
Pricing storage of outbound containers in container
terminals

Youn Ju Woo1 • Jang-Ho Song2 • Kap Hwan Kim1

Published online: 18 June 2016

� Springer Science+Business Media New York 2016

Abstract In container yard of container terminals, a storage charge is imposed to

encourage customers to limit the space required for their containers. This study

addresses the storage price scheduling problem for the storage of outbound con-

tainers. The price schedule consists of the free-time limit, which is the maximum

duration for a container to stay in the yard without any charge, and storage charge

per day for storing a container past the free-time-limit. Empirical data suggests that

the efficiency of loading operations significantly depends on the space utilized by a

vessel’s outbound containers. Mathematical models are developed to determine the

optimal storage price schedule in such a manner that the terminal’s total profit is

maximized or the total system’s cost is minimized. Both single and multi-vessel

cases are considered. Properties of the optimal solution are derived from the

mathematical models and numerical experiments are conducted to validate

solutions.
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1 Introduction

Storage spaces in container terminals provide a place for inbound and outbound

containers in a container terminal to be stored. Such containers are temporarily

stored at the yard before being loaded onto a vessel or carried out of the gate by

trucks. The goal of this study is to determine the storage price for outbound

containers by considering a terminal’s cost and revenue and customer response to

different price schedules.

In stowage plans, adjacent slots are dedicated to a group of outbound containers

with the same attributes (e.g., port of destination and size), and in general, are

consecutively filled. For speeding up the loading operation, outbound containers of

the same group are usually stored in adjacent slots in the yard. A container yard is

usually divided into several blocks, each of which consists of 20–30 yard-bays. In

the yard-crane (YC) system, each yard-bay consists of between six and ten rows

(stacks). Figure 1 illustrates a block with ten yard-bays and a yard-bay with six

stacks of four tiers. Note that adjacent slots are allocated to the same group of

containers to increase shipping operation efficiency. Adjacent empty slots are

blocked or reserved for a group in advance to accommodate and easily locate

randomly arriving containers. Note that in Fig. 1, some slots are already occupied

by containers and others are reserved for selected groups of outbound containers.

Table 1 illustrates the proportion of the arrivals of outbound containers, which

was collected from a real terminal in Busan during 1 year. Outbound containers

start to arrive at the terminal before 9 days before the loading operation. It can be

observed that the arrival rate of outbound containers increases as the loading

operation time approaches. Figure 2 shows the inventory of containers for a vessel.

The upper curve represents the cumulative reserved space in the twenty-foot-

equivalent-unit (TEU), and the lower curve corresponds to a vessel’s inventory of

containers. Note that all the required spaces are not reserved at once but instead they

are reserved in split amounts in multiple times to save the space. The difference

between the cumulative reserved space and inventory corresponds to the reserved

empty space. When the space requirement for outbound containers is estimated,

both the inventory of containers and space for reservation must be considered. The

average space utilization is area OAB divided by area OCDEFAB. Here, OAB and

OCDEFAB are the vertices of polygons in Fig. 2.

In general, terminal operators impose storage charges to reduce the space

requirement of containers. Beyond the free-time limit to store outbound containers,

storage charges are collected to reduce the dwell time of outbound containers at the

yard. Shippers store their cargo in or near the terminal. Containers arriving

considerably early to the port are temporarily stored at off-dock-container-yards

(ODCYs) or remote container yards. An ODCY generally charges lower storage

rates than a port container terminal (PCT); however, additional transportation costs

between an ODCY and PCT are incurred.

Outbound containers follow one of two possible routes prior to being delivered to

a PCT. The first route is to directly move a container to the PCT, and the second

route is to deliver a container to an ODCY for temporary storage. If the sum of
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ODCY storage and transportation costs is greater than PCT storage costs, the

container is moved directly from the shipper to the PCT; otherwise, it is temporarily

stored at an ODCY and then transferred to the PCT after the free-time limit begins.

The dwell time of a container at the port area and that in the yard of the container

terminal are denoted as DTP and DTY, respectively, from now on. Figure 3

illustrates two possible flows of outbound containers.

Figure 4 illustrates a price schedule that is being used at a terminal for storing an

outbound container beyond the free-time limit (4 days in this example); the storage

charge is approximately proportional to the DTY exceeding the free-time limit.

When the PCT offers a lower daily storage price and a longer free-time limit, the

inventory of containers in the yard increases; similarly, when a higher daily storage

price and shorter free-time limit are imposed, there is a lower density of containers

in the yard. However, it is well-known that the density of containers in the yard

Table 1 Distribution of dwell

times of outbound containers

before loading

Range of dwell time (h) %

0–24 21.92

24–48 34.92

48–72 17.28

72–96 10.24

96–120 7.03

120–144 4.11

144–168 2.03

168–192 1.34

192–216 0.76

216–240 0.36

Total 100.00

(a)

(b)

Fig. 1 Occupied, reserved, and partially occupied space (Woo and Kim 2011). a A block with containers
of different container groups (top view). b Reserved and occupied space (front view of Bay 7)
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Fig. 3 Two possible flows of outbound containers

Fig. 2 Inventory of outbound
containers and reserved space

Fig. 4 Storage charge (US$) for various DTYs (days) of a container (TEU) exceeding the free-time limit
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significantly affects the productivity of handling operations in a PCT. In the next

section, we analyze the relationship between yard space utilization and productivity

of vessel operations.

Space management in container terminals has been widely researched. Regarding

the space allocation of outbound containers, Taleb-Ibrahimi et al. (1993) proposed a

space allocation strategy in which temporary storage areas are used for containers

that arrive before a designated storage space is allocated (reserved). Kim and Kim

(2002) proposed a method for determining the storage space for import containers.

Kim and Park (2003) proposed a dynamic space allocation method for outbound

containers in which the space in each block is allocated to each vessel for future

container arrivals. Zhang et al. (2003) addressed a similar space allocation problem

and attempted to balance the workload among different blocks to avoid possible

congestions in parts of the yard. Lim and Xu (2006) proposed a method for locating

reserved space for each group of containers in a block. This method attempted to

schedule the allocation of empty spaces to each group so that in the final layout,

adjacent spaces would be reserved for the same group. Lee et al. (2006) proposed

yard-space allocation methods for a trans-shipment hub port. They suggested an

algorithm for assigning a space unit (called sub-blocks) to containers that are to be

loaded (discharged) onto (from) a vessel so as to minimize congestion during

discharging and loading operations. Lee and Hsu (2007) proposed a method for pre-

marshaling outbound containers to speed up loading operation. Dekker et al. (2006)

proposed various algorithms for locating containers in automated container yards

and compared their performance with each other. Cordeau et al. (2007) proposed a

method for assigning vessel storage spaces that minimize container relocation in the

yard of trans-shipment container terminals. Bazzazi et al. (2009) also attempted to

minimize the variation in workload handling across various blocks during space

allocation. Chen and Lu (2012) proposed a two-staged storage location assignment

method for outbound containers. Zhen (2014) proposed a container yard template

planning method considering varying numbers of loading containers for periodically

visiting vessels. Martin et al. (2015) proposed statistical models for estimating space

requirements for storing inbound and outbound containers in container terminals.

Petering (2015) addressed the real-time storage location assignment problem at

RTG-based transshipment container terminals. Li (2015) proposed a space planning

method for export containers considering workload distribution and yard space

utilization. Carlo et al. (2014) and Zhen et al. (2013) provide overviews on the

storage yard operation studies.

Related to the pricing of general cargo storage, Castilho and Daganzo (1991)

analyzed a pricing problem for temporary storage facilities like sheds at ports. They

proposed a mathematical model representing shipper behaviors for temporarily

storing their cargo responding to different price schedules. Holguin-Veras and Jara-

Diaz (1999) derived formulae for determining the space allocation and prices for

priority systems in CYs. They compared three different pricing rules: welfare

maximization, welfare maximization subject to a breakeven constraint, and profit

maximization. Holguin-Veras and Jara-Diaz (2006) extended this research by

considering the case where the container arrival rate is sensitive to the terminal’s

storage charge. Holguin-Veras and Jara-Diaz (2010) generalized their previous
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studies to a more general capacity-constrained transportation facility pricing

scheme that includes an entrance fee and a dwell charge. It was shown how the

facility owner could control both the arrival rate and the dwell time of the user using

this pricing scheme. However, these studies did not specifically assume the situation

of container terminals but those of general cargo storage facilities.

Related to the pricing of container storage, Kim and Kim (2007) proposed a

method for determining the free-time limit and storage price per unit time for inbound

containers. The free-time limit was assumed to be a positive continuous value; in

practice, however, a day is usually used to be the time unit. Kim and Kim (2010)

discussed three cost models for the optimal pricing structure of inbound containers

from the viewpoint of terminal operators. They used a discrete probability distribution

for the dwell time. Saurı́ et al. (2011) studied the effects of imposing a yard storage

tariff for inbound containers and used mathematical models to determine a price

schedule for a profit-maximizing terminal. Lee and Yu (2012) suggested an inbound

container storage price competition model between the container yard in a PCT and

the remote container yard. Although previous studies handled storage pricing

problems at container terminals, they were limited to the case of inbound containers.

Woo and Kim (2012) proposed a mathematical model for pricing the storage of

outbound containers. However, their model did not consider the effect of different

price schedules on the congestion in the yard and thus on the productivity of the ship

operations, which this paper considered in the formulation. Yu et al. (2015) analyzed

two-level inbound container storage pricing problems involving a container terminal

operator and an ocean carrier in two different inbound container storage contract

systems: the free-time contract system and the free-space contract system.

Unlike most of previous studies, which addressed price scheduling problems of

inbound containers, this study considers the storage pricing problem of outbound

containers. From empirical data, it is shown that the efficiency of loading operations

significantly depends on the space provided to each vessel. This relationship is used

for analyzing the effects of the price schedule on terminal performance. Moreover,

this study not only considers just a single vessel, but also considers multiple vessels.

In Sect. 2, we analyze the relationship between the storage price and the distribution

of container arrivals and that between space utilization and a terminal’s operational

performance. Mathematical models are developed for determining the optimal storage

price schedule in Sect. 3. Section 4 analyses the case of multiple vessels calling on a

weekly basis. Useful properties are derived from our mathematical models and

numerical experiments. Finally, we provide our concluding remarks in Sect. 5.

2 Storage charge, space utilization, and productivity of ship operations

As illustrated in Fig. 4, the price schedule is expressed by the following two

parameters:

F = Free-time limit for outbound containers (days)

S = Daily storage price in the CY of the PCT for the storage before the free-time

limit (F) (US$/TEU/day)
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When a container is delivered through an ODCY, then the following cost terms

need to be considered:

c0 = Transportation charge for a container (TEU) between the PCT and an

ODCY, and the handling cost at the ODCY (US$/TEU),

S0 = Daily storage price of a container at an ODCY (US$/TEU/day). This study

assumes that the daily storage price at an ODCY is lower than that at a PCT (S).

This is why containers are sometimes temporarily stored in an ODCY.

This study assumes that the transportation cost between a PCT and each ODCY,

the handling cost, and the storage price at the ODCY are the same for all outbound

containers. Let X be the random variable representing the dwell time of an outbound

container at the port (DTP). Note that after a container arrives at the port, it may be

stored at an ODCY or directly delivered to the PCT. This is a continuous random

variable.

Figure 5 shows the probability density function (pdf) of the dwell time at the port

(DTP), f(X), of outbound containers. Let F(X) be the cumulative probability

function of X. Note that X is a random variable from the viewpoint of the container

terminal operator, while, from the viewpoint of each shipper, it is deterministic.

That is, when a price schedule is announced by the terminal operator, each shipper

determines the flow of the container (as a result, the DTP of the container becomes

fixed) in the best manner to minimize his/her total cost. Previous studies assumed

the exponential distribution (Watanabe 2001; Kim and Kim 2007), linearly

decreasing distribution (Lee and Yu 2012; Yu et al. 2015), and the uniform

distribution (Lee and Yu 2012; Yu et al. 2015) as a dwell time distribution at the

Port, f(X). The real distribution in Table 1 is similar to the exponential distribution.

Let Y be the random variable representing the dwell time of a container in the

yard of the PCT (DTY). Because a container may stay at an ODCY after it arrives at

a port, Y B X. That is, X–Y represents the time for an outbound container stays at

an ODCY. As a result, the pdf of the DTYs, r(Y), is derived as shown in PCT in

Fig. 6. The pdf r(Y) is evaluated as follows: all containers for which movements to

an ODCY are more economical than direct delivery to the CY are moved to an

ODCY. They are then relocated to the CY of the PCT at the beginning of the free-

time limit. All containers that are delivered to the port before a specific time,

denoted by TS in this study, are classified into this class. The other containers are

Period CPeriod A Period B

DTP ( )0 5 10 15

Fig. 5 pdf of DTPs
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directly delivered to the terminal. Note that TS is a function of F and S and the value

of DTP of a customer for whom the direct delivery of a container to PCT costs the

same as delivering it through an ODCY, that is,

SðTS � FÞ ¼ c0 þ s0ðTS � FÞ: ð1Þ

Then, r(Y) is given by

rðyÞ ¼

f ðyÞ for 0 � y \ FR1
TS

f ðyÞdy for y ¼ F

f ðyÞ for F \ y � TS

0 for y [ TS

8
>><

>>:
ð2Þ

Note that r(y) in (2) is a mixed distribution, which is partially discrete and partially

continuous. That is, y is a random variable taking a value of ‘‘F’’ or a value from

½0;FÞ [ ðF;1Þ. However, the value of r(y) at y = F is not infinity but
R1

TS
f ðyÞdy.

Let RðYÞ be the cumulative probability distribution (cdf) of Y and CRðYÞ be the

complementary cdf of Y given by 1 - R(Y). Then, CR(Y) indicates the percentage

of outbound containers, which are expected to arrive at the yard of the container

terminal, when the remaining dwell time (DTY) is Y. In Fig. 7, the dashed line

represents the complementary cdf of X and the solid line represents CR(Y).

Figure 7b shows CR(Y) when the daily storage price becomes lower when compared

with Fig. 7a, while Fig. 7c shows CR(Y) when the free-time limit becomes shorter.

Note that Fig. 7b shows a larger amount of space requirement, while Fig. 7c shows

a smaller amount of space requirement.

Reservations are done to realize an ideal layout of containers so that they can be

efficiently loaded onto their corresponding vessel. The dotted line (HGIKA) in

Fig. 7d represents the reserved space, which includes occupied space and reserved

empty spaces. After initial reservations are made, spaces are progressively reserved

as a result of the space planning, as the inventory of containers increases in the yard.

The space availability and strategy of space planning affect the shape of the space

reservation curve. Space utilization is given by the occupied space (area below the

solid line) divided by the total space allocated to a vessel (area below the dotted

line); that is, the area of OHDCAO divided by the area of OHGIKAO.

To analyze the relationship between space utilization and the cycle time of a

quay crane (QC), data was collected from a container terminal in Busan, Korea from

January 2011 to October 2012. The number of berths in the terminal was six and the

Period B

50 15

Period CPeriod A

DTY ( )

Fig. 6 pdf of DTYs of
containers for a storage charge
and free-time limit
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number of QCs was seventeen. The space utilization was defined as the number of

slots (TEU) occupied by containers in the yard divided by the total number of slots.

For the ship operation, employees are usually organized in the unit of gang

corresponding to a group of employeeswhowork togetherwith a particularQC towhich

a particular order of works are assigned. A typical example of a gang includes a QC

driver, stevedores on the vessel for the lashing of containers, a foremanwho coordinates

the operations, stevedores on the apron, drivers for transport means and yard cranes.

When the number of gangs working at the same time was small, the productivity

of QCs was high, even when the yard was congested. Thus, only the data collected

during the shifts with more than 16 gangs deployed were used for the analysis. The

number of shifts for which data was collected was 77.

Results of the regression analysis are provided in Fig. 8. We found that the cycle

time of QCs increases as space utilization increases. The correlation coefficient

between the space utilization and the average cycle time was 0.778. Let C and U

represent the average cycle time of QC and the space utilization, respectively. The

following regression functions are derived:

Linear functionð Þ C ¼ 0:7547 þ 1:795U;

� Quadratic functionð Þ C ¼ 1:913�1:917U þ 2:942U2; and

� Exponential functionð Þ C ¼ 1:037 e0:943U:

Three statistics for the three regression models were compared with each other.

The summary of the statistical comparison among three models is as follows. The

(a) (b)

(c) (d)

Fig. 7 Impact of storage charge and free-time-limit on inventory of containers. a Original price
schedule. b Lower storage price. c Shorter free-time-limit. d Reservation
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results show that the p-values for all the three models are very small which means

the models significantly reduce variance significant. According to the statistics (R

Square, overall F-test, and Mean Square Residual) which are used to assess the fit of

regression model, it was found that three regression models fit well the data. Thus,

the following linear regression model was selected for the simplicity of the analysis.

Average cycle time minutesð Þ ¼ 1:795 � ðUtilization of storage spaceÞ
þ 0:7547: ð3Þ

About this simple linear regression model, the R-square value was 0.597, F value

was 111.3 whose corresponding significance level is almost zero, and the mean

square residual was 0.009. Results of this analysis will be used to describe the

relationship between the space allocated to outbound containers of a vessel and the

cycle time of QCs during the shipping operation for the vessel.

3 Pricing container storage of a vessel

In this section, we propose mathematical models for the price scheduling of

container storage. Some terminal operators may consider the revenue from the

storage charges their main source of income, while other operators may consider the

storage charge as a mean of balancing congestion in the yard and customer

convenience. If longer DTYs are allowed for outbound containers, then customer

convenience may improve; however, high congestion of containers in the yard is

expected. On the other hand, if shorter DTYs are allowed, then customers may be

inconvenienced, but container congestion in the yard is generally lower. When the

profit-making is not the main reason for terminal operators to impose the storage

Fig. 8 QC cycle time versus space utilization
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charge, the terminal operator will attempt to minimize the total cost of the terminal

and customers, which can be considered to be public disutility.

This section introduces two different mathematical models. The goals of these

models are to: (1) maximize terminal profits and (2) minimize the total cost of the

system, including the terminal and customers, for outbound containers. The next

section proposes a model in which the terminal operator attempts to minimize the

total cost of the system resulting for weekly-calling multi-vessels.

Notation:

g = Average number of gangs assigned to a vessel.

ct = Cost per minute for all the resources in a gang involved during the loading

operation in the PCT (US$/min). It includes the cost for workers as well as for

equipment.

cv = Average cost per minute of vessels that are calling at the PCT, including

operation and overhead costs (US$/min) (Jang 1992).

u = Total amount of containers to be loaded onto the vessel (TEU).

v = Total space available for the vessel under consideration (TEU 9 day).

3.1 Maximizing terminal profit

In the previous section, we showed that the expected cycle time of QCs can be

expressed as a linear function of space utilization. Suppose v is the amount of the

space allocated to a vessel; this quantity corresponds to the area under the dotted

line (HGIKA) in Fig. 7d. Note that the units of v are TEU 9 day. This section

assumes that the terminal operator maximizes terminal profits by optimizing the

values of F and S. We define this problem (P1) as follows:

maxF;S;Ts
EðPFðF; SÞÞ ¼

Z Ts

F

Sðx � FÞf ðxÞdx � ct a
u
R Ts

0
CRðyÞdy

v
þ b

 !

; ð4Þ

subject to

SðTs � FÞ ¼ c0 þ s0ðTs � FÞ; ð5Þ

u

Z TS

0

CRðxÞdx� v ð6Þ

S; F; Ts � 0: ð7Þ

The first term in (4) is the revenue from container storage charges while the

second term represents the operational costs for loading containers, which is

proportional to the cycle time of quay cranes. Note that u
R TS

0
CRðyÞdy

.
v in (4)

corresponds to the space utilization of storage space allocated to a vessel and thus

a
u
R Ts

0
CRðyÞdy

v
þ b

� �

represents the estimated average cycle time of QC, which can
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be estimated as in (3) where a is the slope (=1.795) and b is the intercept (=0.7547)

of the linear regression equation. The objective function can be simplified as

follows:

Z TS

F

Sðx � FÞf ðxÞdx � cta
u
R Ts

0
CRðyÞdy

v

From Rohatgi (1976),

Z Ts

0

CRðyÞdy ¼
Z 1

0

yrðyÞdy ¼
Z Ts

0

xf ðxÞdx þ F

Z 1

Ts

f ðxÞdx ð8Þ

Note that in (4), TS is defined as the DTP of a container for which directly

delivering to the PCT costs the same as temporarily storing at an ODCY. After

being stored at the ODCY, the container is delivered to the PCT at the beginning of

the free-time limit.

Property 1 For (P1), F ¼ 0 is an optimal solution. A proof of this property can be

found in ‘‘Appendix 1’’.

As a result of Property 1, E(PF(S)) replaces E(PF(F,S)). Using Property 1 and (8),

the objective function can be revised as follows:

max
S

E PFðSÞð Þ ¼ S

Z c0=ðS�s0Þ

0

xf ðxÞdx � cta
u
R c0=ðS�s0Þ
0

xf ðxÞdx

v

subject to

u

Z c0=ðS�s0Þ

0

xf ðxÞdx� v;

S, F, Ts � 0:

3.1.1 When DTP follows a uniform distribution

This sub-section assumes f(x) follows a uniform distribution. The following useful

property holds in this case.

Property 2 Let f ðxÞ ¼ 1=b; 0� x� b. E(PF(S)) is maximized at

S ¼ MaxfS1; S2; S3g, where S1 ¼ c0=b þ s0; S2 ¼ 2actu=v � s0; and S3 ¼
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ð2bvÞ

p
þ s0. A proof of this property can be found in ‘‘Appendix 2’’.

A numerical experiment was conducted to determine meaningful properties of

the solution. The following values of parameters were used for the experiment:

a = 1.795, ct = $42.61, s0 = $13.70, c0 = $63.00, u = 922 TEU, v = 1919 TEU.

Results are shown in Table 2. As shown in Table 1, total profit decreases as the

upper bound of the storage period increases. Note that as the upper bound increases,

the degree of uncertainty also increases.

Pricing storage of outbound containers in container… 655

123



3.1.2 When DTP follows an exponential distribution

Suppose f(x) follows an exponential distribution; that is, f ðxÞ ¼ de�dx where 1/d is

the average DTP. The objective function is modified as follows:

max
F;S;TS

EðPFðF; SÞÞ ¼ d S � auct

v

� �Z c0
S�s0

0

xe�dxdx

¼ S � auct

v

� � 1

d
� e

� dc0
S�s0

c0

S � s0
þ 1

d

� �� �

The input values defined above were also used for this case. The solution was

found by using a genetic algorithm. Results are shown in Table 3. As average DTP

increases, the total profit and the optimal price decreases.

3.2 Minimizing total system cost

In many terminals, a storage charge is imposed to control the inventory level of

containers in the yard rather than for profit making. In those terminals, the main

source of terminal revenue comes from handling charges for containers. Since the

main goal of the storage charge is to reduce congestion in the yard, the objective

function for minimizing the total cost of the system may be used instead of

maximizing profit. In particular, we define problem two (P2) as

min
F;S

E TCðF; SÞð Þ ¼ min
F;S;TS

ct þ
cv

g

� �
au
R TS

0
CRðyÞdy

v
þ
Z 1

TS

fc0 þ s0ðx � FÞgf ðxÞdx

" #

ð9Þ

subject to constraints (5)–(7). The first term of the objective function is the oper-

ation cost of loading a container, and cv is the vessel cost per unit time including the

overhead cost and operation cost. By dividing the vessel cost per unit time by the

number of gangs assigned to the vessel, the vessel cost per unit time is allocated to

each container. The second term represents the additional cost of temporarily

storing a container in an ODCY and delivering it to the terminal.

Table 2 Results for various values of b with uniformly distributed DTP

b 1 2 3 4 5

S* 76.70 59.80 59.80 59.80 59.80

Total profit 19.98 10.76 7.18 5.38 4.31

Table 3 Results for various values of d with exponentially distributed DTP

d 1 1/2 1/3 1/4 1/5

S* 86.27 71.89 67.54 65.47 64.27

Total profit 10.69 7.24 5.44 4.35 3.62
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3.2.1 When DTP follows a uniform distribution

This sub-section assumes f(x) follows a uniform distribution. In this case, the

following property holds.

Property 3 Suppose S; F; TS � 0, f ðxÞ ¼ 1=b; 0� x� b follows a uniform

distribution. E(TC(S,F)) is minimized when S ¼ MaxfS1; S3; S4g and F ¼ 0,

where S1 ¼ c0=ðb � FÞ þ s0; S3 ¼ s0 þ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ð2bvÞ

p
, and S4 ¼ auðct þ cv=gÞ=v. If

S� ¼ S1, then all values of (S, F) satisfying c0=ðS � s0Þ þ F [ b are also optimal

solutions. A proof of this property can be found in ‘‘Appendix 3’’.

A numerical experiment was conducted to explore meaningful characteristics of

the optimal solution. Additional parameter values used in the experiment are as

follows: g = 2, cv = $10.54/min. The values of other parameters are the same as

those used in the previous section. Table 4 lists the results for various values of

b. Results indicate that total cost increases as the upper bound of the distribution, b,

increases. In this study, the optimal free-time limit was 0; however, in practice, the

free-time limit ranges from three to seven days.

As shown in Fig. 9, when the storage charge (s0) in an ODCY increases, the total

cost of the system also increases. Note that as s0 becomes larger, S* remains the

same until s0 reaches 2.2 times of its initial value. When s0 exceeds the value, S*

begins to increase. The total cost steadily increases as the value of s0 increases.

Furthermore, when c0 changes, patterns, similar to those observed when s0 changes,

can be observed for S* and the total cost.

3.2.2 When DTP follows an exponential distribution

Suppose f ðxÞ follows an exponential distribution; that is f ðxÞ ¼ de�dx where 1/d is

the average DTP. The objective function and constraints are modified as follows:

min
S

ct þ
cv

g

� �
au

v

Z c0
S�s0

þF

0

dxe�dxdx þ F

Z 1

c0
S�s0

þF

de�dxdx

 !"

þ
Z 1

c0
S�s0

þF

dfc0 þ s0ðx � FÞge�dxdx

#

subject to

Z c0
S�s0

þF

0

dxe�dxdx þ F

Z 1

c0
S�s0

þF

de�dxdx� v

u
:

Table 4 Minimizing the total cost of the system when DTP is uniformly distributed

B 1 2 3 4 5

S* 76.70 45.20 41.29 41.29 41.29

Total cost 20.65 41.29 59.58 72.42 82.87
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For the numerical experiment, the solution was found by using a genetic

algorithm. All input values remained the same. The optimal free-time limit was

F� ¼ 0, and the optimal storage charge, S�, was $41.29, which was the same as in

the case when f ðxÞ followed a uniform distribution. Results in Table 5 shows that

total cost increases as the average DTP increases.

The average DTP was set to three days. Figure 10 shows that when the storage

charge in an ODCY increases, the total cost of the system (E(TC)) also increases.

Similar to the uniformly distributed DPT case, S* remains constant until s0 exceeds

2.2 times of its initial value. When the transportation cost (c0) increases, total cost

increases as well; furthermore, S* remains the same until c0 reaches 2.6 times of its

initial value. When c0 further increases, S* increases. As the values of s0 and c0
increase, the total cost monotonically increases. Figure 11 shows that as ct
increases, the optimal storage charge increases, and as cv increases, the optimal

storage charge increases as well. Overall, total cost increases.

4 Pricing container storage for weekly-calling multi-vessels

In the previous section, we assumed that some amount of space was pre-allocated to

outbound containers of a vessel. In practice, a vessel usually calls at a terminal once

a week. Because multiple vessels share a limited storage space in the yard, one

important issue is how to allocate the storage space among them. It should be

answered whether the space should be allocated proportionally to the total number

Fig. 9 Optimal storage charge and total cost for various multiples of original value of s0 and c0 for
uniformly distributed DTP

Table 5 Minimizing the total cost of the system with an exponential distribution

d 1 1/2 1/3 1/4 1/5

S* 41.29 41.29 41.29 41.29 41.29

Total cost 38.48 64.96 85.21 102.80 119.08
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of containers of each vessel, or proportionally to the average dwell time of

containers of each vessel. This section will propose a method to optimally allocate

the storage space as well as to determine the free-time limit and the storage price.

Let the total available space to outbound containers to be vTOT � Vi, coi, soi, cvi,

and ui represents the amount of space allocated to vessel i, the value of co, so, cv,

and u of vessel i, respectively.

This section assumes that the container arrival distribution differs among vessels.

In this case, the cost minimization problem (P3) can be formulated as

(P3)

MinF;S;Vi

Xn

i¼1

E½TCiðF; S;ViÞ�

¼
Xn

i¼1

ct þ
cvi

gi

� �
aui

R TS

0
CRi

ðxÞdx

Vi

þ
Z 1

TS

fc0 þ s0ðx � FÞgfiðxÞdx

" #

;

ð10Þ

subject to

Fig. 10 Optimal storage charge and total cost for various multiples of original values of s0 and c0 for
exponentially distributed DTP

Fig. 11 Optimal storage charge and total cost for various multiples of original values of ct and cv
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Xn

i¼1

Vi � vTOT ; ð11Þ

S TS � Fð Þ ¼ c0 þ s0 TS � Fð Þ; ð12Þ

ui

Z TS

0

CRi
ðxÞdx�Vi; ð13Þ

TS;Vi � 0: ð14Þ

Constraint (11) implies that the total storage space is limited. Let

V ¼ ðV1; V2; . . .; VnÞ. If constraint (11) is relaxed, (P3) can be modified as follows:

MinF;S;V RCðS;F;VÞ¼
Xn

i¼1

ctþ
cvi

gi

� �
aui

R TS

0
CRi

ðxÞdx

Vi

þ
Z 1

TS

fc0þs0ðx�FÞgfiðxÞdx

" #

þk
Xn

i¼1

Vi�vTOT

 !

;

ð15Þ

subject to constraints (12)–(14).

Let wi ¼ auiðct þ cvi

gi
Þ
R TS

0
CRi

ðxÞdx.

Then, oRCðS;F;VÞ=oVi ¼ �wi=V2
i þ k ¼ 0. Thus,

Vi ¼
ffiffiffiffiffiffiffiffiffiffi
wi=k

p
; k ¼

X ffiffiffiffiffi
wi

p
=VTOT

� �2
ð16Þ

After removing constant terms and replacing Vi with (16), The objective function

(15) becomes

MinF;S;VRC
_

ðS;F;VÞ ¼
Xn

i¼1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k ct þ
cvi

gi

� �

aui

Z TS

0

CRi
ðxÞdx

s"

þ
Z 1

TS

fc0 þ s0ðx � FÞgfiðxÞdx

	 ð17Þ

subject to constraints (12)–(14).

Since Vi is determined by (16), once the values of S and F are given, the decision

variables of (P3) are S and F. This study uses the genetic algorithm to find optimal

values for S and F.

The same approach may be applied to the model for maximizing the terminal

profit. Let the profit maximizing problem for pricing container storage for weekly-

calling multi-vessels be (P4). Then, the mathematical model may be derived as

follows:

(P4)
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MinF;S;Vi

Xn

i¼1

E½PFiðF; S;ViÞ� ¼
Xn

i¼1

Z TS

F

Sðx � FÞfiðxÞdx � ct

aui

R TS

0
CRi

ðxÞdx

Vi

( )" #

ð18Þ

subject to (11)–(14).

After relaxing constraint (11), (P4) can be modified as follows:

RPðS;F;VÞ ¼
Xn

i¼1

Z TS

F

Sðx � FÞfiðxÞdx � ct

aui

R TS

0
CRi

ðxÞdx

Vi

( )" #

þ kðvTOT

�
Xn

i¼1

ViÞ

subject to constraints (12)–(14).

Let qi ¼ auict

R TS

0
CRi

ðxÞdx.

Then, oRPðS;F;VÞ=oVi ¼ qi=V2
i � k ¼ 0. Thus,

Vi ¼
ffiffiffiffiffiffiffiffiffi
qi=k

p
; k ¼

Xn

i¼1

ffiffiffiffi
qi

p .
vTOT

� �2
: ð19Þ

Because, once the values of S and F are given, Vi is determined by (19), the

ultimate decision variables of (P4) are S and F as in the case of (P3). A search

procedure like a genetic algorithm may be used to find optimal values for S and F.

A numerical experiment was conducted for (P3). In the experiment, common cost

parameters were assumed to be the same except for the following: cvi = $10.54/min

for all i, ui = {81, 245, 521, 800, 1317}, and vTOT = 10,745 (TEU 9 day). The

distribution of DTPs for outbound containers varies from one vessel to another.

For the example of this study, the number of containers was fixed for five vessels

(922 TEUs per vessel), and the mean DTP of each vessel was 1, 2, 3, 4, and 5 days.

Figure 12 shows the percentage of space allocated to each vessel. Figure 12a

(a) (b)

Fig. 12 Proportion of space allocated to each vessel for various average DTPs. a Uniformly distributed
DTP. b Exponentially distributed DTP
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assumes the DTP of outbound containers for each vessel follows a uniform

distribution with different upper bounds; Fig. 12b assumes DTP follows an

exponential distribution. In the case of uniformly distributed DTP, the optimal

storage charge was $52.20, and the total cost was $384.36. Meanwhile, in the case

of an exponentially distributed DTP, the optimal storage charge and total cost were

$72.60 and $471.30, respectively. The optimal free-time limit was zero in both

cases. This suggests that a container whose DTP is longer than Ts should be stored at

an ODCY and moved to the PCT just before vessel operations begin. The optimal

value of Ts was 1.64 and 1.07 days for the uniform and exponentially distributed

cases, respectively. The optimal allocated space to a vessel with a longer DTP was

smaller than that of a vessel with a shorter DTP when the number of containers was

held constant.

A sensitivity analysis was conducted in which all the vessels contained the same

number of containers (922 TEU) for exponentially distributed DTPs. The mean

DTPs of the five containers were 1, 2, 3, 4, and 5 days. Various values of the total

space, vtot were investigated. Figure 13 shows the change in the proportion of space

allocated to each vessel when the total amount of the space varies. Total space

values tested were as follows: 1 9 10,745, 2 9 10,745, 3 9 10,745, …,

10 9 10,745 (TEU 9 Days). Results indicate that when total space is above a

specific threshold, a greater proportion of space is allocated to vessels whose

containers have a longer mean dwell time. However, when the total space is not

enough, the vessel with the shorter mean DTP of containers has a larger portion of

storage space.

The same sensitivity analysis was conducted for various values of the total space,

vtot, for vessels with the same mean, exponentially distributed, DTP of 3 days. In

this numerical experiment, the number of containers differed from one vessel to

another (81, 245, 521, 800, 1317 TEUs). Note that the proportion of space allocated

to each vessel remained the same regardless of a vessel’s total number of containers

and changes to the total number of available spaces (Fig. 14).

Fig. 13 Proportion of space allocated to vessels with various average DTPs for various total amounts of
space
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5 Conclusions

This study addressed a method for scheduling storage prices by considering the

storage price per day and free-time limit. A linear relationship was derived between

the utilization of storage space and the cycle time of QC operations in a container

terminal. Various mathematical models were developed to determine a price

schedule; both uniform and exponential distributions were considered for the dwell

time at port (DTP) of outbound containers. The first model maximized terminal

profits from only a single vessel, and the second model minimized total system costs

from outbound containers for a single vessel. The third model minimized the total

cost of multiple weekly-calling vessels at a terminal.

Many conclusions can be drawn from our experimental results. First, the optimal

value of the free-time limit was zero. For the single vessel problem, when the

distribution of DTP was uniformly distributed, the optimal price was found by

selecting one among several candidate values. When DTP was exponentially

distributed, the optimal price was found by a simple line search. As the ODCY

storage charge or transportation cost between the port terminal and ODCY

increased, the optimal value of S increased. When multiple vessels were considered,

the optimal value of space allocated to each vessel could be calculated using the

values of S and F; thus, S and F were decision variables. The proportion of space

allocated to each vessel was sensitive to the total available space when the mean

DTP of containers differed from one vessel to another. However, when the mean

DTP was held constant for all vessels, the proportion of space allocated remained

the same, even when total available space changed.

In future studies, more complicated pricing schedules will be considered. One

promising example of such new pricing schedules is the case where the terminal

provides a free-space limit to each vessel liner and each vessel liner can provide a

free-time limit to shippers for which the formulation for inbound containers (Yu

Fig. 14 Proportion of space allocated to vessels with different numbers of containers for various total
amounts of space
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et al. 2015) may be extended to the case of outbound containers. Some assumptions

can be relaxed or generalized in the future studies. This paper assumed the cost

parameters for shippers such as c0 and s0 to be the same for all the shippers. When

there are shippers who have a large deviation among them in the values of the

parameters, shippers may be classified into several groups for each which different

values of the parameters are assumed. In this paper, two probability distributions for

dwell time at the port (DTP) were used. For the application to other terminals, a new

distribution function, which fits the data of the corresponding terminal, may be

developed and analysed additionally. This study applied a simple search algorithm

in some problems. By utilizing the unique characteristics of our problem, more

efficient solution methods may be developed.

Appendix 1: Proof of Property 1

We will show that for a given value of TS, E PFðF1; S1Þð Þ[E PFð0; S0Þð Þ for an

F1 [ 0, where S1 ¼ s0 þ c0=ðTS � FÞ and S0 ¼ s0 þ c0=TS, which are obtained

from Eq. (5). The objective function EðPFðF; SÞÞ ¼ EðPFðFÞÞ ¼
R TS

F
s0þð

c0
TS�F

Þðx � FÞf ðxÞdx � cta
u
v

R TS

0
xf ðxÞdx þ f

R1
TS

f ðxÞdx
n o

.

dEðPFðFÞÞ
dF

¼
R TS

F
c0

ðTS�FÞ2 ðx � FÞf ðxÞdx �
R TS

F
s0 þ c0

TS�F

� �
f ðxÞdx�cta

u
v

R1
TS

f ðxÞdx.

Note that
R TS

F
c0

ðTS�FÞ2 ðx � FÞf ðxÞdx�
R TS

F
c0

TS�F

� �
f ðxÞdx because 0� x�F

TS�F
� 1 for

F � x� TS. Thus,
dEðPFðFÞÞ

dF
� �

R TS

F
s0f ðxÞdx�cta

u
v

R1
TS

f ðxÞdx� 0.

Hence, all these terms are non-positive. Namely, E(PF(F)) is a non-increasing

function of F. Thus, F* = 0.

Appendix 2: Proof of Property 2

Let f ðxÞ ¼ 1=b; 0� x� b, which is a uniform distribution. Then, the objective

function becomes E PFðSÞð Þ ¼ S
Rmin

c0
S�s0

; b

n o

0 x 1
b

dx � cta
u
v

Rmin
c0

S�s0
; b

n o

0 x 1
b

dx.

Case 1 c0=ðS � s0Þ� b, which can be rewritten as S� c0=b þ s0.

E PFðSÞð Þ ¼ 1

2b
S � actu

v

� � c0

S � s0

� �2

dE PFðSÞð Þ
dS

¼ 1

2b

c0

S � s0

� �2

�2 S � actu

v

� � c20

ðS � s0Þ3

( )

¼ c20

2bðS � s0Þ3
�S � s0 þ

2actu

v

� �
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Because S� c0=b þ s0, which will be denoted as S1, c20

.
S � s0ð Þ3 � 0. Thus, if

S� � s0 þ 2actu
v
, which we denote as S2, then

dE PFðSÞð Þ
dS

� 0. Namely, E(PF(S)) is a

decreasing function for S� S2, and an increasing function for S� S2.

(a) If S1\S2 , then the maximum objective value is obtained at S = S2. (b) If

S1 � S2, then in the range of S� S1, E(PF(S)) decreases as the value of S increases.

Thus, the maximum objective value is obtained at S = S1. From constraint (6) and

u
b

R c0
S�s0

0 xdx ¼ u
2b

c0
S�s0

� �2
¼ uc2

0

2bðS�s0Þ2
, we obtain

uc2
0

2bðS�s0Þ2
� v, which is equivalent to

S� s0 � c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ð2bvÞ

p
or S� s0 þ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ð2bvÞ

p
. However, because

S� s0; ðcÞS� s0 þ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ð2bvÞ

p
, which will be denoted as S3. From (a), (b), and

(c), (d) the maximum objective value is obtained at S = max {S1, S2, and S3}.

Case 2 S\c0=b þ s0.

In this case, E PFðSÞð Þ ¼ S
R b

0
x 1

b
dx � cta

u
v

R b

0
x 1

b
dx ¼ b

2
S � actu

v


 �
. Namely,

E PFðSÞð Þ is an increasing function of S. Now, consider the constraint in (6).

Following the analysis in case 1, we know that S� S2. If S3 � S1, then clearly

E(PF(S)) is maximized at S1, If S3[ S1, then there is no feasible solution. Thus, in

case 2, if there is a feasible solution, then E(PF(S)) is maximized at S = S1.

Considering cases 1 and 2 simultaneously, E(PF(S)) is maximized at S = max

{S1, S2, and S3}.

Appendix 3: Proof of Property 3

Suppose that f ðxÞ ¼ 1=b; 0� x� b, Then, the objective function can be expressed

as

E TCðF; SÞð Þ ¼ ct þ
cv

g

� �
au
R TS

0
CRðyÞdy

v
þ
Z 1

TS

fc0 þ s0ðx � FÞgf ðxÞdx

¼ ct þ
cv

g

� �
au

v

Z min
c0

S�s0
þF;b

n o

0

x

b
dx þ F

Z b

min
c0

S�s0
þF;b

n o 1

b
dx

0

@

1

A

þ
Z b

min
c0

S�s0
þF;b

n o ðc0 þ s0ðx � FÞÞ 1
b

dx

Case 1 c0=ðS�s0Þ þ F � b. Then, the objective function becomes

E ðTCðF; SÞð Þ ¼ ct þ
cv

g

� �
au

v

Z b

0

x

b
dx þ F

Z b

b

1

b
dx

� �

þ
Z b

b

c0 þ s0ðx � FÞf g 1
b

dx

¼ abu

2v
ct þ

cv

g

� �

which remains constant for all values of F and S.
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Case 2 c0=ðS�s0Þ þ F\b the objective function becomes

E TCðF; SÞð Þ ¼ ct þ
cv

g

� �
au

v

Z c0
S�s0

þF

0

x

b
dx þ F

Z b

c0
S�s0

þF

1

b
dx

 !

þ
Z b

c0
S�s0

þF

fc0 þ s0ðx � FÞg 1
b

dx

¼ au

2bv
ðct þ

cv

g
Þ c20

ðS � s0Þ2
� F2 þ 2Fb

( )

� s0c20

2bðS � s0Þ2
� c20

bðS � s0Þ
þ s0F

2

2b
� c0F

b

þ s0b

2
þ c0 � Fs0:

oE TCðS;FÞð Þ
oF

¼ F
s0

b
� au

bv
ct þ

cv

g

� �� �

þ au

v
ct þ

cv

g

� �

� c0

b
� s0:

From
oE TCðS;FÞð Þ

oF
¼ 0, F ¼ vgðc0þbs0Þ�abuðgctþcvÞ

vgs0�auðgctþcvÞ . Let this value of F be denoted as

F1. Note that the first term of E(TC(F,S)), ct þ cv

g

� �
au
R TS

0
CRðyÞdy

v
, represents the cost

at the PCT and
R Ts

0
CRðyÞdy indicates the expected DTY of a container at the

terminal. Thus, au
v

ct þ cv

g

� �
represents the additional cost for a container to stay at

the terminal one more unit time. In addition, s0 represents the additional storage cost

for a container to stay at an ODCY one more unit time. If s0 is greater than

au
v

ct þ cv

g

� �
, then no container may have to be stored at an ODCY (consider that c0

needs to be additionally paid for the storage at an ODCY). Thus, s0\ au
v

ct þ cv

g

� �
.

Thus, for a given value of S, E(TC(S,F)) monotonically increases when F\ F1 and

monotonically decreases when F C F1. Thus, F* = 0 or b. Note that

minS E TCðS; bÞð Þ ¼ E TCð0; 0Þð Þ, because in both cases, no container visits an

ODCY. However, in general, E TCð0; 0Þð Þ� minS E TCð0; SÞð Þ. Thus, F* = 0.

Next,
oE TCðS;FÞð Þ

oS
¼ c2

0

bðS�s0Þ3
S � au

v
ct þ cv

g

� �n o
:

Considering S[ s0, E(TC(S,F)) decreases until S reaches au
v

ct þ cv

g

� �
and then

increases. Note also that this function is valid in the range satisfying
c0

S�s0
þ Fð¼ 0Þ� b, which is equivalent to S1 ¼ c0=b þ s0. Let, S1 ¼ c0=b þ s0 and

S4 ¼ au ct þ cv=gð Þ=v. From constraint (6), we obtain
uc2

0

2bðS�s0Þ2
� v, which can be

converted to S� s0 þ c0
ffiffiffiffiffi
u
2bv

p
. Let S3 ¼ s0 þ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=ð2bvÞ

p
. Therefore, TC(S,F) is

minimized at S ¼ MaxfS1; S3; S4g. If S� ¼ S1, then E(TC(S*,0)) is the same as the

objective value of case 1, which is a constant for all the values of (S,F) and thus all

the values of (S,F) satisfying c0=ðS � s0Þ þ F � b become the optimal solutions.
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