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Abstract Process flexibility has altered operations in manufacturing and service

companies significantly. For instance, auto-mobile manufacturers use flexible pro-

duction systems to meet uncertain demands effectively, and workforce flexible

systems with cross-training are presently common in service industries. This paper

studies k-chain configuration in both loss systems and queueing systems. We derive

performance measures such as percent of customers loss and average customer

waiting time. In the symmetric case, we numerically test the effects of k , system

size and traffic intensity on flexibility design. The major conclusion is that 2-chain is

no longer effective in loss systems although it still performs well in queueing

systems.

Keywords Flexibility design � k-Chain efficiency � Loss system � Queueing system �
Product-form solution

1 Introduction

Flexibility is generally viewed as a firm’s ability to match production to uncertain

demand. A certain level of flexibility can curb the damage caused by uncertain

demand, whereas lacking flexibility can result in significant loss. For example,

Chryslers Neon-based PT Cruiser was a very fashionable model in 2000 and 2001.

The dedicated plant in Toluca, Mexico, was not able to keep up with its demand,

while the plant making the Neon in Belvidere, Illinois, was underutilized but not

configured to build the PT Cruiser. The estimated loss was of $240 million in profit
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and another 0.5 points of market share in each of those years (Biller et al. 2006).

Later, companies were moving from focused factories to flexible factories (Deng

and Shen 2013). The Ford Motor Company, for example, invested $485 million in

2002 in two Canadian engine plants to retool them with a flexible system. The

company also developed a plan to convert its engine and transmission plants

worldwide into flexible systems. Similar initiatives have also been launched in

companies like General Motors and Nissan.

In 1995, Jordan and Graves initiated a stream of research on supply chain

flexibility by examining the economic benefits of chaining relative to full flexibility

(Jordan and Graves 1995). After that, k-chain flexibility has become an important

research topic. The efficiency of the long chain, or the sparse process structure in

general, has been justified theoretically by Chou et al. (2010) which showed that the

performance of 2-chain is close to 96 % that of the full flexibility system. Many

studies have also reported that 2-chain is an ideal system. A comprehensive review

of recently and significantly related literature is provided in Sect. 2. In the current

research, we examine the efficiency of chaining structures under stochastic settings

in both loss and queueing systems. The majority of existing studies are based on

newsvendor settings (e.g., Chou et al. 2010). In many systems, orders arrive at

random and production time is uncertain. However, few studies have been

conducted on the chaining configuration in these stochastic systems. In addition,

few works analyse queueing systems explicitly due to theoretical intractability.

Moreover, the majority of the results from previous studies regarding flexibility

system performance is obtained through simulation.

To analyse the effectiveness of k-chain, we apply the recent results on skill-based

stochastic systems (Adan and Weiss 2012 and Visschers et al. 2012). By redefining

the system state space, we are able to design efficient algorithms which can compute

the performance of k-chain numerically in both loss systems and queueing systems.

On the basis of our numerical studies, we observe that 2-chain is no longer effective

in loss systems although it still performs well in queueing systems.

The paper is organized as follows. In Sect. 2, we review the most recent and

important works on flexibility design. In Sect. 3, we describe our model and provide

some basic properties. In Sect. 4 and 5, we design computation algorithms for both

loss systems and queueing systems, and summarize our observations from

numerical studies. Conclusions are made in Sect. 6.

2 Literature review

In this section, we review the most recent and important works on flexibility design.

Jordan and Graves (1995) first examined the economic benefits of chaining relative

to full flexibility, thus initiating a stream of research on supply chain flexibility.

Graves and Tomlin (2003) then investigated various structures for achieving

horizontal flexibility within a single supply chain level. Readers are referred to

Chou et al. (2008) for reviews of process flexibility before 2008.

In 2010, significant theoretical progress in exploring efficiency of chaining

structures has been made. Chou et al. (2010) showed that a simple chaining
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structure performs surprisingly well given a variety of realistic demand distribu-

tions, even when the system is large. They also identified a class of conditions under

which a sparse flexible structure alone is needed so that expected performance is

already within the optimality of the full flexibility system given general problems.

Chou et al. (2010) examined how range and response dimension interact to affect

the performance of the process flexible structure. Deng and Shen (2013) argued that

effective flexible process structures are essentially highly connected graphs. They

utilized the concept of graph expansion (a measure of graph connectivity) in

obtaining various insights into this design problem.

Process flexibility is important in system design. Simchi-Levi and Wei (2012)

developed a theory that explains the effectiveness of long chain designs for finite-

size systems. Simchi-Levi and Wei (2015) determined that the long chain is superior

to a mass of sparse flexibility designs. Simchi-Levi et al. (2013) noted that a 3-chain

design is significantly more robust than a 2-chain one and achieves the same

robustness as full flexibility does under high uncertainty levels. Furthermore,

investment in process flexibility designs alters the optimal inventory placements.

Désir et al. (2016) reported that a disconnected network with 2 n edges is optimal

under this situation instead of a long chain, even for independent identical demand

distributions. Wang and Zhang (2015) assessed the performance of a long chain

under different demand distributions from a demand-distribution-free perspective.

Iravani et al. (2005) focused on the strategic-level issues of how flexibility can be

generated by using multi-purpose resources, such as cross-trained labour, flexible

machines and flexible factories. Iravani et al. (2007) emphasised flexible service

centres, such as inbound call centres with cross-trained agents, and model these

centres as parallel queueing systems with flexible servers. A recent paper (Shi et al.

2015) developed a theory for the design of process flexibility for multi-period

product systems and proved that any partial flexibility structure that satisfies

Generalized Chaining Condition ( GCC ) is almost optimal under a class of policies.

The authors also proposed that the performance of GCC structures can gain nearly

as much as benefit as fully flexible system when the traffic intensity rate is fairly

high.

The majority of works focus on symmetric systems. Nonetheless, some studies

design process flexibility for unbalanced networks on the basis of chaining structure.

Mak and Shen (2009) reported that the heavily advocated chaining heuristic can

sometimes perform unsatisfactorily when resources are not perfectly flexible. Deng

and Shen (2013) proposed additional flexibility design guidelines for unbalanced

networks in which the numbers of plants and products are unequal by refining the

well-known Chaining Guidelines. The results of an extensive computational study

suggest that the refinements made by the researchers effectively determine flexible

configurations with minimal shortfall in unbalanced networks. Besides the works

mentioned above, many important studies have also been conducted on flexibility.

Readers are referred to Chen et al. (2015), Hopp et al. (2005), Hopp et al. (2009),

Iravani et al. (2003), Iravani et al. (2005), Iravani and Teo (2005), Iravani and

Krishnamurthy (2007), Kula et al. (2004), Peltokorpi et al. (2015) and Sennott et al.

(2006) for other related works.
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The study of skill-based systems provides support for our analysis on system

performance. Adan et al. (2010) studied an Erlang loss system with multi-type

customers and servers and reported that the probabilities of assigning arriving

customers to idle servers can be chosen in such a way that the Markov process

describing the system is reversible, with a simple product-form stationary

distribution. Visschers et al. (2012) examined a system with multi-type jobs and

servers in which waiting jobs are served on a first-come-first-served (FCFS) basis,

and arriving jobs that encounter several idle servers are assigned to a feasible server

at random. These researchers suggested the existence of assignment probabilities

under which a system displays product-form stationary distribution and develop

explicit expressions for it. Adan and Weiss (2012) detected a simple explicit,

steady-state distribution for a loss system with multi-type customers and skill-based

servers under assignment to longest idle server (ALIS) policy. These researchers

also report that this system is insensitive and that the results hold for general service

time distributions as well. Adan and Weiss (2012) also established a product-form

solution for two infinite multi-type sequences.

3 Model description

We model the stochastic systems with a set of servers which serve several types of

customers. We denote the set of servers by M, and the number of servers by jMj.
The system serves several types of customers, and we denote the set of customer

types by C. Hence, we have j Cj types of customers. Each server- j can serve a subset

of customer types, denoted by CðjÞ. Equivalently, each type- i customer can be

served by a subset of servers MðiÞ, the union of which is M. This relationship can

be specified by a bipartite graph G ¼ ðC;M;EÞ, where E denotes the edges of the

graph which connects servers to the customer types they can serve. We define

CðSÞ ¼
S

j2S CðjÞ as the total set of customer types which can be handled by the

servers in S � M and UðSÞ ¼ CðSÞ as the set of customer types which can be served

only by the servers in S.

For any two graphs G ¼ ðC;M;EÞ and G0 ¼ ðC0;M0;E0Þ, if C ¼ C0, M ¼ M0

and E � E0, then G is regarded as a spanning subgraph of G0, as denoted by G � G0.
Based on the definition of graphs, we obtain the following lemma. Lemma 1

basically states that if a network exhibits high flexibility, then each server can serve

more types of customers and each customer can be assigned to more available

servers.

Lemma 1 If G � G0, then CGðSÞ � CG0 ðSÞ and UGðSÞ � UG0 ðSÞ for any S � M.

Proof 8 i 2 CGðSÞ; 9 j 2 S, such that the server- j can serve type- i customers.

That is, the edge eij 2 E. Since G � G0, we have E � E0 according to the definition

of spanning subgraph. Thus, eij 2 E0. So, i 2 CG0 ðSÞ and hence CGðSÞ � CG0 ðSÞ. The
proof of the latter part is similar since UGðSÞ � UG0 ðSÞ is equivalent to

CGðSÞ � CG0 ðSÞ. h
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We assume that arrivals are Poisson processes and service times are exponential.

Type- i customers arrive according to an independent Poisson process with rate ki.
Server- j works independently with a rate lj. The arrival and service processes are

mutually independent of each other. We introduce the notations kA ¼
P

i2A ki; 8A �
C and lS ¼

P
j2S lj; 8S � M. On the basis of Lemma 1, we then derive the

following monotonicity properties. Proposition 1 suggests that more servers can

take more demands, and less demands can be taken by other servers. Proposition 2

compares two graphs G and G0 where G � G0. Thus, G0 has more edges (links) than

G which means that the flexibility of G0 is higher. Given a set of servers S , they are

capable of serving more customer types in G0. However, the number of customer

types which can be served only by the servers in S decrease in G0.

Proposition 1 Monotonicity property 1: For a graph G and any S � S0 � M, we

have

kCðSÞ � kCðS0Þ ð1Þ

kUðSÞ � kUðS0Þ: ð2Þ

Proposition 2 Monotonicity property 2: For any two graphs G � G0 and S � M,

we have

kGCðSÞ � kG
0

CðSÞ ð3Þ

kGUðSÞ � kG
0

UðSÞ ð4Þ

In our stochastic networks, service discipline is a combination of FCFS and

ALIS. Arriving customers which encounter more than one available server are

assigned to the server that has been idle for the longest time. However, arriving

customers which locate no available servers are either lost or join the queue. We

refer to these two systems as loss systems and queueing systems.

The flexibility design in such stochastic networks involves deciding the flexibility

of each server, that is, the subset of customer types which it can serve, CðjÞ. The
flexibility level of server- j is defined as jCðjÞj. The system with complete resource

pooling displays full flexibility, whereas the system which performs dedicated

service has level-1 flexibility. We denote any connected bipartite graph by G, the
complete resource pooling graph by F and the dedicated graph by D.

In this study, we focus on the case in which each server initially serves a

dedicated type of customers. Hence, we have j Cj ¼ jMj, let’s denote it as K. In

particular, we are interested in a bipartite graph structure called tailored chaining.

Tailored chaining with k-flexibility is called a k-chain, and any server- j can serve

k types of customers starting from type- j and followed by type-ðjþ 1Þ; :::; ðjþ
k � 1Þ (all numbers larger than K take modular on K ) in a k-chain configuration. All

servers have the same flexibility as k. Figure 1 shows the bipartite graphs of
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dedicated, full flexibility and tailored chaining with 2-flexibility when K ¼ 3. In the

dedicated system, one supplier can supply only one dedicated type of demand. In the

tailored chaining (we can also call it 2-chain in this example) setting, each supplier

can serve two types of demand. In the full flexibility system, a supplier can serve all

types of demand. In the following sections, we study the k-chain efficiency in both

loss systems and queueing systems, and compare the performance of a k-chain to the

dedicated system and the system with full flexibility.

4 Loss system

In the loss system, arriving customers who do not find available servers leave the

system without being served. Customers who find more than one available server

are assigned to the server which has been idle for the longest time. The percent of

customers who leave without being served, i.e., loss percentage, is the main

performance measure for the loss system.

We define the system state at time t as XðtÞ ¼ s, where s ¼ ðj1; j2; . . .; jkÞ is the
list of idle servers at time t , ordered by their order of consecutive idle time. Thus,

server j1 has the longest idle time, and so on. Given this state definition, X(t) is a

continuous-time, finite-state Markov chain under the ALIS policy with a stationary

distribution (Adan and Weiss 2012):

pXðj1; . . .; jkÞ ¼ pXð;Þ
lj1
kCðj1Þ

lj2
kCðfj1;j2gÞ

� � �
ljk

kCðfj1;...;jkgÞ
; ð5Þ

which satisfies the partial balance equations

pXðj1; . . .; jkÞkCðfj1;...;jkgÞ ¼ pXðj1; . . .; jk�1Þljk ; ð6Þ

and for all m 6¼ j1; . . .; jk,

1 1

2

3

Dedicated

SupplyDemand

2

3

1 1

2

3

Tailored Chaining

SupplyDemand

2

3

1 1

2

3

Full Flexibility

SupplyDemand 

2

3

Fig. 1 Structural system flexibility
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pXðj1; . . .; jkÞlm ¼ pXðm; j1; . . .; jkÞkCðmÞ þ pXðj1;m; . . .; jkÞkCðmÞnCðj1Þ
þ . . .þ pXðj1; . . .; jk;mÞkCðmÞnCðfj1;...;jkgÞ:

ð7Þ

Let hi be the fraction of customers of type- i who are lost. According to the property

of Poisson arrival see the average (PASTA), a customer of type- i is lost if the set of

idle servers does not contain any server from MðiÞ. Hence,

hi ¼
X

fj1;...;jkg\MðiÞ¼;
pXðj1; . . .; jkÞ: ð8Þ

The total number of states is K!
PK

k¼0
1
k!. A minimum computation time of

OðK!
PK

k¼0
1
k!Þ is required to compute the steady-state distribution and performance

measures, which seems to be a huge task.

However, in most cases, the information regarding server idle time is not used in

performance analysis, although it is necessary for real-time operations. Therefore,

we can redefine the system state at time t as YðtÞ ¼ S, where S ¼ fj1; j2; . . .; jkg is

the set of idle servers at time t , for analysis purposes. We recall that s ¼
ðj1; j2; . . .; jkÞ represents the list of idle servers at time t , ordered by their order of

becoming idle. Thus, s is merely one permutation out of all possible permutations.

Let PðSÞ be the set of all of the permutations of S , then we have

pYðSÞ ¼ pYðfj1; j2; . . .; jkgÞ ¼
X

ð~j1;...;~jkÞ2PðSÞ
pXð~j1; . . .;~jkÞ: ð9Þ

By applying the partial balance equations (5) and (6), we obtain the recursion of

steady-state probabilities

pYðSÞkCðSÞ ¼
X

ð~j1;...;~jkÞ2PðSÞ
pYð;Þ

l~j1
kCð~j1Þ

l~j2
kCðf~j1;~j2gÞ

� � �
l~jk

kCðf~j1;...;~jkgÞ
� kCðf~j1;...;~jkgÞ

¼
X

ð~j1;...;~jkÞ2PðSÞ
pYð;Þ

l~j1
kCð~j1Þ

l~j2
kCðf~j1;~j2gÞ

� � �
l~jk�1

kCðf~j1;...;~jk�1gÞ
� l~jk

¼
X

j2S
pYðS n fjgÞlj:

ð10Þ

The loss percentage of type- i customers is given by

hi ¼
X

S\MðiÞ¼;
pYðSÞ; ð11Þ

where

pYðSÞ ¼ p ~YðSÞ ¼ p ~Yð;Þ
lj1

gj1ðfj1gÞ
lj2

gj2ðfj1; j2gÞ
� � �

ljk
gjkðfj1; . . .; jkgÞ

; ð12Þ

and gkðSÞ can be recursively calculated by
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gkðSÞ ¼ kCðSÞ 1þ
X

j2Snfkg

gjðSnfkgÞ
gkðSnfjgÞ

0

@

1

A

�1

; 8k 2 S: ð13Þ

Given this state space redefinition, the total number of states is reduced to 2K . When

the recursion equation (10) is used, computation time is reduced to OðK22KÞ. As a
result, the applicability of the results of Adan and Weiss (2012) to our case is

enhanced.

In the following paragraphs, we investigate the symmetric case in which ki ¼ k,
lj ¼ l. We define q ¼ k=l. We apply loss rate hðK; k; qÞ as a key system

performance measure and study the effects of its parameters: system size K ,

flexibility k ( k-chain, 1� k�K) and traffic intensity q. In a dedicated symmetric

system (k ¼ 1), each server can enter only two possible states: either the server is

empty, or it is busy serving a customer. The probability that the server is empty is

expressed as ð1þ qÞ�1
, whereas the probability that the server is busy is determined

by qð1þ qÞ�1
. In a complete resource pooling system(k ¼ K), the probability that

an arrival customer will be lost is equal to the probability that all servers are busy,

known as Erlang loss.

Proposition 3 The performance of k-chain in loss systems:

1 For the dedicated system, the percent of lost is qð1þ qÞ�1
.

2 For the complete resource pooling system, the percent of loss is

ðKqÞK

K!

XK

k¼0

ðKqÞk

k!

 !�1

: ð14Þ

3 For other k-chain systems, loss percentage can be calculated by (11).

As a result of computation simplification, we can compute a system with a

maximum of 16 servers and 16 types of customers. To compute larger size

problems, one needs to further improve the computation algorithm (we leave this

issue as a future research topic). For each system with size K , we compute the loss

percentage of all possible k-chain configurations, i.e., k ¼ 1; 2; . . .;K. We also study

three different scenarios: systems with light load (q ¼ 0:5), medium load (q ¼ 1)

and heavy load (q ¼ 2). All numerical results are shown in Tables 1, 2 and 3. We

summarize the numerical results in the following observations.

Observation 1 Loss rate hðK; k; qÞ is convex and decreases with system size K. In

particular, the decrease is insignificant when k is small for all q.

This observation coincides with economies of scale. In any k-chain, loss

decreases when system size increases. However, the marginal decrease is reduced,

as depicted in Fig. 2.
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Similar to Simchi-Levi and Wei (2012), the authors observed that the

performance of 2-chain improves with K, but the improvement converges to zero

exponentially quickly. As shown in Table 1, given a small flexibility system, such

as 2-chain, the benefit is insignificant as the system size increased. We can see when

K > 5, loss percentage remains the same. The finding above implies that flexibility

can be maintained in several separate sub-systems, that is, several short chains, to

reduce organizational complexity. For example, the loss rate is approximately

0.3901 for a 2-chain system with size K ¼ 16 when q ¼ 1. If we separate the system

into four independent sub-systems with size K ¼ 4, then the loss rate for the four

systems is 0.3902. The system performance does not change remarkably. That is,

the 2-chain is more effective for smaller size systems relative to full flexibility

design. Thus, several small closed chains, where each chain connects a substantial

number of plants and products, can perform just as well as the long chain.

Observation 2 Loss rate hðK; k; qÞ is convex and decreases with k.

Generally, increasing the flexibility will reduce the loss. However, in all of the

three cases, most of the increase in throughput is achieved by 2-chain since

percentage of loss decreases significantly when k changes from 1 to 2. Higher orders

of chaining increase throughput only marginally and in progressively diminishing

amounts. These results suggest that total flexibility is generally unnecessary if

increases in flexibility require massive investments.

Observation 3 The marginal benefit of increasing the flexibility is insignificant

when traffic intensity is high.

Figure 3 shows that the marginal benefit is much smaller when traffic intensity is

high. Take K ¼ 16 for example, comparing Table 2 and 3, it is obvious that adding

flexibility is more effective in light load systems than systems with heavy load.

(When q ¼ 0:5, loss percentage dropped from 0.3333 to 0.0045, or about 98.64 %

as flexibility increases from 1 to 16. However, this rate is only 21.13 % when

6 8 10 12 14 16
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Fig. 2 Performance of k-chain configuration in a loss system with q ¼ 1
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q ¼ 2.). Thus, there is less incentive to implement flexibility when system is under

heavy load.

Observation 4 2-chain is no longer effective in the loss system.

Chou et al. (2010) shows that the performance of 2-chain is already close to

96 % of the full flexibility system based on newsvendor settings when q ¼ 1. Here,

we use dedicated and complete resource pooling systems as benchmarks to evaluate

k-chain efficiency as follow:

wk;KðqÞ ¼
L1;KðqÞ � Lk;KðqÞ
L1;KðqÞ � LK;KðqÞ

; ð15Þ

where Lk;KðqÞ is the customer loss rate in a loss system of size K with k-chain

configuration and traffic intensity q.
As can be seen from Table 4, when K ¼ 16, the performance of 2-chain can only

reach one third of the full flexibility system. Several explanations have been offered

as to why the properties which hold in the newsvendor model cannot be extended to

the Erlang loss model: (1) Service times are uncertain which can increase system

uncertainty. This situation cannot be handled by the flexibility design alone. (2)

Dynamic real-time operations enhance loss. Meanwhile, orders can be held for a

period and satisfied at the end of the period in the newsvendor model.

5 Queueing system

The queueing system described in this section is similar to the system presented

above, except that customers will join the queue and wait for service if no servers

are available upon their arrival. Visschers et al. (2012) analyzed and obtained

product-form solutions for a continuous time Markov chain that describes a multi-

type customers, multi-type servers queueing system under Assumption 1.
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Fig. 3 Performance of k-chain configuration in a loss system under different loads
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Assumption 1 [Assignment condition in Visschers et al. (2012)] For i ¼ 1; . . .K,
and for every subset M1; . . .Mif g 2 M, the following holds:

Yi

j¼1

kMj
M1; . . .;Mj�1

� �� �
¼
Yi

j¼1

kMj
M1; . . .;Mj�1

� �� �
ð16Þ

for every permutation M1; . . .;Mi of M1; . . .;Mi, where kMj
M1; . . .;Mj�1

� �� �
is the

activation rate of machine Mj (See Visschers et al. (2012) for the definition and

more details).

Remark 1 Assumption 1 is important for correctness of the analysis, because as

Visschers et al. (2012) explicitly constructed examples where no product form

solution exists when the random assignment probabilities are not chosen correctly.

Remark 2 As Visschers et al. (2012) conjectured the assignment probability

distributions become less relevant when traffic intensity approaches 1. So the

assumption on choosing a specific set of random assignment probabilities will not

be restrictive and the product form solution will be a good approximation for

general assignment probability distributions.

Under Assumption 1, Visschers et al. (2012) obtained the product-form solution:

pðsÞ ¼ anii . . .a
n1
1

Qi
j¼1 kMj

M1; . . .;Mj�1

� �� �

Qi
j¼1 l M1;...;Mjf g

pð0Þ; ð17Þ

where s ¼ ðni;Mi; ni�1;Mi�1; . . .; n1;M1Þ and aj ¼ kUðfM1;...;MjgÞl
�1
fM1;...;Mjg.

We define the state as ðM1; n1; . . .;Mi; ni;Miþ1; . . .;MKÞ, that is, the state in

which a system has i busy servers and K � i idle servers with corresponding

numbers of customers waiting between the busy servers. M1; . . .;MK is a

permutation of 1; . . .;K. Servers M1; . . .;Mi serve customers with increasing arrival

times, and nj customers wait between servers Mj and Mjþ1, 1� j� i. It should be

noticed that the waiting customers between serversMj andMjþ1 can only be handled

by the servers M1; . . .;Mj and not by any of the servers Mjþ1; . . .;Mi or any of the

idle servers. This is due to the FCFS processing order (see Fig. 4). Servers

Miþ1; . . .;MK are idle with increasing idle time. Similar to Adan and Weiss (2014),

we consider the queueing system under FCFS-ALIS policy. The steady-state

probability is determined by [see Adan and Weiss (2014)]

Fig. 4 Graphical illustration of the system state in the queueing system
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pðM1; n1; . . .;Mi; ni;Miþ1; . . .;MKÞ

¼ B
Yi

j¼1

lfM1;...;Mjg
YK

j¼iþ1

kCðfMj;...;MKgÞ

 !�1

an11 . . .a
ni
i ;

ð18Þ

where B is a normalization constant.

The marginal distribution of attaining server status Mi ¼ ðM1; . . .;Mi;Miþ1;
. . .;MKÞ is given by

pðMiÞ ¼ B
Yi

j¼1

lfM1;...;Mjg
YK

j¼iþ1

kCðfMj;...;MKgÞ

 !�1

ð1� a1Þ�1. . .ð1� aiÞ�1: ð19Þ

Let Uki ¼ fjj1� j� i; k 2 UðfM1; . . .;MjgÞg. As aforementioned, nj is customers

waiting between servers Mj and Mjþ1. Here, we use nkj and Nk to represent the type-

k customers among nj and the total type- k customer in the queue, respectively.

Conditioning on server status Mi ¼ ðM1; . . .;Mi;Miþ1; . . .;MKÞ, similar to the

discussion in Visschers et al. (2012), nj is a geometric random variable with

parameter aj,

E½njjMi	 ¼
aj

1� aj
; ð20Þ

nkj is a geometric random variable with parameter gkj ,

E½nkjjMi	 ¼
gkj

1� gkj
; ð21Þ

where

gkj ¼
kk

lfM1;...;Mjg � kUðfM1;...;MjgÞ þ kk
;

and the expectation of Nk is expressed as

E½NkjMi	 ¼
X

j2Uki

gkj
1� gkj

: ð22Þ

By law of total probability, we combine Eqs. (19) and (22) and obtain

E½Nk	 ¼ B
X

Mi

P
j2Uki

gkj
1�gkj

Qi
j¼1ð1� ajÞlfM1;...;Mjg

QK
j¼iþ1 kCðfMj;...;MKgÞ

ð23Þ

By applying Little’s law, we compute the average waiting time for type- k cus-

tomers, E½Nk	 ¼ kE½Wk	. Therefore, the average number of customers (waiting

time) in the queue is given by

E½N	 ¼
XK

k¼1

E½Nk	; E½W 	 ¼ E½N	=kC: ð24Þ

Hence, we have
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E½N	 ¼ B
XK

k¼1

X

Mi

P
j2Uki

gkj
1�gkj

Qi
j¼1ð1� ajÞlfM1;...;Mjg

QK
j¼iþ1 kCðfMj;...;MKgÞ

ð25Þ

¼ B
X

Mi

Pi
j¼1

P
k2UðfM1;...;MjgÞ

gkj
1�gkj

Qi
j¼1ð1� ajÞlfM1;...;Mjg

QK
j¼iþ1 kCðfMj;...;MKgÞ

: ð26Þ

Proposition 4 The average waiting time in the queue system is given by

E½W 	 ¼ Bk�1
C
X

Mi

Pi
j¼1

P
k2UðfM1;...;MjgÞ

gkj
1�gkj

Qi
j¼1ð1� ajÞlfM1;...;Mjg

QK
j¼iþ1 kCðfMj;...;MKgÞ

: ð27Þ

In particular, if all ki ¼ k and lj ¼ l. Let q :¼ k=l. The formula can be simplified

as

E½W 	 ¼ Bk�1
C
X

Mi

Pi
j¼1

P
k2UðfM1;...;MjgÞ

q
jð1�ajÞ

Qi
j¼1 jlð1� ajÞ

QK
j¼iþ1 kCðfMj;...;MKgÞ

; ð28Þ

where aj ¼ kUðfM1;...;MjgÞ=jl.

In the following paragraphs, we consider the symmetric case where all ki ¼ k and
lj ¼ l. The dedicated system is similar to K parallel and independent M/M/1

queues. The average number of customers in the system is denoted by Kqð1� qÞ�1
.

For each type of customer, the average response time (the sum of both waiting

and service times) is 1=ðl� kÞ, and the average waiting time is

1=ðl� kÞ � 1=l ¼ q=ðl� kÞ.
The full flexibility system is in fact an M/M/K queue. Let q0 :¼ k=Kl and pk

denote the stationary probability that k customers are in the system. The system

stationary probability is given by

pk ¼
p0

ðKq0Þk

k!
; k�K

p0
KKq0k

K!
; k�K

8
>><

>>:
ð29Þ

where

p0 ¼
XK�1

k¼0

ðKq0Þk

k!
þ ðKq0ÞK

K!

1

1� q0

" #�1

: ð30Þ

The probability that an arriving customer will be forced to wait in the queue is

pKþ ¼ p0
ðKq0ÞK

K!

1

1� q0
: ð31Þ
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The expected number of customers in the system is given by

EK ¼ Kq0 þ q0

1� q0
pKþ : ð32Þ

Under the queueing system, arriving customers who encounter no available

servers will join the queue. The waiting time (or delay) in this queue is the main

performance measure. We denote Wk;KðqÞ as the customer waiting time in a

queueing system of size K with k-chain configuration and traffic intensity q.
Figure 5 shows the average waiting time given different levels of chaining

configuration (or flexibility) and five different traffic intensity levels q ¼
0:6; 0:7; 0:8; 0:9 and 0.95. It is intuitive that the heavier traffic load is, the longer

waiting time will be. Also, we can obtain that average waiting time drops

significantly when flexibility is increased from 1 to 2. Table 5 provides additional

details.

Just like loss system, we use the following benchmark to evaluate k-chain

efficiency:

wk;KðqÞ ¼
E½W1;KðqÞ	 � E½Wk;KðqÞ	
E½W1;KðqÞ	 � E½WK;KðqÞ	

: ð33Þ

Table 6 shows the efficiency of k-chain with different sizes and traffic loads. For

a given K and q, wk;KðqÞ increases with the flexibility k. As shown in Table 6,

efficiency values are getting bigger from the left to right. For a given K and k,

wk;KðqÞ increases with the traffic intensity q. Take K ¼ 8 for example, 2-chain

cannot achieve[90 % efficiency when q\0:9. By contrast, 3-chain attains[93 %

efficiency under all investigated traffic loads. A significant increment is observed

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

k−chain

A
ve

ra
ge

 w
ai

tin
g 

tim
e

0.6
0.7
0.8
0.9
0.95

Fig. 5 Performance of k-chain configuration in a queueuing system with K ¼ 8
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from 2-chain to 3-chain or 4-chain; however, the marginal increment is very small

when flexibility continues to increase. To facilitate efficient system operation, we

suggest employing a 3-chain or 4-chain structure rather than a 2-chain one. Taking

Table 5 Average waiting time of k-chain with different sizes and traffic loads

k K

1 2 3 4 5 6 7 8

q ¼ 0:8

1 4

2 4 1.7778

3 4 1.2487 1.0787

4 4 1.0759 0.8006 0.7455

5 4 1.0116 0.6658 0.5795 0.5541

6 4 0.9860 0.5964 0.4833 0.4454 0.4315

7 4 0.9755 0.5587 0.4252 0.3755 0.3556 0.3471

8 4 0.9711 0.5377 0.3890 0.3291 0.3033 0.2916 0.2860

q ¼ 0:9

1 9

2 9 4.2632

3 9 2.9267 2.7235

4 9 2.3907 2.0346 1.9694

5 9 2.1406 1.6638 1.5555 1.5250

6 9 2.0140 1.4473 1.2983 1.2506 1.2335

7 9 1.9468 1.3134 1.1297 1.0645 1.0392 1.0285

8 9 1.9100 1.2273 1.0148 0.9334 0.8992 0.8841 0.8769

q = 0.95

1 19

2 19 9.2564

3 19 6.2681 6.0467

4 19 4.9330 4.5274 4.4571

5 19 4.2298 3.6646 3.5442 3.5112

6 19 3.8238 3.1269 2.9568 2.9039 2.8853

7 19 3.5756 2.7701 2.5550 2.4812 2.4530 2.4413

8 19 3.4179 2.5230 2.2681 2.1739 2.1353 2.1184 2.1104

q ¼ 0:99

1 99

2 99 49.2513

3 99 32.9424 32.7056

4 99 24.9733 24.5221 24.4476

5 99 20.3188 19.6662 19.5356 19.5005

6 99 17.3076 16.4730 16.2840 16.2269 16.2071

7 99 15.2259 14.2263 13.9819 13.9007 13.8701 13.8576

8 99 13.7186 12.5685 12.2722 12.1669 12.1245 12.1061 12.0975

304 J. Xie et al.

123



traffic intensity into consideration, 3-chain configuration may be enough when the

system is under a heavy traffic load. As for systems with q ¼ 0:8 or q ¼ 0:9,
4-chain structure could be better. More details can be seen in Fig. 6. Our

observation is similar to Shi et al. (2015), in which the authors proved that in a very

different setting, the efficiencies of the chaining structures approach 100 % as traffic

intensity approaches 1.

Figure 7 shows the average waiting time under k-chain configuration with an

increase in system size K from 2 to 8 and when q ¼ 0:9. E½Wk;KðqÞ	 decreases with
K to a certain limit. This result implies that when a large k-chain splits into several

independent small chains, system performance does not vary significantly. For

example, the average waiting time is approximately 1.91 for a 2-chain system with

Table 6 Efficiency of k-chain

with different sizes and traffic

loads(%)

K k

2 3 4 5 6 7

q = 0.8

3 94.18

4 89.85 98.31

5 86.72 96.76 99.26

6 84.46 95.38 98.55 99.61

7 82.80 94.21 97.86 99.22 99.77

8 81.55 93.22 97.23 98.84 99.53 99.85

q = 0.9

3 96.76

4 94.01 99.07

5 91.76 98.14 99.59

6 89.95 97.25 99.17 99.78

7 88.48 96.43 98.73 99.55 99.87

8 87.28 95.69 98.30 99.30 99.73 99.91

q = 0.95

3 98.29

4 96.73 99.52

5 95.36 99.01 99.79

6 94.18 98.50 99.56 99.88

7 93.15 98.01 99.31 99.76 99.93

8 92.26 97.56 99.07 99.62 99.85 99.95

q = 0.99

3 99.64

4 99.29 99.90

5 98.97 99.79 99.96

6 98.67 99.68 99.91 99.98

7 98.39 99.57 99.85 99.95 99.99

8 98.13 99.46 99.80 99.92 99.97 99.99
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size K ¼ 8. If we separate the system into two independent sub-systems with size

K ¼ 4, then the average waiting time for both systems is 2.39.

6 Conclusion

In this study, we investigate the k-chain efficiency in stochastic networks with

uncertainties on both the demand and supply sides. We consider loss systems and

queueing systems. The key performance measure for loss systems is the percentage of

lost customers.UnlikeChou et al. (2010)which shows that the performance of 2-chain

is close to 96 % that of the full flexibility systemwhen q ¼ 1, we find that 2-chain is no

longer effective in the loss system. This situation is even worse when traffic intensity

becomes higher. One needs to increase flexibility to achieve better performance. The
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key performance measure for queueing systems is the average waiting time. In these

systems, 2-chain performs ratherwellwhen traffic intensity is close to 1. This finding is

consistent with the existing literature which shows that 2-chain is an ideal system.

However, the efficiency of 2-chain drops when the traffic intensity gets lower. Thus, a

higher flexibility level, e.g., 3-chain or 4-chain, is required.

Our work can be extended in a variety of ways. One possible research direction for

future works is the discussion on asymmetric systems. In this research, we focus on the

symmetric case in which all servers are identical, all customer types are identical, and

the number of servers equals to the number of customer types. However, in reality, we

are often facedwith asymmetric systems where the demands are different for different

customer types or the service rates are different for different servers. Another direction

may involve investigating structural properties inmore general systemnetwork design

rather than focusing only on the k-chain configuration. In addition, one can develop

better algorithms to compute the performance of large systems.
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