a lot to be of size at least z;ml; in period ¢. If the machine
begins or ends the period in setup state j (or both) then o + o, = 1(or 2) then
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constraints (11) impose the (zj, — Ojy — ocj7t+1) lots to be at least of size zjml;,
splittable into smaller separate lots of at least size ml; units in size.

Clark et al. (2014) imposed a minimum lot size with the condition that there
exists at least one setup in each period, i.e., result a carryover lot could not span over
whole periods. Letting a carryover lot span over 3 or more periods while forcing the
minimum lot size for the whole crossover lot was left as a challenge for future
research. In this paper, this limitation is removed. The following example shows
how the new minimum lot constraints can span the lot over the periods with no
demand and impose the minimum lot size (mlj) for the whole crossover lot.

Example I Consider a demand for product A in period 1, for product B in period 3
and no demand in period 2. A minimum lot size is imposed on the use of shortcut
product C. In this case there are two possibilities as now detailed below:

In the first possibility, setup A to C and C to B can both happen either in period
two or, one setup can happen in period two and the other setup in period 1 or 3. So
the minimum lot size will be enforced by constraint (11). In the second possibility,
setup A to C happens in period 1 and setup C to B in period 3 while there is no setup
in period 2 as shown in Fig. 1.

So according to constraint (10):

Xy + Xy 2 mic (C1)
Xy +xg3 2 mlc (C2)
and according to constraint (11):
Xea = Xgy = Xg = — mic (C3)
xc1 — x5, >0 (C4)
X3 — Xy >0 (CS)

In order to impose the minimum lot size for C, it is necessary to justify that the total
production of product C (at the end of period 1, in period 2 and at the beginning of
period 3) is at least mic:

Period 1 Period 2 Period 3

Sl Product C e

AtoC CtoB Product B

Product A

Fig. 1 Example (1) lot crossover
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Xc1 +Xxc2 +xc3 > mic

To justify this, first constraints C1 and C2 are summed:
Xey +XCo + X+ Xgy 2 2mlc (C6)
Then constraints C3, C4 and C5 are summed:
Xt Xea + Xe3 2 X¢y gy +Xgy +Xgz — mle (C7)

Finally combining constraints C6 and C7 concludes that the crossover lot of product
C (xc1 + xc2 + xc3) is at least mlc and constraint (10) imposes mlc (not 2mic) for
the whole crossover lot. Moreover this conclusion can be extended for more than
one period with having no demand.

xc1 +Xca + xes > xby 4 xby + xby + xby — mlc > 2mlc — mic > mic

Note that constraints (8)—(11) are more efficient than the conventional constraint:
xjp >ml; Yy i, VJj,t, as used in other lot sizing and scheduling models (Clark and
i

Clark 2000; Fleischmann and Meyr 1997) to impose minimum lot size. The reason
is that in the conventional constraint, the whole setup and the production of the
minimum lot size should be carried out in a single period so the minimum lot size
neither can crossover to the next period(s) nor can be produced in a period when the
setup is ending at the end of previous period(s). All these restrictions are relaxed in
the new constraints (8)—(11). Examples 2 and 3 in the Sect. 2.4 show explicitly the
difference of two types of constraints for imposing minimum lot size.

2.3 Lot sequencing constraints

Here, the ATSP-related constraints are demonstrated for sequencing product lots.
Conventional ATSP-based models restrict production to at most one lot per product
per period, which may not be optimal when non-triangular setups exist. Non-
triangular setups occur in industries such as food, animal feed, beverages and oil
where there are intermediate “cleaning” or “shortcut” products. For example in the
animal feed industry, some products can contaminate other products and lead to
serious effects on animal’s health. To avoid this, machines must be cleaned,
sometimes resulting in substantial setups that consume scarce production time.
Alternatively, the production of a sufficient amount of an intermediate or cleaning
product can clean the machines and reduce overall setup times (costs). In this
situation, the setup to and from the cleaning or shortcut product (k) is less costly and
time consuming than a direct setup between two products (i,j) means that
stjj > stj x + sty ;. Therefore the shortcut product may need to be produced more than
once within a period.

A sequence with multiple lots per period for some products could look like that
illustrated in Fig. 2. Subtours connected to the main sequence S by shortcut
products are possible (such as subtours B and C). Thus an exact formulation must
allow connected subtours but exclude disconnected subtours (such as subtours A
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E
BHOG °
Period t-1 E Period t @

Period t+1

Fig. 2 A main sequence (S) and different types of subtours (A, B, C, D)

and D). To model the sequencing of product lots, the multi-commodity-flow (MCF)
formulations by Claus (1984) are adapted to exclude disconnected subtours while
allowing ones connected to the main sequence. Clark et al. (2014) applied the Claus
(1984) ATSP subtour elimination method to allow multiple productions of shortcut
products for a single machine and computationally demonstrated the effectiveness
of the Multiple-Lot (ML) model in comparison with the equivalent One-Lot (1L)
models. In this work, the same method is applied and the constraints are as follows.

Constraints (12) and (13) are flow conservation constraints relating the «;; and z;
setup state variables to the y;; changeover variables as shown in Fig. 3.

Ofit"i‘zyj'it =z Vit (12)
J

Zyijt + a1 =z Vit (13)
J

To make constraints (13) work for last period t = T either set t = {1,..,T + 1} is
considered for o;, or new constraints (13a) are added as follows:

ZyjiT +oir > ZyijT Vi,t=T (13a)
J J

The optimal solution to the model specified so far is a sequence from product
il{o;; =1} to k|{ock,,+1 = 1} plus any disconnected subtours. The latter are
excluded by imposing in every period ¢ that there is so-called k-walk from

Fig. 3 Node flow modelled by s

constraints (12) and (13) \ Zi /
Z Yjit Z Vit
J J

O+l
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(i|{oir = 1}) to all products k in the period’s sequence. From now on, p? denotes
product i|{a; = 1}.

Define additional binary variable aw as follows:

agt =1 if the arc i — j is on a k-walk from crossover product p? to product k within
period #’s sequence of lots, otherwise 0.

The arc i — j has to exist, hence:
ag'tgyijf Vi,j,k,t (14)

bin

Further binary decision variables z;" are needed. Define:

zoin =1 if product i is ever in setup state in period ¢, otherwise 0.

The required relationships zb’” =14 z;>1and zb’" =0 < z; = 0 are enforced
by:

z,,>zf’t”’ Vit (15)

2 <ZUBiZE™ Vit (16)

where ZUB; is a fixed upper bound (UB) on z; and greater than one. ZUB; can be
estimated as the smaller of J (the number of products) and the size of the ordered set
{(i,])|st;j > st + st;}, which is 1 for many non-shortcut products.

Constraints (17-19) below exclude disconnected subtours. Constraints (17) force
the k-walk to reach product k and are enforced only when the setup state k exists for
a time in the period (i.e., when zb’" = 1), but not when this is never the case (when
i = 0

Dl =g Ykt (17)

If there is no production of product k in a perlod then z””’ =0, and by (17),
ikt = OVi (constraint (14) also forces this via a,k, <yt = 0).

The k-walk corresponding to the variables {aiﬁ|Vz, Jj} has to begin at p* and then
pass through other products to reach product k.

If ock, = 1 then there is no need for a k-walk. If o, = 0, then by (17) Z, af‘kt =1,
i.e., ak, =1 for precisely one product i, the penultimate on the k-walk. Then, by
(18), a%;, = 1 for precisely one product j that is the 3rd last product on the k-walk,
and so on, reversing along the k-walk, requiring af;.t = 1 along the k-walk, finishing

’ ]ll

at the initially-setup product i = p¥ (for which o; = 1).

ocl,—i-z JI,_Zaw Vk,i#kt (18)

Constraint (19) forces the k-walk from p? to terminate at product k:
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dy =0 Vkjt (19)

If there is no production of k in period ¢, then (19) requires a’,gj, = 0 which is not
constraining as agl =0 by (17).
The ML-SM model (Multiple Lot for Single Machine) is specified by expressions

(1-19). It allows multiple production lots of shortcut products for a single machine
while still not relaxing the limitations of a period’s physical separation.

2.4 Period overlapping setup constraints

The last step is allowing setup operations to overlap periods, i.e., to permit a setup to
begin in a period and end in the next period. The model is called MLOV-SM and
relaxes all limitations of physical separation between the periods. The MLOV-SM is
advantageous when capacity is tight and so lot sizing and sequencing decisions need
more flexibility to reduce backlogs.

Consider the following additional decision variables:

OLS;, =1 if the overlapping setup operation i to j begins in period ¢ and finishes in
period ¢ + 1, otherwise 0.

S; The amount of setup time that overlaps into period ¢ + 1, having begun at
the end of period t.

The value of S; must be zero if there is no overlapping last setup at the end of
period t:

S, <) st;OLS; Vi (20)

i

The last setup and at most one setup in period ¢ can overlap from period ¢ to
t+ 1:

> OLSj <oy Vit (21)
J

The value of OLS;j; must be zero if i to j is not a setup initiated in period f:

OLS;i; <yy: Vi, j,t (22)
The capacity constraint (3) now becomes:

D bixi+ Y sty + S = Si+ stk =C, Vi (23)
i :

i

When the last setup is overlapping, OLS;;, = 1, then product j cannot be produced
as it is the last (crossover) lot in period ¢. Thus constraints (4) and (9) now become
(24) and (25).
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Xt < UBj; X (z,, -> OLs,;,,) V)t (24)
ijz < UB]‘; (OC]‘,H_] — Z 0LS,‘j,> Vj,l‘ (25)

Thus model MLOV-SM is specified by expressions (1-2), (5-8) and (10-25) and
restated completely in the Appendix 1.

2.5 Examples

Two examples now show the effectiveness of the new minimum lot constraints (8)—
(11), in comparison with the conventional constraint (26) and also the solution’s
improvement obtained by modelling setup overlapping features. The following
examples are solved by three models, consisting of MLOV-SM (stated in Appendix
1), ML-SM (Multiple Lot for Single Machine) which is specified by expressions (1-
19), and the Conventional Model which has the same constraints as ML-SM but
imposes minimum lot sizes by conventional constraint (26) rather than new
imposing minimum lot sizes constraints (8)—(11).

X >ml > vy Vit (26)

Note that in the ML-SM model, constraints (4) are valid but loose: the value of z;
need only be 1, and not >2. Thus constraints (4) can be tightened by replacing z;; by
bin (xjt < UBjt X Zjbm) .

Z

jt 1

Examples 2 and 3 The following data are used for both examples:
C;=100,ml;=10,T=3,J=2,ig=1,st; =20,b;=1,h;; = 15,5¢;;= 600, g;, = 1000; and
the demands are shown in Table 1. The models are implemented in the optimisation
modelling software GAMS build 24.7.1 (Brooke et al. 1988) and solved using the
industrial-strength CPLEX 12.6 solver (CPLEX. 2014) on a computer with a 2.1
GHZ CPU and 2 GB of RAM. All models were solved in less than a second for both
examples.

The production diagram and the results of Example 2 are shown in Fig. 4 and
Table 2 respectively. Note how modelling of all necessary features of production
improves the solution remarkably. As shown in Fig. 4, the Conventional model

Table 1 Demand data for

Examples 2 and 3 Demand d;  Example (2) Example (3)
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cannot use the machine’s capacity efficiently and there are 5 units of idle or slack
time in period 1 as the setup and minimum lot production has to be done totally in a
single period (constraint (26)). This restriction is relaxed in the ML-SM model so
the setup ends in period 1 and the minimum-sized lot is produced in period 2 that
significantly results in a reduction of the number of inventory and backlogs as
shown in Table 2. However there are still 10 units of slack time in period 2 as, in the
ML-SM model, a setup cannot overlap, i.e., the setup begins in period 2 and ends in
period 3. In the new lot sizing and scheduling model, MLOV-SM, all the limitations
caused by previous models are relaxed and the production system is modelled
realistically. Thus the scarce production capacity is used more efficiently.

In Example 2 the optimal solution is obtained by the MLOV-SM model with no
shortages or inventory. In order to tighten capacity even more, the demand of
product 2 is increased to 95 in Example 3. The production diagram and the results of
Example 3 are shown in Fig. 5 and Table 3 respectively. Note that the Conventional
model found a solution with high total inventories (50) and backlogs (15) while the
optimal solution found by MLOV-SM has no backlogs and only 5 inventories.

Furthermore, as shown in MLOV-SM’s production diagram in Fig. 5, the
minimum lot crosses over from period 1 to 2. Lot crossover is another feature which
is modelled via the new minimum lot size (ml) constraints (8)—(11), improving the
solutions and giving more flexibility to the lot sizing model.

Examples 2 and 3 showed how the new comprehensive mathematical formu-
lation, MLOV-SM, relaxes all limitations of physical separation between the
periods. The MLOV-SM modelled the new features consisting of starting a setup in
one period and ending it in the next period, ending a setup in a period and starting
production in the next period(s), and crossing a minimum lot size over multiple
periods.

Period 1 Period 2 Period 3
i Product 1 Idle| Setup Product 2 Product 2 Setup Product 1
Conventional 95 ime [ 1102 80 10 | 2to1 70
Product 1 Setup |-min Product 2 Idle| Setup Product 1
ML-SM 80 1to2 lot 90 time | 2to 1 80
'\New ml constraints
MLOV-SM Product 1 Setup [|-min Product 2 Sefup Product 1
75 1t02 lot 90 2tp1 90
New ml constraints '\Setup-overlapping

Fig. 4 Production diagram of Example 2 obtained by Conventional, ML-SM and MLOV-SM models
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Table 2 Results of Example 2 obtained by Conventional, ML-SM and MLOV-SM models

Example 2 Conventional ML-SM MLOV-SM
Slack capacity 5 10 0
Total Inventory 40 10 0
Backlogs 10 5 0
Total cost = cost of 11,800 6350 1200

(backlogs + inventory (10,000 + 600 + 1200) (5000 + 150 + 1200) (0 + 0 + 1200)

+setup)

Period 1 Period 2 Period 3
Product 1 Setup Product 2 Product 2 Setup Product 1

Conventional 100 1t02 80 15 | 2to1 65
ML-SM Proggct 1 ??;ug T)T ProgLSJct 2 Iﬂ(il: ge{';uix Proggct 1

New ml constraints

=5

MLOV-SM Product 1 | Setup

75 1t02

Product 2 Sejup Product 1
90 2tp1 90

New ml constraints '\

Fig. 5 Production diagram of Example 3 obtained by Conventional, ML-SM and MLOV-SM models

Product2:

Setup-overlapping

Table 3 Results of Example 3 obtained by Conventional, ML-SM and MLOV-SM models

Example 3 Conventional ML-SM MLOV-SM

Slack capacity 0 5 0

Total inventory 50 10 5

Backlogs 15 5 0

Total cost = cost of 16,950 6350 1275
(backlogs + inventory (15,000 + 750 + 1200) (5000 + 150 + 1200) (0 + 75 + 1200)
+setup)

3 Computational tests

The aim of the tests is to assess how effectively the Multiple Lot model took
advantage of shortcut products to reduce the total time spent on setups, compared to
the equivalent One Lot (1L) model. In the latter case, the formulation (ML-SM) can
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be simplified to a model that assumes At Most One Lot per product per period
(denoted 1L-SM) by merging zj; and z}’f" to be a binary variable zj; for a single
machine. Thus constraints (15) and (16) disappear. The tests also evaluated the
impact of model MLOV-SM, on reducing demand backlogs, total inventory and
cost in the case of tight production capacity. The models were implemented in the
optimisation modelling software GAMS build 24.7.1 (Brooke et al. 1988) and
solved using the CPLEX 12.6 solver (CPLEX 2014) on a computer with a 2.1 GHZ
CPU and 2 GB of RAM.

To obtain initial insights, the performance of the three models (1L-SM, ML-SM
and MLOV-SM) was compared on two problem sizes: a small size with 10 products
including 1 shortcut product, and a big size with 20 products including 2 shortcut
products, whose lot sizes and sequences were to be scheduled over two horizons of
T =4 and T = 8 demand periods.

The following data were used: C; = 100,ml; = 5,ip = 1,b; = 0.5, h;, = 10, g;; =
10000, Vj, ¢ for all instances. In Clark et al. (2014) the setup times were initially set
to be st;; = (j — i) if j > i otherwise (10 +j — i), so the product 2 would normally
be setup immediately after product 1. However, product 5 was then made an
extreme shortcut with zero setup times: sts; = st;5 = 0. In this paper, to make setup
times more tangible, particularly in case of an overlapping setup, all setup times
were increased by 3 so that sts; = st;5 = 3 and st; = (34 j — i) if j > i otherwise
(13 +j —i). Setup costs are proportional to setup times, i.e. sc; =50 X (j — i)
if j > i, otherwise 50 x (10 + j — i), and for shortcut products are: scs; = scis = 50.

The periodic demand forecasts d;, varied randomly over product i and period 7 to
provoke non-uniform lot-sizes and avoid lot-for-lot production. To show the
effectiveness of model MLOV-SM, the demands in two consecutive periods are set
to be non-zero for different products for time horizon T = 4. For example, if there
are 10 products, then for period ¢, 5 random products have non-zero demand, with
the other 5 having demand zero, while in period ¢ + 1, those products with zero-
demand in period  now have non-zero demand, with other 5 having zero demand.
We also used another TBO-profile (time between orders) with different lengths 1, 2
and 3 for time horizon T = 8. In this case, for each product a random TBO length
(from 1 to 3) is chosen and then demands are generated for a product over 8 periods
according to the TBO.

When capacity is loose, then there is much more flexibility about when setups
can occur in an optimal solution, so we expect that period-overlapping setups will
not make a difference. However, under tight capacity, there will be little such
flexibility, so it is important to use scarce production capacity efficiently via
relaxing all restrictions of physical separation between the periods. To simulate tight
capacity the overall demand was adjusted so that setup times could take up to
20-25% of capacity. For loose capacity this was adjusted to 15%.

A similar procedure was applied for big size problems with 20 products. The
machine capacity per period was doubled and setup times for products P11 to P20
simply replicate those for P1 to P10, with the two extreme shortcut products being
P5 and P15.
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Considering the two types of capacity (loose and tight) and planning horizons
(T =4 and 8), 4 combinations were generated for each problem size. For each
combination, 20 test problems were generated, totalling 160 problem instances for
big and small sizes, which were solved by the 1L-SM, ML-SM and MLOV-SM
models. The CPLEX optimizer was allowed to run for a maximum of 1 h for big
size problems, at which point the incumbent solution (i.e., the best found up to then)
was used.

Table 4 compare the performance of three models on 6 criteria calculated over
the planning horizons 4 and 8:

Total time spent on setups = Zu StiYije

Amount of unused (slack) capacity = ), slk,

Inventory = ), I

Backlogs = ), Bis

CPU time total cost = backlogs + inventory + setup = > 4By + >, hieli+
i SCiiYi

For each criterion, the difference between the mean values for the three models
was statistically tested using a balanced analysis of variance test. The test used the
data instance (that is the run) as a random blocking factor. The null hypothesis is
that the difference between the models’ means is zero.

The results in Table 4 and the paired ¢ test p values in Table 5 show a highly
significant decrease in backlogs, inventory and total cost under tight capacity for the
model MLOV-SM compared to those for the ML-SM and 1L-SM. It highlights how
model MLOV-SM uses scarce machine capacity and how the relaxing of all
restrictions of physical separation between the periods plays an important role in
minimizing shortage. The ML-SM model is also more efficient than 1L-SM as it
uses the shortcut product P5 in small size problem and products P5 and P15 in big
size problems, to economise on setups and reduce backlogs and inventory.

As expected, under loose capacity with no backlogs, due to greater flexibility in
setups, period overlapping did not make a significant difference in inventory and
slack time, although it significantly improved the total cost compared to the 1L
model.

Not surprisingly, there were much longer solution times for 20 products than 10
products, and also for instances with T = 8 periods compared to those with T = 4.
For 20 products and T = 8 under tight capacity, 17 of the 20 instances of the
MLOV model used the full 1 h allowance of computing time (with median
optimality gap of 3.7% for these 17), while none did for the 1L and ML model.

4 Extensions to parallel machines and flexible flow lines
In this section the Single Machine models are extended to Parallel Machines (PM)
and Flexible Flow Lines (FFL). The data, variables and constraints of the Single

Machine models are adapted to parallel machines by including an index m. The
Multiple Lot model for Parallel Machines, denoted ML-PM, and Multiple Lot
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model with Setup-Overlapping for Parallel Machines, denoted MLOV-PM, are
extensions of ML-SM and MLOV-SM respectively.

4.1 Parallel machines

The input data required by the PM models are:

dis
Cone
Stijm
SCijm
bim
his

8it
UBimt

iOm

Demand for product i realised at the end of period .

Available capacity time of machine m in each period 7.

Time needed to setup from product i to product j on machine m.

Cost needed to setup from product i to product j on machine m.

Time needed to produce a unit of product i on machine m.

Cost of holding a unit of product i from period 7 to # 4 1.

Backlog cost per period for product i from period ¢ to ¢ + 1.

Upper bound C,,/b;, on the quantity of product i produced in period ¢ on
machine m.

The product setup at the end of period 0 on machine m, i.e., the starting
setup configuration.

The decisions variables by the PM model are represented by following variables:

I;
B
Ximt
Stk
F
Ximt
Ko
Yijmt

Zimt

Olime

k

aijmt

bin
Zimt

OLS;

S mt

Inventory level of product i at the end of period ¢.

Backordered amount of product i at the end of period ¢.

Production quantity of product i in period ¢ on machine m.

Number of unites of slack capacity of machine m in period .

The quantity produced in period ¢ of the first (crossover) lot of product i on
machine m in period ¢ if it was setup in period ¢ — 1, otherwise 0.

The quantity produced in period ¢ of the last (crossover) lot of product i on
machine m in period ¢ if its production continues into period ¢ + 1,
otherwise 0.

Number of times that production is to be changed over from product i to
product j on machine m in period ¢, Integer non-negative.

Number of times that product i is in a setup state on machine m in period ¢,
integer non-negative.

=1 either because j-to-i is the last setup of machine m in previous periods
to t or because j-to-i is the setup operation that overlaps from ¢ — 1 to t.
=1 if the arc i — j is on a walk from crossover product p? to product

k within period #’s sequence of lots on machine m, otherwise 0.

=1 if product i is ever in setup state on machine m in period ¢, otherwise 0.
=1 if the overlapping setup operation j-to-i on machine m begins in period
t and finishes in period ¢ + 1.

The amount of setup time that overlaps into period r + 1 on machine m,
having begun at the end of period .

For all the products, the initial inventory (I;p) and the backlogs (Bj) are set to be
zero at the start of the planning horizon. All the ML-PM and MLOV-PM’s
constraints are similar to ML-SM and MLOV-SM respectively with the new adapted
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data and variables. The complete ML-PM and MLOV-PM models are presented in
Appendices 2 and 3.

Example 4 Consider 2 machines in parallel. The aim is to satisfy the demand
shown in Table 6 for 10 products over the 4 planning periods with minimal
backorders, inventory and setup costs. The capacity of each machine is C,,; = 50,
thus a total capacity of ), C,,, = 100 is available for each period. The remaining
PM data is the same as for the SM problem: ml; =35, iy, =1,bj, =
0.5,hj; = 10, gj; = 10000, Vj, . Also the setup times and costs of each machine
replicate those for a single machine.

The production diagrams and the results obtained by solving the 1L-PM, ML-PM
and MLOV-PM models are shown in Fig. 6 and Table 7 respectively. Note that in
Table 7, the 1L-PM and ML-PM model found the solution with the same amount 7
of inventory, and amounts 6 and 2 of backlogs respectively, while the optimal
solution found by MLOV-PM has no backlogs or inventory.

The solution is illustrated in Fig. 6, where each node or circle shows the product
at the top and its lot size at the bottom, and each arrow demonstrates a setup and an
overlapped setup in bold as below:

\

@ Setup Overlapped Setup
\totsize / > >

Lot size

Note in Fig. 6 how effectively the MLOV-PM model twice took advantage of
overlapping setups on machine 1 to use machine capacity and reduce inventory,
backlogs and slack time. Furthermore, both the multiple lot models, ML-PM and
MLOV-PM, took advantage of shortcut product 5 to reduce the backlogs, compares
to the one lot model 1L-PM.

Table 6 Demand data for PM

and FFL dis t=1 t=2 t=3 t=4
i=1 33 0 34 0
i=2 33 0 0 0
i=3 31 0 33 0
i=4 33 0 0 0
i=5 30 0 34 0
i=6 0 33 30 33
i=7 0 33 0 33
i=38 0 24 32 33
i=9 0 33 0 31
i=10 0 31 0 33
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Fig. 6 The production diagrams of 1L-PM, ML-PM and MLOV-PM

4.2 Flexible flow line

To model different machines at each stage e of an FFL, an index m, is used. There
are E different stages e and M, different machines m, available for production at
stage e. Apart from the inventory and backlogs variables, the FFL’s data and
variables are similar to PM’s where index m is replaced by index m,. The new
inventory and backlogs variables of FFL are as follows:

Iiet
Big;

Thus the new inventory balance constraints are:

@ Springer
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ligs—1 — Bjgs—1 + Z-xjmet —lip + Bigr = djy Vj,t (27)
mg

Bieom1 ) Xima = lir = Y Xmeyust Vistie=1,.. . E—1 (28)
me

Moy
By <BP-d; Vit (29)

Constraints (27) and (28) express the material balance including backorders for
end items and work in process respectively. Constraint (29) bounds backorders of
end items in any period to be within a specified proportion of demand. This is the
practiced assumptions in flexible flow shop manufacturing systems (Ozdamar and
Barbarosoglu 1999). Moreover the holding cost will be different at each stage so A;,
now becomes h;,; which is the cost of holding a unit of product i from period ¢ to
t + 1 at stage e. The complete models for Multiple Lots for Flexible Flow Lines,
denoted ML-FFL, and Multiple Lots with Setup-Overlapping for Flexible Flow
Lines, denoted MLOV-FFL, are presented in Appendices 4 and 5 respectively.
Apart from the inventory balance constraints, the FFL’s constraints are similar to
PM’s substituting index m with index m,.

Example 5 1If the parallel machines production system is duplicated in series, then
the result is a Flexible Flow Lines (FFL) production system with two stages in series
and two parallel machines for each stage. In this case, the FFL data for each stage is
exactly the same as for PM. The holding costs assume that successive stages add
value, so that work-in-process holding costs will increase as material progresses
along the line. To reflect this, a value-added percentage factor VAP is used, whose
value is 1.2. The first stage’s unit holding cost h;; for product i is 10 and for the
subsequent stages, hje = VAP - hjte_1, € >2. Thus the second stage’s unit holding
cost hy, for product i is A = 1.2 x 10 = 12.

To analyse the FFL in detail, it was solved by the three models 1L-FFL, ML-
FFL and MLOV- FFL considering the demand of first and second period in Table 6.
The production diagrams and the results of FFL for two periods are shown in Fig. 7
and Table 8 respectively.

In order to simplify the FFL production diagram, the one-period-backward
shifted demand is considered for intermediate stages (¢ <E), meaning that x;,,, , ;41
in the right hand of Eq. (28) changes to Xj,,,,;. Thus for first stage, the inventory
balance equation would be L1 ;-1 + Y Xjm,r — Ljir = D Xjmor, VJ, 1.

my ny

Note that the ML-FFL model took advantage of shortcut products in both stages
and efficiently used the capacity of all four machines to reduce inventory, backlogs
and slack capacity, compared to the ML-FFL. As shown in Table 8, the backlogs
and inventory fell to 2 and O respectively for the ML-FFL model, and both fell to 0
for the MLOV-FFL. Thus the MLOV-FFL used the total scarce production capacity
of 4 machines more efficiently by taking advantage of overlapping setups three
times (Fig. 7) and left no inventory, shortage and slack capacity.
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Fig. 7 The production diagrams of 1L-FFL, ML-FFL and MLOV-FFL with two periods
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4.3 Computational tests

To obtain some insight into the relative efficiencies of the three models in PM and
FFL, a variety of problem sizes are solved in a 3-h time limit considering demand
over 2 and 4 periods, similar to Table 6. The objective function and the CPLEX
optimality gap of the models after every hour are shown in Table 9 for each
problem size.

The test results in Table 9 show, for all problem sizes, that the MLOV model
obtains a better solution than the ML and 1L models after 3 h and that ML is more
efficient than 1L due to its use of the shortcut product. However in large instances,
the models left large optimality gaps, particularly MLOV due to its extra binary
variables OLS;, ,for overlapping setups.

Note that for both time horizons of 2 and 4 periods, adding a stage or a machine
significantly increases the optimality gap. Moreover CPLEX could not find a
feasible solution for any problem with the attributes bigger than £ =3, M =
3and T = 4 within the 3-h time limit, emphasizing the need for an efficient heuristic
solution procedure for large problems.

5 Final remarks

This paper presented new mix integer programming formulations for capacitated lot
sizing and scheduling with non-triangular sequence-dependent setup times and
costs, incorporating all the necessary features of setup carryover and overlapping on
different machine configurations. These features relax all limitations of physical
separation between the periods provide more flexibility to the lot sizing model.

To assess how effectively the multiple lot model with setup overlapping took
advantage of shortcut products and setup overlapping features to reduce backlogs
and inventory, three models 1L, ML and MLOV were compared for three
production systems SM, PM and FFL. The computational results showed that the
multiple-lots and setup overlapping features of the model enable more efficient
production than when the formulation excludes setup overlapping or is restricted to
single lot per product per product.

On a single machine the results showed highly significant decreases in backlogs,
inventory and total costs for the MLOV-SM model compared to those for the ML-
SM and 1L-SM models. Furthermore ML-SM is more efficient than 1L-SM due to
its use of the shortcut product 5 to economise on setups and reduce backlogs and
inventory.

The tests on the PM and FFL models also confirmed the effectiveness of the new
formulation. However, because of the increased number of binary variables in large
instances, CPLEX exhausted the available RAM before terminating the branch-&-
cut search and leaving a large optimality gap.

To sum up, the test results above, although merely probing, and not conclusive,
indicate that for all machine configurations the MLOV model obtains a better
solution. Due to the importance of the number of binary variables in large instances,
future research needs to develop efficient solution methods for different machine
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914 M. Mahdieh et al.

configurations. Future work will also computationally compare different demand
data patterns with variables sizes on the SM, PM and FFL models.

The High Multiplicity Travelling Salesman Problem (HMATSP) is a special type
of the classical travelling salesman problem in which each node is visited multiple
times. Sarin et al. (2011) incorporated the HMATSP model as a substructure to
formulate lot-sizing problem involving parallel machines and sequence-dependent
setup costs, also known as the Chesapeake Problem. The HMATSP can also be
applied for scheduling family products with several identical items to be produced
separately on a single machine. Modelling Multiple-Lot production per period based
on the HMATSP formulations poses a very interesting challenge for future research.

While the multi-commodity flow (MCF) subtour elimination constraints do
provide much tighter formulations, it is recognised that their inclusion can be
increase computational time in larger-sized models. The challenge of improving
computing times is left for future research.

Given that in the case of existing non-triangular setups sufficient production of an
intermediate or cleaning product can clean the machine more efficiently, the
question arises as to whether the quantity of cleaning product called minimum lot
size is sequence dependent. This poses another research challenge about how to
model the sequence-dependency of minimum lot sizes in lot sizing and scheduling
problems.

Appendix 1: MLOV-SM model

Minimise Z SCijyiir + Z hiely + Z gitBir (30)
it it

ijt
Ijt—l _ij—l+xjt_1jl+sz:dj Vj,f (31)

Z bl‘xil + Z Slljy,,l + S;j_] - S{ + Slk, - C[ Vl‘ (32)
i i

xjy < UBj, x <z,, -3 0LS,,,> Vj1 (33)

yjjrzo Vj,l‘ (34)
Zoc,-,:l Vi=1,...T+1 (35)
w, =1 Vi=1 (36)
xi, SUBuoj, Y jt (37)
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xi < UBj, <o<_,,t+1 -3 OLSZ;,-,> Vit (38)
Gt X > mljo ey Vst (39)
Xjr — xﬁ - XJL, > mi; (ij — 0y — ij,t+1) Vit (40)
G+ > i =2 Vit (41)

J
Zyijz + 1 =z Vit (42)

J
aztéyl]f VZa]7k7t (43)
w2 Vit (44)
2 <ZUBiZE™ Vit (45)
Otr + Z ai, =" Vit (46)
wi+ Y d, >N d, Vkitkt (47)
J J

dy =0 Vk,j1 (48)
S, <Y styOLS; V't (49)

ij
(50)

Z OLS;; <o, Vit
J

OLSUZ Sy,]t Vi,j, t
Xjt, Lig, Bj, Sy, sk, x;, ijr Positive variables

Zir, yir  Integer variables

k
gje>

a oc[,,zﬁi”,OLS,j, Binary variables
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Appendix 2: ML-PM model

Minimise Z SCijmYijmt + Z hllIll + ththt

ijmt

jt 1 — jt 1+ Z-xjmt jt +Bjt = djt Vj,f

m

Z bimXims + Z StijmYijmt + stk = Coy vat
i ij

bi .
Xjmt S UBjmt X ij::; V.h m,t
Yijmt = 0 Vj7mal

Zaimtzlvm,tzl,...,T—i—l

O, omt = 1 Vm,t =1
it < UB;mt%mt Vj,m,t

1 < UBjer(jm,lJrl Vj,m,t

X; 1+1 > mljam/'.l‘+1 VJ, m,t

+
F .
Ximt — Xipp — xL > mlj (ijt — Omr — O(jm.l‘+l) V.]a m,t

jmt jmt

it + E Yjimt = Zimt VZ, m,t
J

E Yijme + Olimt+1 = Zimt v’a m,t
J
k ..
aijmtgyijmz VI7]7kamvt
s bin Vi t
Zimt Z Lt L,m,
Zimt < ZUBi?™ i, m,t

imt

k bin
s + E :aikmf = Zant Vk? m,t
i

oc,mt+z oy > Zaum, Vk,i#km,t
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F .. .
Xjmt Lt Bjr, Stk Kimes ijml Positive variables
Zimes Yipme  Integer variables
ag.mt, it zf’,f:; Binary variables
Appendix 3: MLOV-PM model
Minimise Z SCijmYijmt + Z hidis + Z gitBis (71)
iimt it it
L1 — Bj_1 + ijmt — Iy + By =di Vj,t (72)
m
Z bimximt + Z Stijmyijmt + Sm.,tfl - Smt + SIkmt = Cmt vma ! (73)
i ij
Xjmt S UBjml X (ijl - Z 0LSijml> v]a m,t (74)
i
Yjjmt =0 Vjamat (75)
S tim=1 Ymt=1,.,T+1 (76)
i
Ot =1 Vm,t =1 (77)
-x;;;” S UBjmtajmt V.]a m, t (78)
xfmt < Ule (ajm,H—l — Z 0LSijml> VJ, m,t (79)
i

ijm, + xfmJH > mlitim 1 Vj,m,t (80)

F .
Xjmt = Xjpy — ijmt > mlj (ijt — Ojmr — O(jm,tJrl) V], m, 1

it + § Yjimt = Zimt VIa m,t
J
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E Yijmt + Oim,t+1 = Zime Vl7 m,t
J

k ..
aijmt Syl:/'ml VZ,],]{, m, 1

bin
Zimt Z 2 Limt

Vi,m,t

Zimt <ZUBsz YVi,m,t

“imt

bi
Otkant + Z Difomr = Zk:':t Vkv m,t

M+Zmp§ywvm¢m”

akjmt 0 Vk,jm,t

Sm < D> StimOLSje ¥, t

ij

Z OLS]H’nt S O‘imJ-&-l V i, m, t
J

OLSijmt < Yijme v i7j7 m,t
Xjmes Lits Bjty S s slkm,,x;im, ij,m Positive variables

Zimes Yipme  Integer variables

k
aljmm Olimt, %, lmfa

OLSUm, Binaryvariables

Appendix 4: ML-FFL model

Minimise Z SCijm,Yijm,t + Z hlEtIlet + Z gltBlEt

ijemt

L, — Bjg—1 + ijmgz —Lig 4+ Bjigr = djy  Vj,t

Ije,tfl + ijmgt - Ijet = ijmy+1,t+l VJ, tande = 17 N 1
m,

Mey |

Byg <BP-d; Vit
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Z Dim, Xim, + Z Stijm,Vijmot + Slkm,e = Cyy Ve, m,t (97)
i ij

Xyt < UBjm,i X zj?b,z, Vj e m,t (98)
Yijmet =0 Vj,e,m,t (99)
> dimg=1 Vemt=1,. T+l (100)

i
Uiyt = 1 Ve,mt =1 (101)
Xt < UBjnjma Vjse,m.t (102)
Xt < UBjunjm i1 Y je;m,t (103)
ot F X 1 Z b1 Ve m,t (104)
Xjm,t — le.:net = Xy >l (zjmg, — Ot — (xjm“l+]) Vj, e m,t (105)
i,z + Z Viimt = Zima Y iye,m,t (106)

J

Zy,»jm(, + i, 141 = Zimye Vi, e,m,t (107)

J
@pr <Vigma Visj ks emst (108)
Zima > 2, Vi e,m,t (109)
Zima < ZUBim,zprt, Vi e,m,t (110)
Ut + D Ay = Ty Vhye,m, 1 (111)

i
i + Y oy > > b, Vhi#kemt (112)
J J

Ay =0 Yk, j,e,m,t (113)

F L .. .
Xjmy > Ljets Bjets Slkipm,1 Xjmyt> Xt Positive variables

Zim,t, Yijms  Integer variables

k bin ; ;
@iy, 1> Oim,t> Zim,y  Binary variables
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Appendix 5: MLOV-FFL model

Minimise Z SCijm, Yijmor + Z Rielier + Z girBiks
' F;

ijemt it

Lig;—1 — Bjg—1 + ijmet — g+ Bjgy = djy  Vj,t
mg

(114)

(115)

Ije,z—l +ijmt,l_ljet :ijmp+1,t+l Vjatande: 1)'-~5E_ 1 (116)
me

Met 1

Byg <BP-d; Vit

(117)

Z bimpximet + Z Stijm,Yijmer + Sme,t—l - Sm(,t + SIkm(,t = Cm(,t Ve,m,t (1 18)
i ij

Xim,t S UBjmgt X (ijet - Z OLSijmgt> V]a e,m,t (1 19)
Yijm,t = 0 Vj,e,m,t (120)
Zocimgtzl Vemt=1,...T+1 (121)
Wit = 1 Ve,mt =1 (122)
xj‘;ngt < UBjmfzajmgt v.]a e,m,t (123)
ijmet < UBjmi,t (ijme,H»l - Z OLSijmet) V]7 e,m,t (124)
it —|—ij,,[“[+] >mlit,j1 VJj,e,m,t (125)
Xim,t — xf;ngt T Aimet Z mlj (ij(t — Ojm,r — OCjm,,‘lel) V], e,m,t (126)
Oim, ¢ + Zyjimgt = Zim,t VIa e,m,t (127)
J

Zyijmft + aimd,htl = Zim,t VIv e, mvt (128)

J
ai;‘mt,tgyijmgt Vi,j,k,e,m,t (129)
Zim,t Z Z?,f:[ v i7 e,m, t (130)
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Zim,t SZUBimEZ?inI Vi,e,m,t (131)
Olkanet =+ Zafkmez = Ziﬁ:pt Vk,e,m,t (132)
Oima + Y Al > Y db, Yk F k e,m,t (133)
j J
al]zj}'ne[ = 0 Vk?j? 67 m7t (134)
Smgt S ZSIijme OLSijml,t Ve,m7 t (135)
ij

Z OLSjim,,z S Xim, t+1 v iv e,m,t (136>

j
OLSijm(,t gyijmpt Vi,j,e,m,t (137)

Xjmyt Ljets Bjety Smyts Slkim,14 x;l”,, ijmfl Positive variables

Zimyts Yijmgt  Integer variables

k bin . .
Qi1 it Lo OLSjj,,; Binaryvariables
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