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Abstract This paper develops and tests an efficient mixed integer programming

model for capacitated lot sizing and scheduling with non-triangular and sequence-

dependent setup times and costs incorporating all necessary features of setup car-

ryover and overlapping on different machine configurations. The model’s formu-

lation is based on the asymmetric travelling salesman problem and allows multiple

lots of a product within a period. The model conserves the setup state when no

product is being processed over successive periods, allows starting a setup in a

period and ending it in the next period, permits ending a setup in a period and

starting production in the next period(s), and enforces a minimum lot size over

multiple periods. This new comprehensive model thus relaxes all limitations of

physical separation between the periods. The model is first developed for a single

machine and then extended to other machine configurations, including parallel

machines and flexible flow lines. Computational tests demonstrate the flexibility and

comprehensiveness of the proposed models.

Keywords Lot sizing � Scheduling � Period overlapping � Carryover setups �
Machine configurations

1 Introduction

The classic Capacitated Lot Sizing Problem (CLSP) does not sequence or schedule

products within a period (Bitran and Yanasse 1982; Haase 1996; Karimi et al.

2003). In addition, it does not allow a setup to be carried over from one period to the
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next, even when the last product in a period is the same as the first product in the

next period. Gopalakrishnan et al. (1995) developed a modelling framework for

formulating the CLSP with setup carry over by introducing additional binary

variables, and later incorporated sequence-independent and product-dependent

setup times and costs (Gopalakrishnan 2000). Different studies have demonstrated

that considering the setup carry-over significantly saves costs by decreasing the

number of setups and releasing production capacity (Gopalakrishnan et al. 2001;

Gupta and Magnusson 2005; Porkka et al. 2003; Sox and Gao 1999). This problem

also called the capacitated lot sizing problem with linked lot sizes (Suerie and

Stadtler 2003).

A further issue for capacitated lot sizing is to determine a sequence for all

products within a time period if setup times or costs are sequence-dependent. The

CLSP is called large bucket problem since several item can be produced per period

(Eppen and Martin 1987). Subdividing the (macro-) periods of CLSP into several

(micro-) periods leads to discrete lotsizing and scheduling problem (DLSP) which is

called a small bucket problem (Fleischmann 1990; Salomon 1991; Salomon et al.

1991, 1997).

The main serious restriction of the DLSP as a small-bucket formulation is not

allowing both setup time and production time within a period. Thus this article

focuses on the CLSP as a big-bucket formulation which is more flexible for

integrating lot sizing and sequencing decisions. The CLSP partitions the planning

horizon into a number of lengthy time periods, allowing setups of several products

within the same period (a ‘‘big bucket’’). Gupta and Magnusson (2005) classified the

CLSP literature according to extensions on sequence dependency of setup costs and

times. They extended the framework proposed by Gopalakrishnan (2000) to include

sequence-dependent setup times and costs. Haase (1996) modelled the Capacitated

Lot sizing problem with Sequence-Dependent setup costs (CLSD) and included

setup times (Haase and Kimms 2000) by assuming predetermined efficient

production sequences and null inventory for the production of an item in a period.

The general lot sizing and scheduling problem (GLSP) (Fleischmann and Meyr

1997) is very close to the CLSD but is more flexible since it eliminates the

restrictions of the CLSD. Meyr (2000) included sequence-dependent setup times,

resulting in the GLSPST and extended it to become the GLSPPL for parallel

machines (Meyr 2002).

In their recent well-structured review paper, Copil et al. (2016) presented the

historical development of the body of knowledge for simultaneous lotsizing and

scheduling problem and discussed the recent trends. The GLSP has been known as

the most flexible lotsizing and scheduling formulation in large buckets for

representing different environments under slight modifications (Koçlar 2005; Koçlar

and Süral 2005). Moreover, the need for only triangular setups is relaxed in the

GLSP as it allows multiple lots of a product in a period as long as the lots of all

products do not exceed the number of micro-periods in a period. Non-triangular

setup times can happen in many industries such chemicals, food, beverages and oil.

For example, in the animal-feed industry, some product families can cause

contamination of other families so mixing equipment must be cleaned in order to

avoid it. Cleaning can result in substantial setups that consuming scarce production
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time. The amount of cleaning can often be minimised by producing an intermediate

cleansing or shortcut product which can give rise to non-triangular setup times. In

an alternative approach to the GLSP, Clark and Clark (2000) designed a mixed

integer programming (MIP) model for the simultaneous sequencing and sizing of

production lots on a set of parallel machines. They assumed non-triangular

sequence-dependent setup times, no setup costs and the possibility of backlogging

demand.

The problem of sequencing a set of lots with sequence dependent setups is related

to the travelling salesman problem (TSP) and the vehicle routing problem (VRP)

(Laporte 1992a, b). Almada-Lobo et al. (2007) presented two models for the CLSP

with sequence-dependent and triangular setup times and costs using the Miller-

Tucker-Zemlin (MTZ) subtour prohibition constraints (Desrochers and Laporte

1991). The main restriction of conventional TSP based models is permitting the

production of only one lot per product per period which may well not be optimal

when non-triangular setups exist. Clark et al. (2010) formulated a sequencing and

lotsizing model with non-triangular setup times based on the asymmetric travelling

salesman problem (ATSP) at an animal-feed plant. To solve the model, optimal

solution methods based on iterative subtour elimination and patching were

developed. In the ATSP-based models (Almada-Lobo et al. 2007; Clark et al.

2010), at most one lot per product can be produced in a period (and no subtour is

permitted), so in the case of non-triangular setup, any optimal multiple production

of a shortcut product is not allowed. Menezes et al. (2011) relaxed this restriction

and allowed production of multiple lots per period (and correctly including

connected subtours) by using an iterative model and method based on a potentially

exponentially number of subtour elimination constraints (to exclude disconnected

subtours).

Clark et al. (2014) presented a stronger formulation than Menezes et al. (2011)

for modelling the production of multiple lots of a product per period by using a

polynomial number of multi-commodity-flow-type constraints (Claus 1984) to

exclude disconnected subtours while allowing ones connected to the main sequence.

Guimaraes et al. (2014) proposed a two-dimensional framework to classify the

discrete time modeling approaches for lotsizing and scheduling problem. They also

present a new formulation using commodity flow based subtour elimination

constraints for the problem.

Setup overlapping has been studied by Suerie (2006) for small-bucket and by

Sung and Maravelias (2008) for big-bucket formulations, but with sequence-

independent setup times and costs. Belo-Filho et al. (2013) extended the model by

Suerie (2006) for small-bucket and proposed two models for the capacitated lot-

sizing problem with backlogging and setup carryover and crossover. Almada-Lobo

et al. (2007) incorporated setup carryover features for a capacitated lot sizing and

scheduling problem that allows a product to be set up at the end of one period and

the actual production to start in the next period. Menezes et al. (2011) modelled

setup cross-overs that allows a setup to start in one period and to end in the next

period.

In this article, the first mixed integer linear programming formulation is

presented for lot sizing and scheduling with non-triangular sequence-dependent
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setup times and costs that allows not only multiple lots of a product in a period using

just a polynomial number of constraints and incorporating all the necessary features

of setup carryover, as in Clark et al. (2014), but also overlapping of setups over

period boundaries. The inclusion of overlapping setups is the original contribution

of this article and permits modelling the production system more realistically by

relaxing all the limitations of physical separation between the periods.

Moving towards more flexible and realistic modeling in production planning

systems has been already attracted many researchers. To alleviate the problem of

physical separation in discrete time scale, an alternative approach called block

planning is proposed based on continuous representation of time (Günther 2014;

Günther et al. 2006). However, the degree of flexibility of proposed approach is

limited to necessity of the the grouping of product into setup families and the

production of product within a family in a pre-defined sequence.

For the first time, in this paper not only all the limitations of discrete time scale

modeling are relaxed but also practical assumptions are researched.Thus, a setup

can start at the end of a period and finish at the beginning of the next period, or a

setup can finish at the end of a period and production start in the next period.

Furthermore, an imposed minimum lot size can cross over periods, and the setup

state is conserved when no product is being processed over multiple periods. All

these features increase the model flexibility and lead to better solutions, particularly

under tight capacity conditions or whenever setup times are significant. The

extension of the model to parallel machines or a flexible flow line is presented and

discussed via computational tests.

The new model for single machine is developed in Sect. 2, allowing the

production of multiple lots while incorporating all the features of setup carryover

and overlapping. Moreover the effectiveness of multi-lot over single-lot production

by taking advantage of shortcut products and the usefulness of modelling the setup

overlapping under tight production capacity are both illustrated in some examples in

Sect. 2 and then computationally tested in Sect. 3. The model is extended to parallel

machines and flexible flow lines in Sect. 4 where the efficiency of each model is

discussed in detail with an example. The paper concludes in Sect. 5 with a

discussion of the model’s value and identifies remaining challenges and opportu-

nities for future research.

2 Modelling multiple lots and overlapping setups on a single machine

The model is initially based on Clark et al. (2014). The parameters and indices of

the model are:

J Number of total products i, j, k.

T Number of periods t in the planning horizon.

The input data required by the model are:

dit Demand for product i realised at the end of period t.

Ct Available capacity (time) in each period t.
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stij Time needed to setup from product i to product j.

scij Cost of setting up from product i to product j.

bi Time needed to produce a unit of product i.

hit Cost of holding a unit of product i in inventory from period t to t ? 1.

git Backlog cost per period for product i from period t to t ? 1.

UBit Upper bound Ct=bi on the quantity of product i produced in period t.

i0 The product that is already setup at the end of period 0, i.e., the starting setup

configuration in period 1.

mlj Minimum lot size imposed on product j.

The decisions made by the model are represented by following variables:

Iit Inventory level of product i at the end of period t.

Bit Backordered amount of product i at the end of period t.

xit Production quantity of product i in period t.

Slkt Number of units of slack capacity in period t.

xFit The quantity produced in period t of the first (crossover) lot of product i in

period t if it was setup in period t - 1, otherwise 0.

xLit The quantity produced in period t of the last (crossover) lot of product i in

period t if its production continues into period t ? 1, otherwise 0.

yijt Number of times that production is to be changed over from product i to

product j in period t. Integer non-negative.

zit Number of times that product i is in a setup state in period t, Integer non-

negative.

ait =1 either because j-to-i is the last setup in previous periods to t or because j-

to-i is the setup operation that overlaps from t - 1 to t.

For all the products, the initial inventory ðIi0Þ and the backlogs ðBi0Þ are set to be

zero at the start of the planning horizon.

2.1 The objective function and main constraints

The objective function minimises a weighted sum of backorders, inventory and

setup costs:

Minimise
X

ijt

scijyijt þ
X

it

hitIit þ
X

it

gitBit ð1Þ

Constraint (2) balances inventory, backlogs, production and demand over

consecutive periods:

Ijt�1 � Bjt�1 þ xjt � Ijt þ Bjt ¼ djt 8 j; t ð2Þ

Constraint (3) represents the limited capacity and calculates any slack capacity:
X

i

bixit þ
X

ij

stijyijt þ slkt ¼ Ct 8 t ð3Þ

Constraint (4) enforces the appropriate setup before production:
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xjt �UBjt � zjt 8 j; t ð4Þ

Constraint (5) prohibits setup between the same products:

yjjt ¼ 0 8 j; t ð5Þ

Constraint (6) ensures that the machine is set up for exactly one product at the

beginning of each period. The initial setup configuration at first period is expressed

by constraint (7).
X

i

ait ¼ 1 8 t ¼ 1; . . .; T þ 1 ð6Þ

aiot ¼ 1 8 t ¼ 1 ð7Þ

2.2 Imposing a minimum lot size

Some cleansing products k require a minimum lot size mlk to eliminate the previous

product’s contaminants, and also prohibits that a setup from i to j passes through

cleansing products k without any production. Constraints (8)–(11) achieve this and

also allow a minimum lot size to cross over the periods.

Recall that xFjt is the quantity produced in period t of the first (crossover) lot of

product j in period t if it was setup in period t - 1, but is otherwise 0, as imposed by

constraints (8):

xFjt �UBjtajt 8 j; t ð8Þ

Similarly xLjt is the quantity produced in period t of the last (crossover) lot of

product j in period t if its production continues into period t ? 1, otherwise 0, as

imposed by constraints (9).

xLjt �UBjtaj;tþ1 8 j; t ð9Þ

Then xLjt þ xFj;tþ1 is the size of a crossover lot of a product j that has been started in

period t and completed in period t ? 1. Constraints (10) oblige this crossover lot to

be of size at least mlj:

xLjt þ xFj;tþ1 �mljaj;tþ1 8 j; t ð10Þ

Lastly constraint (11) imposes minimum lot sizes for both crossover and non-

crossover lots using auxiliary variables xLjt; x
F
jt .

xjt � xFjt � xLjt �mlj zjt � ajt � aj;tþ1

� �
8 j; t ð11Þ

Constraints (11) force a lot to be of size at least zjtmlj in period t. If the machine

begins or ends the period in setup state j (or both) then ajt þ aj;tþ1 ¼ 1 or 2ð Þ then

A novel flexible model for lot sizing and scheduling with… 889

123



constraints (11) impose the zjt � ajt � aj;tþ1

� �
lots to be at least of size zjtmlj,

splittable into smaller separate lots of at least size mlj units in size.

Clark et al. (2014) imposed a minimum lot size with the condition that there

exists at least one setup in each period, i.e., result a carryover lot could not span over

whole periods. Letting a carryover lot span over 3 or more periods while forcing the

minimum lot size for the whole crossover lot was left as a challenge for future

research. In this paper, this limitation is removed. The following example shows

how the new minimum lot constraints can span the lot over the periods with no

demand and impose the minimum lot size mlj
� �

for the whole crossover lot.

Example 1 Consider a demand for product A in period 1, for product B in period 3

and no demand in period 2. A minimum lot size is imposed on the use of shortcut

product C. In this case there are two possibilities as now detailed below:

In the first possibility, setup A to C and C to B can both happen either in period

two or, one setup can happen in period two and the other setup in period 1 or 3. So

the minimum lot size will be enforced by constraint (11). In the second possibility,

setup A to C happens in period 1 and setup C to B in period 3 while there is no setup

in period 2 as shown in Fig. 1.

So according to constraint (10):

xLC1 þ xFC2 �mlC ðC1Þ

xLC2 þ xFC3 �mlC ðC2Þ

and according to constraint (11):

xC2 � xFC2 � xLC2 � � mlC ðC3Þ

xC1 � xLC1 � 0 ðC4Þ

xC3 � xFC3 � 0 ðC5Þ

In order to impose the minimum lot size for C, it is necessary to justify that the total

production of product C (at the end of period 1, in period 2 and at the beginning of

period 3) is at least mlC:

Product A Product C Product BSetup
A to C

Setup
C to B

Period 1 Period 2 Period 3

Fig. 1 Example (1) lot crossover
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xC1 þ xC2 þ xC3 �mlC

To justify this, first constraints C1 and C2 are summed:

xLC1 þ xFC2 þ xLC2 þ xFC3 � 2mlC ðC6Þ

Then constraints C3, C4 and C5 are summed:

xC1 þ xC2 þ xC3 � xLC1 þ xFC2 þ xLC2 þ xFC3 � mlC ðC7Þ

Finally combining constraints C6 and C7 concludes that the crossover lot of product

C xC1 þ xC2 þ xC3ð Þ is at least mlC and constraint (10) imposes mlC (not 2mlC) for

the whole crossover lot. Moreover this conclusion can be extended for more than

one period with having no demand.

xC1 þ xC2 þ xC3 � xLC1 þ xFC2 þ xLC2 þ xFC3 � mlC � 2mlC � mlC �mlC

Note that constraints (8)–(11) are more efficient than the conventional constraint:

xjt �mlj
P
i

yijt; 8 j; t, as used in other lot sizing and scheduling models (Clark and

Clark 2000; Fleischmann and Meyr 1997) to impose minimum lot size. The reason

is that in the conventional constraint, the whole setup and the production of the

minimum lot size should be carried out in a single period so the minimum lot size

neither can crossover to the next period(s) nor can be produced in a period when the

setup is ending at the end of previous period(s). All these restrictions are relaxed in

the new constraints (8)–(11). Examples 2 and 3 in the Sect. 2.4 show explicitly the

difference of two types of constraints for imposing minimum lot size.

2.3 Lot sequencing constraints

Here, the ATSP-related constraints are demonstrated for sequencing product lots.

Conventional ATSP-based models restrict production to at most one lot per product

per period, which may not be optimal when non-triangular setups exist. Non-

triangular setups occur in industries such as food, animal feed, beverages and oil

where there are intermediate ‘‘cleaning’’ or ‘‘shortcut’’ products. For example in the

animal feed industry, some products can contaminate other products and lead to

serious effects on animal’s health. To avoid this, machines must be cleaned,

sometimes resulting in substantial setups that consume scarce production time.

Alternatively, the production of a sufficient amount of an intermediate or cleaning

product can clean the machines and reduce overall setup times (costs). In this

situation, the setup to and from the cleaning or shortcut product kð Þ is less costly and
time consuming than a direct setup between two products i; jð Þ means that

sti;j � sti;k þ stk;j. Therefore the shortcut product may need to be produced more than

once within a period.

A sequence with multiple lots per period for some products could look like that

illustrated in Fig. 2. Subtours connected to the main sequence S by shortcut

products are possible (such as subtours B and C). Thus an exact formulation must

allow connected subtours but exclude disconnected subtours (such as subtours A
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and D). To model the sequencing of product lots, the multi-commodity-flow (MCF)

formulations by Claus (1984) are adapted to exclude disconnected subtours while

allowing ones connected to the main sequence. Clark et al. (2014) applied the Claus

(1984) ATSP subtour elimination method to allow multiple productions of shortcut

products for a single machine and computationally demonstrated the effectiveness

of the Multiple-Lot (ML) model in comparison with the equivalent One-Lot (1L)

models. In this work, the same method is applied and the constraints are as follows.

Constraints (12) and (13) are flow conservation constraints relating the ait and zit
setup state variables to the yijt changeover variables as shown in Fig. 3.

ait þ
X

j

yjit ¼ zit 8 i; t ð12Þ

X

j

yijt þ ai;tþ1 ¼ zit 8 i; t ð13Þ

To make constraints (13) work for last period t ¼ T either set t ¼ 1; ::; T þ 1f g is

considered for ait or new constraints (13a) are added as follows:
X

j

yjiT þ ai;T �
X

j

yijT 8 i; t ¼ T ð13aÞ

The optimal solution to the model specified so far is a sequence from product

ij ait ¼ 1f g to kj ak;tþ1 ¼ 1
� �

plus any disconnected subtours. The latter are

excluded by imposing in every period t that there is so-called k-walk from

1 2

13

12

3 4

15

Period t-1

S

B C
5 6

B

8

9

7A
1611

10 17 18

D

Period t Period t+1

14

A

B

Fig. 2 A main sequence (S) and different types of subtours (A, B, C, D)

αit

i

αi,t+1zit

j
ijty

j
jity

Fig. 3 Node flow modelled by
constraints (12) and (13)
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ðij ait ¼ 1f gÞ to all products k in the period’s sequence. From now on, pat denotes

product ij ait ¼ 1f g:
Define additional binary variable akijt as follows:

akijt =1 if the arc i ! j is on a k-walk from crossover product pat to product k within

period t’s sequence of lots, otherwise 0.

The arc i ! j has to exist, hence:

akijt � yijt 8 i; j; k; t ð14Þ

Further binary decision variables zbinit are needed. Define:

zbinit
=1 if product i is ever in setup state in period t, otherwise 0.

The required relationships zbinit ¼ 1 , zit � 1 and zbinit ¼ 0 , zit ¼ 0 are enforced

by:

zit � zbinit 8 i; t ð15Þ

zit � ZUBiz
bin
it 8 i; t ð16Þ

where ZUBi is a fixed upper bound (UB) on zit and greater than one. ZUBi can be

estimated as the smaller of J (the number of products) and the size of the ordered set

f i; jð Þjstij � stik þ stkjg, which is 1 for many non-shortcut products.

Constraints (17–19) below exclude disconnected subtours. Constraints (17) force

the k-walk to reach product k and are enforced only when the setup state k exists for

a time in the period (i.e., when zbinkt ¼ 1), but not when this is never the case (when

zbinkt ¼ 0):

akt þ
X

i

akikt ¼ zbinkt 8 k; t ð17Þ

If there is no production of product k in a period, then zbinkt ¼ 0, and by (17),

akikt ¼ 08i (constraint (14) also forces this via akikt � yikt ¼ 0).

The k-walk corresponding to the variables fakijtj8i; jg has to begin at pat and then

pass through other products to reach product k.

If akt ¼ 1 then there is no need for a k-walk. If akt ¼ 0, then by (17)
P

i a
k
ikt ¼ 1,

i.e., akikt ¼ 1 for precisely one product i, the penultimate on the k-walk. Then, by

(18), akjit ¼ 1 for precisely one product j that is the 3rd last product on the k-walk,

and so on, reversing along the k-walk, requiring akijt ¼ 1 along the k-walk, finishing

at the initially-setup product i ¼ pat (for which ait ¼ 1).

ait þ
X

j

akjit �
X

j

akijt 8 k; i 6¼ k; t ð18Þ

Constraint (19) forces the k-walk from pat to terminate at product k:
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akkjt ¼ 0 8 k; j; t ð19Þ

If there is no production of k in period t, then (19) requires akkjt ¼ 0 which is not

constraining as akijt ¼ 0 by (17).

The ML-SM model (Multiple Lot for Single Machine) is specified by expressions

(1–19). It allows multiple production lots of shortcut products for a single machine

while still not relaxing the limitations of a period’s physical separation.

2.4 Period overlapping setup constraints

The last step is allowing setup operations to overlap periods, i.e., to permit a setup to

begin in a period and end in the next period. The model is called MLOV-SM and

relaxes all limitations of physical separation between the periods. The MLOV-SM is

advantageous when capacity is tight and so lot sizing and sequencing decisions need

more flexibility to reduce backlogs.

Consider the following additional decision variables:

OLSijt =1 if the overlapping setup operation i to j begins in period t and finishes in

period t ? 1, otherwise 0.

St The amount of setup time that overlaps into period t ? 1, having begun at

the end of period t.

The value of St must be zero if there is no overlapping last setup at the end of

period t:

St �
X

ij

stijOLSijt 8 t ð20Þ

The last setup and at most one setup in period t can overlap from period t to

t ? 1:
X

j

OLSjit � ai;tþ1 8 i; t ð21Þ

The value of OLSijt must be zero if i to j is not a setup initiated in period t:

OLSijt � yijt 8 i; j; t ð22Þ

The capacity constraint (3) now becomes:
X

i

bixit þ
X

ij

stijyijt þ St�1 � St þ slkt ¼ Ct 8 t ð23Þ

When the last setup is overlapping, OLSijt ¼ 1, then product j cannot be produced

as it is the last (crossover) lot in period t. Thus constraints (4) and (9) now become

(24) and (25).
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xjt �UBjt � zjt �
X

i

OLSijt

 !
8 j; t ð24Þ

xLjt �UBjt aj;tþ1 �
X

i

OLSijt

 !
8 j; t ð25Þ

Thus model MLOV-SM is specified by expressions (1–2), (5–8) and (10–25) and

restated completely in the Appendix 1.

2.5 Examples

Two examples now show the effectiveness of the new minimum lot constraints (8)–

(11), in comparison with the conventional constraint (26) and also the solution’s

improvement obtained by modelling setup overlapping features. The following

examples are solved by three models, consisting of MLOV-SM (stated in Appendix

1), ML-SM (Multiple Lot for Single Machine) which is specified by expressions (1–

19), and the Conventional Model which has the same constraints as ML-SM but

imposes minimum lot sizes by conventional constraint (26) rather than new

imposing minimum lot sizes constraints (8)–(11).

xjt �mlj
X

i

yijt 8 j; t ð26Þ

Note that in the ML-SM model, constraints (4) are valid but loose: the value of zjt
need only be 1, and not C2. Thus constraints (4) can be tightened by replacing zjt by

zbinjt xjt �UBjt � zbinjt

� �
.

Examples 2 and 3 The following data are used for both examples:

Ct¼100;mlj¼10;T¼3;J¼2;i0¼1;stij¼20;bj¼1;hjt¼15;scij¼600;git¼1000; and

the demands are shown in Table 1. The models are implemented in the optimisation

modelling software GAMS build 24.7.1 (Brooke et al. 1988) and solved using the

industrial-strength CPLEX 12.6 solver (CPLEX. 2014) on a computer with a 2.1

GHZ CPU and 2 GB of RAM. All models were solved in less than a second for both

examples.

The production diagram and the results of Example 2 are shown in Fig. 4 and

Table 2 respectively. Note how modelling of all necessary features of production

improves the solution remarkably. As shown in Fig. 4, the Conventional model

Table 1 Demand data for

Examples 2 and 3
Demand dit Example (2) Example (3)

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

i = 1 75 0 90 75 0 90

i = 2 0 90 0 0 95 0
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cannot use the machine’s capacity efficiently and there are 5 units of idle or slack

time in period 1 as the setup and minimum lot production has to be done totally in a

single period (constraint (26)). This restriction is relaxed in the ML-SM model so

the setup ends in period 1 and the minimum-sized lot is produced in period 2 that

significantly results in a reduction of the number of inventory and backlogs as

shown in Table 2. However there are still 10 units of slack time in period 2 as, in the

ML-SM model, a setup cannot overlap, i.e., the setup begins in period 2 and ends in

period 3. In the new lot sizing and scheduling model, MLOV-SM, all the limitations

caused by previous models are relaxed and the production system is modelled

realistically. Thus the scarce production capacity is used more efficiently.

In Example 2 the optimal solution is obtained by the MLOV-SM model with no

shortages or inventory. In order to tighten capacity even more, the demand of

product 2 is increased to 95 in Example 3. The production diagram and the results of

Example 3 are shown in Fig. 5 and Table 3 respectively. Note that the Conventional

model found a solution with high total inventories (50) and backlogs (15) while the

optimal solution found by MLOV-SM has no backlogs and only 5 inventories.

Furthermore, as shown in MLOV-SM’s production diagram in Fig. 5, the

minimum lot crosses over from period 1 to 2. Lot crossover is another feature which

is modelled via the new minimum lot size (ml) constraints (8)–(11), improving the

solutions and giving more flexibility to the lot sizing model.

Examples 2 and 3 showed how the new comprehensive mathematical formu-

lation, MLOV-SM, relaxes all limitations of physical separation between the

periods. The MLOV-SM modelled the new features consisting of starting a setup in

one period and ending it in the next period, ending a setup in a period and starting

production in the next period(s), and crossing a minimum lot size over multiple

periods.

Product 1
95

Product 2
80

Setup
1 to 2

Setup
2 to 1

Period 1 Period 2 Period 3

Product 1
80

Product 2
90

Product 1
80

Setup
1 to 2

Setup
2 to 1

Product 2
10

Product 1
70

Idle
time

Product 1
75

Product 2
90

Product 1
90

Setup
1 to 2

Setup
2 to 1

Conventional

ML-SM

MLOV-SM

Idle
time

Setup-overlappingNew ml constraints

min
lot

min
lot

New ml constraints

Fig. 4 Production diagram of Example 2 obtained by Conventional, ML-SM and MLOV-SM models
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3 Computational tests

The aim of the tests is to assess how effectively the Multiple Lot model took

advantage of shortcut products to reduce the total time spent on setups, compared to

the equivalent One Lot (1L) model. In the latter case, the formulation (ML-SM) can

Table 2 Results of Example 2 obtained by Conventional, ML-SM and MLOV-SM models

Example 2 Conventional ML-SM MLOV-SM

Slack capacity 5 10 0

Total Inventory 40 10 0

Backlogs 10 5 0

Total cost = cost of

(backlogs ? inventory

?setup)

11,800

(10,000 ? 600 ? 1200)

6350

(5000 ? 150 ? 1200)

1200

(0 ? 0 ? 1200)

Product 1
100

Product 2
80

Setup
1 to 2

Setup
2 to 1

Period 1 Period 2 Period 3

Product 1
80

Product 2
95

Product 1
80

Setup
1 to 2

Setup
2 to 1

Product 2
15

Product 1
65

Idle
time

Product 1
75

Product 2
90

Product 1
90

Setup
1 to 2

Setup
2 to 1

Conventional

ML-SM

MLOV-SM

Setup-overlapping

New ml constraints

New ml constraints

P
ro
du

ct
2=

5

min
lot

Fig. 5 Production diagram of Example 3 obtained by Conventional, ML-SM and MLOV-SM models

Table 3 Results of Example 3 obtained by Conventional, ML-SM and MLOV-SM models

Example 3 Conventional ML-SM MLOV-SM

Slack capacity 0 5 0

Total inventory 50 10 5

Backlogs 15 5 0

Total cost = cost of

(backlogs ? inventory

?setup)

16,950

(15,000 ? 750 ? 1200)

6350

(5000 ? 150 ? 1200)

1275

(0 ? 75 ? 1200)
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be simplified to a model that assumes At Most One Lot per product per period

(denoted 1L-SM) by merging zjt and zbinjt to be a binary variable zjt for a single

machine. Thus constraints (15) and (16) disappear. The tests also evaluated the

impact of model MLOV-SM, on reducing demand backlogs, total inventory and

cost in the case of tight production capacity. The models were implemented in the

optimisation modelling software GAMS build 24.7.1 (Brooke et al. 1988) and

solved using the CPLEX 12.6 solver (CPLEX 2014) on a computer with a 2.1 GHZ

CPU and 2 GB of RAM.

To obtain initial insights, the performance of the three models (1L-SM, ML-SM

and MLOV-SM) was compared on two problem sizes: a small size with 10 products

including 1 shortcut product, and a big size with 20 products including 2 shortcut

products, whose lot sizes and sequences were to be scheduled over two horizons of

T = 4 and T = 8 demand periods.

The following data were used: Ct ¼ 100;mlj ¼ 5; i0 ¼ 1; bj ¼ 0:5; hjt ¼ 10; gjt ¼
10000; 8j; t for all instances. In Clark et al. (2014) the setup times were initially set

to be stij ¼ j� ið Þ if j� i otherwise 10þ j� ið Þ, so the product 2 would normally

be setup immediately after product 1. However, product 5 was then made an

extreme shortcut with zero setup times: st5j ¼ sti5 ¼ 0: In this paper, to make setup

times more tangible, particularly in case of an overlapping setup, all setup times

were increased by 3 so that st5j ¼ sti5 ¼ 3 and stij ¼ 3þ j� ið Þ if j� i otherwise

13þ j� ið Þ: Setup costs are proportional to setup times, i.e. scij ¼ 50� j� ið Þ
if j� i, otherwise 50� 10þ j� ið Þ; and for shortcut products are: sc5j ¼ sci5 ¼ 50:

The periodic demand forecasts dit varied randomly over product i and period t to

provoke non-uniform lot-sizes and avoid lot-for-lot production. To show the

effectiveness of model MLOV-SM, the demands in two consecutive periods are set

to be non-zero for different products for time horizon T = 4. For example, if there

are 10 products, then for period t, 5 random products have non-zero demand, with

the other 5 having demand zero, while in period t ? 1, those products with zero-

demand in period t now have non-zero demand, with other 5 having zero demand.

We also used another TBO-profile (time between orders) with different lengths 1, 2

and 3 for time horizon T = 8. In this case, for each product a random TBO length

(from 1 to 3) is chosen and then demands are generated for a product over 8 periods

according to the TBO.

When capacity is loose, then there is much more flexibility about when setups

can occur in an optimal solution, so we expect that period-overlapping setups will

not make a difference. However, under tight capacity, there will be little such

flexibility, so it is important to use scarce production capacity efficiently via

relaxing all restrictions of physical separation between the periods. To simulate tight

capacity the overall demand was adjusted so that setup times could take up to

20–25% of capacity. For loose capacity this was adjusted to 15%.

A similar procedure was applied for big size problems with 20 products. The

machine capacity per period was doubled and setup times for products P11 to P20

simply replicate those for P1 to P10, with the two extreme shortcut products being

P5 and P15.
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Considering the two types of capacity (loose and tight) and planning horizons

(T = 4 and 8), 4 combinations were generated for each problem size. For each

combination, 20 test problems were generated, totalling 160 problem instances for

big and small sizes, which were solved by the 1L-SM, ML-SM and MLOV-SM

models. The CPLEX optimizer was allowed to run for a maximum of 1 h for big

size problems, at which point the incumbent solution (i.e., the best found up to then)

was used.

Table 4 compare the performance of three models on 6 criteria calculated over

the planning horizons 4 and 8:

Total time spent on setups =
P

ij stijyijt

Amount of unused (slack) capacity =
P

t slkt
Inventory =

P
it Iit

Backlogs =
P

it Bit

CPU time total cost = backlogs ? inventory ? setup =
P

it gitBit þ
P

it hitIitþP
ijt scijyijt

For each criterion, the difference between the mean values for the three models

was statistically tested using a balanced analysis of variance test. The test used the

data instance (that is the run) as a random blocking factor. The null hypothesis is

that the difference between the models’ means is zero.

The results in Table 4 and the paired t test p values in Table 5 show a highly

significant decrease in backlogs, inventory and total cost under tight capacity for the

model MLOV-SM compared to those for the ML-SM and 1L-SM. It highlights how

model MLOV-SM uses scarce machine capacity and how the relaxing of all

restrictions of physical separation between the periods plays an important role in

minimizing shortage. The ML-SM model is also more efficient than 1L-SM as it

uses the shortcut product P5 in small size problem and products P5 and P15 in big

size problems, to economise on setups and reduce backlogs and inventory.

As expected, under loose capacity with no backlogs, due to greater flexibility in

setups, period overlapping did not make a significant difference in inventory and

slack time, although it significantly improved the total cost compared to the 1L

model.

Not surprisingly, there were much longer solution times for 20 products than 10

products, and also for instances with T = 8 periods compared to those with T = 4.

For 20 products and T = 8 under tight capacity, 17 of the 20 instances of the

MLOV model used the full 1 h allowance of computing time (with median

optimality gap of 3.7% for these 17), while none did for the 1L and ML model.

4 Extensions to parallel machines and flexible flow lines

In this section the Single Machine models are extended to Parallel Machines (PM)

and Flexible Flow Lines (FFL). The data, variables and constraints of the Single

Machine models are adapted to parallel machines by including an index m. The

Multiple Lot model for Parallel Machines, denoted ML-PM, and Multiple Lot

A novel flexible model for lot sizing and scheduling with… 899
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model with Setup-Overlapping for Parallel Machines, denoted MLOV-PM, are

extensions of ML-SM and MLOV-SM respectively.

4.1 Parallel machines

The input data required by the PM models are:

dit Demand for product i realised at the end of period t.

Cmt Available capacity time of machine m in each period t.

stijm Time needed to setup from product i to product j on machine m.

scijm Cost needed to setup from product i to product j on machine m.

bim Time needed to produce a unit of product i on machine m.

hit Cost of holding a unit of product i from period t to t ? 1.

git Backlog cost per period for product i from period t to t ? 1.

UBimt Upper bound Cmt=bim on the quantity of product i produced in period t on

machine m.

i0m The product setup at the end of period 0 on machine m, i.e., the starting

setup configuration.

The decisions variables by the PM model are represented by following variables:

Iit Inventory level of product i at the end of period t.

Bit Backordered amount of product i at the end of period t.

ximt Production quantity of product i in period t on machine m.

Slkmt Number of unites of slack capacity of machine m in period t.

xFimt The quantity produced in period t of the first (crossover) lot of product i on

machine m in period t if it was setup in period t - 1, otherwise 0.

xLimt The quantity produced in period t of the last (crossover) lot of product i on

machine m in period t if its production continues into period t ? 1,

otherwise 0.

yijmt Number of times that production is to be changed over from product i to

product j on machine m in period t, Integer non-negative.

zimt Number of times that product i is in a setup state on machine m in period t,

integer non-negative.

aimt =1 either because j-to-i is the last setup of machine m in previous periods

to t or because j-to-i is the setup operation that overlaps from t - 1 to t.

akijmt =1 if the arc i ! j is on a walk from crossover product pat to product

k within period t’s sequence of lots on machine m, otherwise 0.

zbinimt
=1 if product i is ever in setup state on machine m in period t, otherwise 0.

OLSimt =1 if the overlapping setup operation j-to-i on machine m begins in period

t and finishes in period t ? 1.

Smt The amount of setup time that overlaps into period t ? 1 on machine m,

having begun at the end of period t.

For all the products, the initial inventory ðIi0Þ and the backlogs ðBi0Þ are set to be

zero at the start of the planning horizon. All the ML-PM and MLOV-PM’s

constraints are similar to ML-SM and MLOV-SM respectively with the new adapted
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data and variables. The complete ML-PM and MLOV-PM models are presented in

Appendices 2 and 3.

Example 4 Consider 2 machines in parallel. The aim is to satisfy the demand

shown in Table 6 for 10 products over the 4 planning periods with minimal

backorders, inventory and setup costs. The capacity of each machine is Cmt ¼ 50,

thus a total capacity of
P

m Cmt ¼ 100 is available for each period. The remaining

PM data is the same as for the SM problem: mlj ¼ 5; i0m ¼ 1; bjm ¼
0:5; hjt ¼ 10; gjt ¼ 10000; 8j; t. Also the setup times and costs of each machine

replicate those for a single machine.

The production diagrams and the results obtained by solving the 1L-PM, ML-PM

and MLOV-PM models are shown in Fig. 6 and Table 7 respectively. Note that in

Table 7, the 1L-PM and ML-PM model found the solution with the same amount 7

of inventory, and amounts 6 and 2 of backlogs respectively, while the optimal

solution found by MLOV-PM has no backlogs or inventory.

The solution is illustrated in Fig. 6, where each node or circle shows the product

at the top and its lot size at the bottom, and each arrow demonstrates a setup and an

overlapped setup in bold as below:

product

Lot size

Setup Overlapped Setup

Note in Fig. 6 how effectively the MLOV-PM model twice took advantage of

overlapping setups on machine 1 to use machine capacity and reduce inventory,

backlogs and slack time. Furthermore, both the multiple lot models, ML-PM and

MLOV-PM, took advantage of shortcut product 5 to reduce the backlogs, compares

to the one lot model 1L-PM.

Table 6 Demand data for PM

and FFL
dit t = 1 t = 2 t = 3 t = 4

i = 1 33 0 34 0

i = 2 33 0 0 0

i = 3 31 0 33 0

i = 4 33 0 0 0

i = 5 30 0 34 0

i = 6 0 33 30 33

i = 7 0 33 0 33

i = 8 0 24 32 33

i = 9 0 33 0 31

i = 10 0 31 0 33
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4.2 Flexible flow line

To model different machines at each stage e of an FFL, an index me is used. There

are E different stages e and Me different machines me available for production at

stage e. Apart from the inventory and backlogs variables, the FFL’s data and

variables are similar to PM’s where index m is replaced by index me. The new

inventory and backlogs variables of FFL are as follows:

Iiet Inventory level of product i at stage e at the end of period t.

BiEt Backordered amount of product i at the last stage E at the end of period t.

Thus the new inventory balance constraints are:
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IjE;t�1 � BjE;t�1 þ
X

mE

xjmet � IjEt þ BjEt ¼ djt 8 j; t ð27Þ

Ije;t�1 þ
X

me

xjmet � Ijet ¼
X

meþ1

xjmeþ1;tþ1 8 j; t; e ¼ 1; . . .;E � 1 ð28Þ

BitE �BP � dit 8 i; t ð29Þ

Constraints (27) and (28) express the material balance including backorders for

end items and work in process respectively. Constraint (29) bounds backorders of

end items in any period to be within a specified proportion of demand. This is the

practiced assumptions in flexible flow shop manufacturing systems (Özdamar and

Barbarosoğlu 1999). Moreover the holding cost will be different at each stage so hit
now becomes hiet which is the cost of holding a unit of product i from period t to

t ? 1 at stage e. The complete models for Multiple Lots for Flexible Flow Lines,

denoted ML-FFL, and Multiple Lots with Setup-Overlapping for Flexible Flow

Lines, denoted MLOV-FFL, are presented in Appendices 4 and 5 respectively.

Apart from the inventory balance constraints, the FFL’s constraints are similar to

PM’s substituting index m with index me.

Example 5 If the parallel machines production system is duplicated in series, then

the result is a Flexible Flow Lines (FFL) production system with two stages in series

and two parallel machines for each stage. In this case, the FFL data for each stage is

exactly the same as for PM. The holding costs assume that successive stages add

value, so that work-in-process holding costs will increase as material progresses

along the line. To reflect this, a value-added percentage factor VAP is used, whose

value is 1.2. The first stage’s unit holding cost hit1 for product i is 10 and for the

subsequent stages, hite ¼ VAP � hit;e�1, e� 2. Thus the second stage’s unit holding

cost hit2 for product i is hit2 ¼ 1:2� 10 ¼ 12.

To analyse the FFL in detail, it was solved by the three models 1L-FFL, ML-

FFL and MLOV- FFL considering the demand of first and second period in Table 6.

The production diagrams and the results of FFL for two periods are shown in Fig. 7

and Table 8 respectively.

In order to simplify the FFL production diagram, the one-period-backward

shifted demand is considered for intermediate stages ðe\EÞ, meaning that xjmeþ1;tþ1

in the right hand of Eq. (28) changes to xjmeþ1t. Thus for first stage, the inventory

balance equation would be Ij1;t�1 þ
P
m1

xjm1t � Ij1t ¼
P
m2

xjm2t; 8j; t:

Note that the ML-FFL model took advantage of shortcut products in both stages

and efficiently used the capacity of all four machines to reduce inventory, backlogs

and slack capacity, compared to the ML-FFL. As shown in Table 8, the backlogs

and inventory fell to 2 and 0 respectively for the ML-FFL model, and both fell to 0

for the MLOV-FFL. Thus the MLOV-FFL used the total scarce production capacity

of 4 machines more efficiently by taking advantage of overlapping setups three

times (Fig. 7) and left no inventory, shortage and slack capacity.
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4.3 Computational tests

To obtain some insight into the relative efficiencies of the three models in PM and

FFL, a variety of problem sizes are solved in a 3-h time limit considering demand

over 2 and 4 periods, similar to Table 6. The objective function and the CPLEX

optimality gap of the models after every hour are shown in Table 9 for each

problem size.

The test results in Table 9 show, for all problem sizes, that the MLOV model

obtains a better solution than the ML and 1L models after 3 h and that ML is more

efficient than 1L due to its use of the shortcut product. However in large instances,

the models left large optimality gaps, particularly MLOV due to its extra binary

variables OLSijmetfor overlapping setups.

Note that for both time horizons of 2 and 4 periods, adding a stage or a machine

significantly increases the optimality gap. Moreover CPLEX could not find a

feasible solution for any problem with the attributes bigger than E ¼ 3; M ¼
3 and T ¼ 4 within the 3-h time limit, emphasizing the need for an efficient heuristic

solution procedure for large problems.

5 Final remarks

This paper presented new mix integer programming formulations for capacitated lot

sizing and scheduling with non-triangular sequence-dependent setup times and

costs, incorporating all the necessary features of setup carryover and overlapping on

different machine configurations. These features relax all limitations of physical

separation between the periods provide more flexibility to the lot sizing model.

To assess how effectively the multiple lot model with setup overlapping took

advantage of shortcut products and setup overlapping features to reduce backlogs

and inventory, three models 1L, ML and MLOV were compared for three

production systems SM, PM and FFL. The computational results showed that the

multiple-lots and setup overlapping features of the model enable more efficient

production than when the formulation excludes setup overlapping or is restricted to

single lot per product per product.

On a single machine the results showed highly significant decreases in backlogs,

inventory and total costs for the MLOV-SM model compared to those for the ML-

SM and 1L-SM models. Furthermore ML-SM is more efficient than 1L-SM due to

its use of the shortcut product 5 to economise on setups and reduce backlogs and

inventory.

The tests on the PM and FFL models also confirmed the effectiveness of the new

formulation. However, because of the increased number of binary variables in large

instances, CPLEX exhausted the available RAM before terminating the branch-&-

cut search and leaving a large optimality gap.

To sum up, the test results above, although merely probing, and not conclusive,

indicate that for all machine configurations the MLOV model obtains a better

solution. Due to the importance of the number of binary variables in large instances,

future research needs to develop efficient solution methods for different machine
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configurations. Future work will also computationally compare different demand

data patterns with variables sizes on the SM, PM and FFL models.

The High Multiplicity Travelling Salesman Problem (HMATSP) is a special type

of the classical travelling salesman problem in which each node is visited multiple

times. Sarin et al. (2011) incorporated the HMATSP model as a substructure to

formulate lot-sizing problem involving parallel machines and sequence-dependent

setup costs, also known as the Chesapeake Problem. The HMATSP can also be

applied for scheduling family products with several identical items to be produced

separately on a single machine. Modelling Multiple-Lot production per period based

on the HMATSP formulations poses a very interesting challenge for future research.

While the multi-commodity flow (MCF) subtour elimination constraints do

provide much tighter formulations, it is recognised that their inclusion can be

increase computational time in larger-sized models. The challenge of improving

computing times is left for future research.

Given that in the case of existing non-triangular setups sufficient production of an

intermediate or cleaning product can clean the machine more efficiently, the

question arises as to whether the quantity of cleaning product called minimum lot

size is sequence dependent. This poses another research challenge about how to

model the sequence-dependency of minimum lot sizes in lot sizing and scheduling

problems.

Appendix 1: MLOV-SM model

Minimise
X

ijt

scijyijt þ
X

it

hitIit þ
X

it

gitBit ð30Þ

Ijt�1 � Bjt�1 þ xjt � Ijt þ Bjt ¼ djt 8 j; t ð31Þ
X

i

bixit þ
X

ij

stijyijt þ St�1 � St þ slkt ¼ Ct 8 t ð32Þ

xjt �UBjt � zjt �
X

i

OLSijt

 !
8 j; t ð33Þ

yjjt ¼ 0 8 j; t ð34Þ
X

i

ait ¼ 1 8 t ¼ 1; . . .; T þ 1 ð35Þ

aiot ¼ 1 8 t ¼ 1 ð36Þ

xFjt �UBjtajt 8 j; t ð37Þ
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xLjt �UBjt aj;tþ1 �
X

i

OLSijt

 !
8 j; t ð38Þ

xLjt þ xFj;tþ1 �mljaj;tþ1 8 j; t ð39Þ

xjt � xFjt � xLjt �mlj zjt � ajt � aj;tþ1

� �
8 j; t ð40Þ

ait þ
X

j

yjit ¼ zit 8 i; t ð41Þ

X

j

yijt þ ai;tþ1 ¼ zit 8 i; t ð42Þ

akijt � yijt 8 i; j; k; t ð43Þ

zit � zbinit 8 i; t ð44Þ

zit � ZUBiz
bin
it 8 i; t ð45Þ

akt þ
X

i

akikt ¼ zbinkt 8 k; t ð46Þ

ait þ
X

j

akjit �
X

j

akijt 8 k; i 6¼ k; t ð47Þ

akkjt ¼ 0 8 k; j; t ð48Þ

St �
X

ij

stijOLSijt 8 t ð49Þ

X

j

OLSijt � ai;tþ1 8 i; t ð50Þ

OLSijt � yijt 8 i; j; t ð51Þ

xjt; Ijt;Bjt; St; slkt; x
F
jt ; x

L
jt Positive variables

zit; yijt Integer variables

akijt; ait; z
bin
it ;OLSijt Binary variables
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Appendix 2: ML-PM model

Minimise
X

ijmt

scijmyijmt þ
X

it

hitIit þ
X

it

gitBit ð52Þ

Ijt�1 � Bjt�1 þ
X

m
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X

i
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X

ij

stijmyijmt þ slkmt ¼ Cmt 8m; t ð54Þ

xjmt �UBjmt � zbinjmt 8 j;m; t ð55Þ

yjjmt ¼ 0 8 j;m; t ð56Þ
X

i

aimt ¼ 1 8m; t ¼ 1; . . .; T þ 1 ð57Þ

aiommt ¼ 1 8m; t ¼ 1 ð58Þ

xFjmt �UBjmtajmt 8 j;m; t ð59Þ

xLjmt �UBjmtajm;tþ1 8 j;m; t ð60Þ

xLjmt þ xFjm;tþ1 �mljamj;tþ1 8 j;m; t ð61Þ

xjmt � xFjmt � xLjmt �mlj zjmt � ajmt � ajm;tþ1

� �
8 j;m; t ð62Þ

aimt þ
X

j

yjimt ¼ zimt 8 i;m; t ð63Þ

X

j

yijmt þ aim;tþ1 ¼ zimt 8 i;m; t ð64Þ

akijmt � yijmt 8 i; j; k;m; t ð65Þ

zimt � zbinimt 8 i;m; t ð66Þ

zimt � ZUBimz
bin
imt 8 i;m; t ð67Þ

akmt þ
X

i

akikmt ¼ zbinkmt 8 k;m; t ð68Þ

aimt þ
X

j

akjimt �
X

j

akijmt 8 k; i 6¼ k;m; t ð69Þ
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akkjmt ¼ 0 8 k; j;m; t ð70Þ

xjmt; Ijt;Bjt; slkmt; x
F
jmt; x

L
jmt Positive variables

zimt; yijmt Integer variables

akijmt; aimt; z
bin
imt Binary variables

Appendix 3: MLOV-PM model
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8 j;m; t ð79Þ
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X

j

yijmt þ aim;tþ1 ¼ zimt 8 i;m; t ð83Þ
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F
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L
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Appendix 4: ML-FFL model
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X
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Appendix 5: MLOV-FFL model
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zimet � ZUBime
zbinimet

8 i; e;m; t ð131Þ
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X

i
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¼ zbinkmet

8 k; e;m; t ð132Þ
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X

j
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�
X

j
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8 k; i 6¼ k; e;m; t ð133Þ
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X
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X

j
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