
An estimation of distribution algorithm and new
computational results for the stochastic resource-
constrained project scheduling problem

Chen Fang • Rainer Kolisch • Ling Wang •

Chundi Mu

Published online: 13 January 2015

� Springer Science+Business Media New York 2015

Abstract In this paper we propose an estimation of distribution algorithm (EDA)

to solve the stochastic resource-constrained project scheduling problem. The algo-

rithm employs a novel probability model as well as a permutation-based local

search. In a comprehensive computational study, we scrutinize the performance of

EDA on a set of widely used benchmark instances. Thereby, we analyze the impact

of different problem parameters as well as the variance of activity durations. By

benchmarking EDA with state-of-the-art algorithms, we can show that its perfor-

mance compares very favorably to the latter, with a clear dominance in instances

with medium to high variance of activity duration.

Keywords Stochastic resource-constrained project scheduling � Estimation of

distribution algorithm � Permutation-based local search � Impact of problem

parameters

1 Introduction

The stochastic resource-constrained project scheduling problem (SRCPSP) is

concerned with scheduling a set of precedence related activities with stochastic

durations subject to scarce resources, such that the expected duration of the project

(makespan) is minimized (see, e.g., Herroelen and Leus 2005). In case of

deterministic activity durations the SRCPSP reduces to the RCPSP. The latter has

C. Fang � L. Wang � C. Mu

Tsinghua National Laboratory for Information Science and Technology (TNList), Department of

Automation, Tsinghua University, Beijing 100084, China

R. Kolisch (&)

TUM School of Management, Technische Universität München, Arcisstr. 21, 80333 Munich,

Germany

e-mail: rainer.kolisch@tum.de

123

Flex Serv Manuf J (2015) 27:585–605

DOI 10.1007/s10696-015-9210-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-015-9210-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-015-9210-x&domain=pdf

been shown by Blazewicz et al. (1983) to be NP-hard. Research on the RCPSP has

long been employed and its outcome is comprehensive (see for example Brucker

et al. 1999; Neumann et al. 2003; Kolisch and Hartmann 2006 as well as Hartmann

and Briskorn 2010). However, solving the RCPSP is of limited use for the SRCPSP

due to the following reasons. Firstly, a schedule which provides a start time for each

activity cannot be employed in the case of stochastic activity durations. Secondly,

Heller (1981) shows that project duration is systematically underestimated if the

RCPSP is solved for expected activity durations instead of obtaining the expected

project duration, subject to the distribution of the activity durations, i.e.

CmaxðEðd1Þ; . . .;EðdJÞÞ�EðCmaxðd1; . . .; dJÞÞ. The difference between Cmax

Eðd1Þ;ð . . .;EðdJÞÞ and EðCmaxðd1; . . .; dJÞÞ may become arbitrarily large with

increasing number J of activities and increasing variances of activity durations.

Thirdly, project planners are not only interested in the expected project makespan

but in more informative measures such as the entire distribution of the project

makespan or value at risk measures. Hence, there is a legitimate interest in

conducting research on the SRCPSP. Nevertheless, research on this topic is still

limited.

For solving the SRCPSP, one has to resort to so-called scheduling policies (see

Möhring et al. 1984) to which we will also refer simply as policies in the following.

The latter transforms a scenario, which for each activity yields a duration drawn

from the distribution function of that activity into a schedule, i.e. a start time for

each activity. Stork (2000) provides a survey of different classes of policies

including information on dominance relationships. For heuristics, two policy

classes—neither of which predominates—are most common: Activity-based

policies and resource-based policies. Stork (2001) has shown that when interpreted

as a function which maps a vector of activity durations into a vector of activity start

times resource-based policies are neither monotone nor continuous. As a conse-

quence, the majority of researchers have refrained from employing resource-based

policies.

Tsai and Gemmill (1998) proposed a tabu search algorithm for solving the

RCPSP and the SRCPSP using resource-based policies, although the latter are not

explicitly mentioned by the authors. Stork (2000) developed an exact branch-and-

bound algorithm for solving the SRCPSP employing three different classes of

policies, amongst them activity-based policies. Ballestin (2007) proposed a genetic

algorithm (GA) for the SRCPSP which employs activity-based policies. His

computational results show that there is a considerable gap between the

deterministic makespan Cmax Eðd1Þ; . . .;EðdJÞð Þ and the expected makespan

EðCmaxðd1; . . .; dJÞÞ for the RCPSP which is increasing with increasing variance

of the activity durations. These findings are in line with the results of Heller (1981).

Ballestin and Leus (2009) developed a greedy randomized adaptive search

procedure (GRASP) which employs activity-based policies. They examined various

objective functions related to timely project completion as well as their correlation.

They also studied the distribution of the makespan as obtained by GRASP showing

that in most cases, all activity distributions, except the exponential distribution, lead

to a normal distributed project makespan. Ashtiani et al. (2011) propose a new class

of policies, so-called pre-processor policies, a variant of the class of resource-based

586 C. Fang et al.

123

policies. They employed pre-processor policies within a genetic algorithm. Pre-

processor policies make a number of prior sequencing decisions and thus add some

extra precedence relations to the existing ones in order to resolve potential resource

conflicts. The remaining resource conflicts are dynamically resolved by employing a

resource-based policy.

The estimation of distribution algorithm (EDA) is a newly proposed algorithm

framework for stochastic optimization (see Larranaga and Lozano 2002). As such it

is in general suited for solving the SRCPSP. Unlike GA, which explicitly applies

genetic operators such as crossover and mutation to produce a new generation, EDA

reproduces a new generation implicitly by sampling from a probability distribution,

which captures features of good solutions. The best solutions derived are then taken

in order to further improve the probability distribution towards its ability to sample

superior solutions. Thus far, EDA has been applied to a variety of optimization

problems, amongst others flow-shop scheduling (see Jarboui et al. 2009), multi-

mode resource-constrained project scheduling (see Wang and Fang 2012) and

rostering (see Aickelin et al. 2007). EDA shares some common characteristics with

the cross-entropy method (see Rubinstein and Kroese 2004), which has been used

by Bendavid and Golany (2009) to solve a stochastic project scheduling problem

different from the SRCPSP. In this paper we propose EDA to solve the SRCPSP

employing the resource-based scheduling policy. The choice of the latter has been

inspired by the promising results recently obtained by Ashtiani et al. (2011). Our

algorithm is characterized by a novel way of defining and updating the probability

distribution. Furthermore, a permutation-based local search method is applied to the

best individuals to exploit their neighborhood. Computational results and compar-

isons with existing algorithms demonstrate the effectiveness of our EDA approach.

The remainder of the paper is organized as follows: In Sect. 2, the SRCPSP is

described, and in Sect. 3, the proposed EDA is introduced. Computational results

and comparisons are provided in Sect. 4. Finally, we end the paper with some

conclusions in Sect. 5.

2 Definitions and problem statement

2.1 The stochastic RCPSP

The (deterministic) RCPSP is concerned with the scheduling of project activities to

minimize the project’s makespan. The RCPSP can be stated as follows. A project

consists of J activities labeled j ¼ 1; . . .; J, where the deterministic duration of

activity j is denoted by ddj. There exist precedence relationships between some

activities of the project. This relationship is given by sets of immediate predecessors

Pj indicating that an activity j may not be started before any of its predecessors

i 2 Pj is completed, which can be denoted as i � j. The set of renewable resources is

referred to as K. For each resource k 2 K, the per-period-availability Rk is assumed

to be constant. Activity j requires rjk units of resource k in each period of its non-

preemptable duration. The activities j ¼ 0 and j ¼ J þ 1 are dummy activities,

An estimation of distribution algorithm 587

123

which represent the start and end of the project, respectively. It is assumed that the

dummy activities do not require any resources and their durations are equal to zero.

The set of all activities including the dummy activities is denoted as

Jþ ¼ f0; . . .; J þ 1g. The most common objective is to minimize the makespan of

the project; this objective is also considered in our paper. The RCPSP can also be

represented by a directed acyclic graph G(N, A), where the set of nodes N denotes

the activities of the project and the set of arcs A contains all the arcs ði; jÞ where

i; j 2 Jþ, i � j. A solution for the deterministic RCPSP is a schedule s ¼
ðs0; s1; . . .; sJþ1Þ which is a vector of start times of activities. A schedule is feasible

if the precedence constraint and resource constraint are guaranteed.

Heuristics for RCPSP usually encode the schedule with some representation, for

example an activity list. A schedule generation scheme (SGS) is then used to

transform the representation to a schedule. Two SGS procedures are used in

literature: the parallel SGS and the serial SGS (see Kolisch 1996 as well as Kolisch

and Hartmann 1999 for details).

In the Stochastic RCPSP (SRCPSP), the duration Dj of each activity j 2 Jþ is a

random value which follows a known probability distribution. The vector

ðD0;D1; . . .;DJþ1Þ is denoted by D. For the activities j ¼ 0; J þ 1, P½Dj ¼ 0� ¼ 1;

for the activities j = 1, …, P½Dj\0� ¼ 0 (where P½e� represents the probability of

event e), we use vector d ¼ ðd0; d1; . . .; dJþ1Þ to represent one particular scenario

(also termed sample or realization).

2.2 Scheduling policies

In the stochastic RCPSP, we can no longer use a vector of start times of activities to

represent a solution because we do not know the exact duration of each activity

before it has been finished. As a result, a scheduling policy is needed to decide

which activity to choose at each decision time. Decision times are t ¼ 0 (the start

time of the project) and the finishing times of activities. For each decision time t,

only information which has become available up to t can be used to make the

decision (non-anticipativity constraint, see e.g. Stork 2001). That means we can

only know the durations of activities which have been finished up to time t. After all

activities are completed, we obtain a scenario d from the random duration vector D.

Consequently, every policy p may alternatively be interpreted as a function p :

Rþ
Jþ2 ! Rþ

Jþ2 that maps a given scenario d to start times of activities (schedules)

sðd; pÞ (Stork 2000). For a given sample d and scheduling policy p, sJþ1 d; pð Þ
denotes the makespan of the project. The objective for the SRCPSP is to select a

policy p� which minimizes the expected makespan E sJþ1ðD; p�Þ½ �.
Various classes of policies have been proposed for the SRCPSP. Some well-

known classes of policies are earliest-start policies (PES), preselective policies

(PPS), linear preselective policies (PLPS), resource-based policies (PRB), activity-

based policies (PAB), and pre-processor policies (PPP), (see Stork 2001; Ashtiani

et al. 2011).

The policy classes PES, PPS and PLPS are based on the so-called minimal

forbidden sets (see Stork 2000 for details). Since the number of minimal forbidden

588 C. Fang et al.

123

sets grows exponentially with the number of activities, the computational time

becomes unacceptable when dealing with practical project scheduling problems. As

a result, policies which do not need the calculation of minimal forbidden sets should

be adopted when dealing with real size projects. These are resource-based policies,

activity-based policies and pre-processor policies. As will be shown, each of these

policies operates in a specific way with an activity list. Hence, with p we denote

activity list and policy interchangeably.

A resource-based policy p 2 PRB considers at any decision time t the not yet

started activities in the order of activity list p. At t, some activities will have

finished, some activities will be active (that is, they have started but are not yet

finished), and some activities will not yet have started. The policy selects the first

activity on the list which has not started, whose predecessors in the activity network

have already been completed, and for which there is enough capacity left in order to

be processed at t. This activity is started at t. Further activities are selected to start at

t until no activity is available any more. Then, the new decision time t’ is increased

to the next finish time of one of the activities which have been active or started at

t\t0. The counterpart of a resource-based policy for the RCPSP is the parallel SGS.

Stork (2001) has shown that policies from the class PRB, when viewed as function

which maps a vector of activity durations into a vector of activity start times, are not

always monotone or continuous. That is, the makespan may increase although

activity durations are decreasing (so-called Graham anomalies, see Graham 1966).

An activity-based policy p 2 PAB schedules activities as early as possible in the

order of an activity list p but adds the side constraint that siðdÞ� sjðdÞ if i �p j for

each scenario d. i �p j denotes that activity i precedes activity j in activity list p.

The side constraint is necessary to prevent activity j from delaying activity i,

although there is i �p j. Ballestin (2007) speaks of activity-based policies as

‘‘stochastic serial SGS’’ which equals the deterministic serial SGS with the

additional side constraints. Sprecher (2000) shows that when employing the

activity-based policy to the (deterministic) RCPSP there will always be one activity

list which leads to the minimum makespan.

Pre-processor policies PPP (see Ashtiani et al. 2011) combine unconditional

sequencing decisions as made by earliest-start policies PES with the real-time

dispatching features of resource-based policies PRB. For this, a pre-process is

employed to define extra arcs which are added to the original directed acyclic graph

GðN;AÞ.
Since the aim of this paper is to develop an algorithm to solve real size projects,

we cannot employ policies from the classes PES, PPS and PLPS which are based on

the minimal forbidden sets. Thus we have to resort to one of the policy classes PRB,

PAB or PPP. Based on the observation of Ashtiani et al. (2011) and Fliedner (2011),

which showed that policies from the class of resource-based policies performed on

average better than policies from the class of activity-based policies, we employ the

class of resource-based policies.

An estimation of distribution algorithm 589

123

3 Estimation of distribution algorithm for the SRCPSP

The estimation of distribution algorithm (EDA) is an evolutionary metaheuristic

which has its theoretical foundation in probability theory. For foundations of EDA

see Larranaga and Lozano (2002). EDA has been used for a variety of different

problems (see Larranaga and Lozano 2002). A number of papers employ estimation

of distribution algorithms for scheduling problems. Jarboui et al. (2009) and Zhang

and Li (2011) consider the permutation flow shop problem with a minimizing total

flow time objective, and Aickelin and Li (2007) as well as Aickelin et al. (2007)

treat nurse scheduling and nurse rostering, respectively. Pan and Ruiz (2012)

consider makespan minimization for the lot-streaming flow shop problem with setup

times. Finally, Wang and Fang (2012) address makespan minimization for multi-

mode resource-constrained project scheduling.

In contrast to the genetic algorithm (GA), EDA does not directly generate new

solutions by crossover of parent solutions and mutations but by sampling from a

probability distribution. The latter depicts the features of a selected set of feasible

solutions of the problem. The probability distribution is the core of EDA and

termed there as a probability model. In case of an optimization problem with

unrelated variables, where each variable can take on a value independently of the

value of the other variables, the probability distribution can be immediately

derived from the solution itself. For example, the probability distribution for an

unconstrained binary optimization problem max f(x) subject to x 2 1; 0f g could be

a vector p of the size of x where pi is the parameter of the Bernoulli distribution

of variable xi. However, when variables are interrelated by constraints, the

probability distribution is defined for an encoding of the solution instead of the

solution itself. An encoding for the RCPSP can be, for example, an activity list.

The probability distribution of a list could then be a J � J matrix which gives for

each element (i, j) the probability that activity i is placed at position j of the list

(see Wang and Fang 2012). In this paper we define the probability distribution for

a matrix X which states for each pair of activities (i, j) whether activity i is placed

before activity j on the list or not. Details of the definition of the probability

distribution are provided in Sect. 3.2. Using the probability distribution for matrix

X, we can sample activity lists and thus solutions. Now, starting with some initial

probability distribution for matrix X, in each generation EDA samples a number of

activity lists and selects an elite set of lists with the best objective function value.

The lists in this set are further improved by applying a simple local search

procedure. The resulting elite set of lists is then employed in order to update the

probability distribution of the next generation. The aim is to improve the estimate

of the probability distribution over the generations in terms of its ability to breed

high quality solutions. We will now provide the details for the procedure in

Sects. 3.1–3.7.

3.1 Representation and fitness function

As a generalization of RCPSP, SRCPSP also shares most of the characteristics of

RCPSP. Kolisch and Hartmann (1999) concluded from experimental tests that

590 C. Fang et al.

123

procedures for solving the RCPSP based on the activity list representation yield

good results. Inspired by this observation, we adopted the activity list representation

to encode individuals. Let us denote the activity list as p ¼ a0; a1; . . .; aJþ1½ � where

aj is the activity on position j of the list.

As fitness value of an activity list p we use the expected makespan which we

approximate by the average makespan of nscen scenarios

fitnessðpÞ ¼ 1

nscen

Xnscen

n¼1

sJþ1 dn; pð Þ ð1Þ

Ballestin (2007) showed that for a fixed number of generated schedules s dn; pð Þ
using less scenarios nscen is beneficial because more individuals can be evaluated.

Following Ballestin and Leus (2009) we choose nscen = 10 to evaluate an activity

list during the search procedure.

3.2 Probability model

As stated at the beginning of Sect. 3, we use an activity list solution representation

in order to build the probability model. Let X be a J � J binary random variable

matrix which can be defined as

X ¼
X11 � � � X1J

..

. . .
. ..

.

XJ1 � � � XJJ

0
B@

1
CA ð2Þ

with

Xij ¼
1; if activity i is placed before activity j in activity list p
0; else

�
ð3Þ

Accordingly, we can map an activity list p to X with a function

f0; 1; . . .; J þ 1gJþ2 7!f0; 1gJ�J
:

X ¼ f ðpÞ ð4Þ

Let us illustrate X ¼ f ðpÞ by mapping activity list p = [2, 1, 3] into matrix

X ¼
0 0 1

1 0 1

0 0 0

0

@

1

A. Since for a feasible activity list, activity i is placed before

activity j or vice versa, Xi;j þ Xj;i ¼ 1 holds for any two activities i, j, i = j.

Furthermore, X contains the transitive closure obtained from a graph which depicts

the linear order of the activities in p and thus has
J�ðJ�1Þ

2
non-zero entries, whereas p

requires J ? 2 entries only. Since the entries in X are in {0, 1}, it follows

immediately that the sum of all entries in X is
J�ðJ�1Þ

2
.

An estimation of distribution algorithm 591

123

We can now define the probability matrix

/ ¼
pðX11 ¼ 1Þ . . . pðX13 ¼ 1Þ

..

. . .
. ..

.

pðXJ1 ¼ 1Þ . . . pðXJJ ¼ 1Þ

0
B@

1
CA ð5Þ

where element p Xij ¼ 1
� �

2 ½0; 1� represents the probability that activity i is placed

before j in the list. Since the probability matrix will change during the iteration of

the EDA we denote with ug and with pg ¼ ðXijÞ the probability matrix and element

(i, j) of the matrix in iteration g, respectively.

3.3 Distribution-based offspring sampling

We can now use probability matrix u in order to sample activity lists and thus

solutions. For this we employ a variant of the parallel SGS (see Kolisch and Hartmann

1999). Starting with the partial list p = [a0 = 0] with activity 0 being in the first

position a0, the set of eligible activitiesE is defined. An activity j is inE if it is not on the

list and each of its predecessors in the activity network is on the list. For each activity

j 2 E the probability of extending the list with j is calculated according to

Probi ¼
P

j2E pg Xij ¼ 1
� �

P
i2E

P
j2E pg Xij ¼ 1

� � ð6Þ

Fig. 1 Procedure DBOS

592 C. Fang et al.

123

and the next activity on the list is randomly selected based on Prob. To illustrate the

approach let us consider a project with 3 non-dummy activities and single prece-

dence constraint 2 ? 3 as well as the probability matrix u ¼
0 :3 :7
:7 0 :7
:3 :3 0

0
@

1
A. For

determining activity a1 we have E = {1, 2}, Prob1 ¼ 0:3
0:3þ0:7 ¼ 0:3 and

Prob1 ¼ 0:7
0:3þ0:7 ¼ 0:7. Figure 1 provides the pseudocode of distribution-based off-

spring sampling (DBOS).

3.4 Local search strategy

In order to improve solutions we employ a permutation-based local search strategy

(PBLS) which is described in Fig. 2. It employs the swap operator proposed by

Hartmann (1998) by swapping the position of the i-th and the (i ? 1)th activity in

the list with probability Pper, if the two activities are not precedence related.

3.5 Updating mechanism

A population-based updating mechanism is proposed to update the probabilistic

matrix ug. Firstly, in iteration g the population Xg : fpgð1Þ; pgð2Þ; . . .; pgðMÞg of

size M is generated according to the matrix ug. After evaluating the population,

Q\M best individuals are selected from Xg to form the elite set

XElite
g : fpEg ð1Þ; pEg ð2Þ; . . .; pEg ðQÞg. Secondly, the PBLS is employed to improve

each individual of the elite set. Then, the elite set is chosen to update ug according

to equation

Fig. 2 Procedure of PBLS

An estimation of distribution algorithm 593

123

ugþ1 ¼ ð1 � bÞ � ug þ b � 1

Q

X

q2XElite
g

IgðqÞ ð7Þ

where b is the learning speed and IgðqÞ is the frequency matrix of the qth individual

of XElite
g in generation g which is defined as

IgðqÞ ¼
d11gðqÞ � � � d1JgðqÞ

..

. . .
. ..

.

dJ1gðqÞ � � � dJJgðqÞ

0
B@

1
CA ð8Þ

employing the frequency function dijgðqÞ according to:

dijgðqÞ¼
1; if activity i is placed before activity j in the qth individual of XElite

g in generation g;

0; else:

(

ð9Þ

Note that the updating mechanism always maintains the characteristic

p Xij ¼ 1
� �

þ p Xji ¼ 1
� �

¼ 1 of u. In contrast to X, the number of non-zero entries

is not limited to
J�ðJ�1Þ

2
but typically is J � ðJ � 1Þ.

3.6 Initial population

Hartmann (1998, 2002) has shown that it is advantageous to generate an initial

population with the regret-based biased random sampling method of Kolisch (1996)

using the latest finish time (LFT) priority rule. Following this advice, we generate an

initial population XInit. For each of the q = 1, …, M activity lists pInitðqÞ we obtain

the frequency matrix IInitðqÞ according to Eqs. (8)–(9). In order to balance quality

and diversity for the initial probability matrix u0 we blend these frequency matrices

with the uniform probability matrix

uuniform ¼

0 0:5 � � � 0:5

0:5 . .
. . .

. ..
.

..

. . .
. . .

.
0:5

0:5 . . . 0:5 0

0

BBB@

1

CCCA ð10Þ

by employing Eq. (7) with parameter b

u0 ¼ ð1 � bÞ � uunifom þ b � 1

M

X

q2X0

IInitðqÞ ð11Þ

Note that for the probability matrix of each generation the sum of all entries of u

is
J�ðJ�1Þ

2
.

594 C. Fang et al.

123

3.7 EDA-procedure for the SRCPSP

Employing the building blocks presented above, we can now give the overall

description of EDA for solving the SRCPSP in Fig. 3.

4 Computational results

4.1 Problem instances

We coded the proposed algorithm in C?? using Microsoft Visual Studio 2005. All

the experiments were performed on an IBM Thinkpad T61 with a Core 2 T7500

2.2 GHz processor. We used the standard RCPSP dataset J120 from the PSPLIB

(see Kolisch and Sprecher 1996) for testing. The problem set J120 contains 600

instances with 120 activities each.

We follow Stork (2001), Ballestin and Leus (2009) and Ashtiani et al. (2011) in

the choice of the probability distribution types, means, and variances. The

deterministic processing times d� 2 NJ that appear in J120 are taken as the expected

values for the stochastic duration. We work with five distributions: two continuous

Fig. 3 EDA for the SRCPSP

An estimation of distribution algorithm 595

123

uniform distributions with intervals ½d�i �
ffiffiffiffiffi
d�i

p
; d�i þ

ffiffiffiffiffi
d�i

p
� and ½0; 2d�i �; one

exponential distribution with mean d�i ; and two beta distributions with variance

d�i =3 and d�2
i =3, both with support ½d�i =2; 2d�i �. In the following, we will refer to

these five distributions as U1, U2, Exp, B1, and B2, respectively. The variance of

these distributions is d�i =3, d�2
i =3, d�2

i d�i =3, and d�2
i =3, respectively. That means that

U1 and B1 have relatively little variability, U2 and B2 have medium variability,

and Exp has large variability. The parameters ða; bÞ of the beta distribution are

ðd�i
�

2 � 1=3; d�i � 2=3Þ and ð1=6; 1=3Þ for B1 and B2, respectively.

We evaluate the quality of the algorithm by the average percentage deviation of

E sJþ1 D; pð Þ½ � from the critical path length with the deterministic durations d�. The

expected makespan is obtained by mean of a simulation with 1,000 replications. In

order to compare different algorithms fairly, computational effort is measured by

the number of generated schedules, which is 5,000 and 25,000 (see Kolisch and

Hartmann 2006). Solving one scenario with a resource-based policy will be counted

as one generated schedule.

4.2 Setting the parameters of the EDA

We used the Taguchi method of design of experiment (see Montgomery 2009)

to determine a set of suitable parameters for the EDA. From the J120 dataset we

chose 60 instances according to Xp_q.RCP, where p ¼ 1; 2; . . .; 60 and

q ¼ p� p�1
10

� �
� 10. For each of these instances we chose the U2 distribution since

it has a medium level of variability.

The EDA contains four key parameters: the population size of each generation

(M), the size of the elite set (Q), the PBLS acceptance rate (Pper), and the learning

speed (b). With the five levels for each parameter given in Table 1 and using an

orthogonal array L25ð54Þ, we obtain 25 parameter combinations. Each of the 60

instances is solved with each parameter combination and a maximum number of

5,000 and 25,000 schedules as stopping condition. The response R for each

parameter combination and stopping criterion is the average deviation of the

makespan obtained by the thus parameterized EDA from the critical path based

lower bound LB of the instance with deterministic activity durations d�.

R ¼ 1

60

X60

i¼1

Makespani � LBið Þ
LBi

ð12Þ

Table 1 Combinations of

parameter values
Parameters Factor level

1 2 3 4 5

M 100 150 200 250 300

Q 1 % M 2 % M 5 % M 8 % M 10 % M

Pper 0.1 0.3 0.5 0.7 0.9

b 0.1 0.3 0.5 0.7 0.9

596 C. Fang et al.

123

Figures 4 and 5 present the main effect of the parameter variations on the

solution quality. It can be seen that the main effect is rather moderate. Based on the

results we set the parameter to M = 150, Q = 1 % M, Pper = 0.5 and b = 0.3 for

the following experiments.

4.3 The impact of the project characteristics and distribution types

In this section, we analyze the impact of project characteristics on the performance

of the proposed EDA. According to Kolisch and Hartmann (1999), a full factorial

design of the variable parameters including network complexity (NC) (3 levels),

resource factor (RF) (4 levels), and resource strength (RS) (5 levels) with 10

replications per cell is adopted to generate a total of 3 � 4 � 5 � 10 ¼ 600

benchmark problems for J120. NC is the average number of non-redundant arcs per

node, including the dummy start and finish activity. RF 2 ½0; 1� gives the average

percentage of resources requested per activity, while RS 2 ½0; 1� measures the

strength of the resource constraints, where low values indicate that resource

constraints are tight. Besides the distributions U1, U2, Exp, B1, and B2 we also

adopt the deterministic case (Deter) for comparison. Only 1 scenario (nscen = 1) is

needed for calculating the fitness value of an activity list for the deterministic case,

whereas 10 scenarios (nscen = 10) are used for calculating each fitness value for

U1, U2, Exp, B1, and B, respectively. For a fair comparison, 500 schedules and

2,500 schedules are adopted as the stopping conditions for Deter. Tables 2 and 3 as

well as Fig. 6 provide information on the average percentage deviation of EDA

from the deterministic critical path based lower bound with deterministic durations

with respect to the levels of problem parameters and the distribution functions.

There are a number of observations which can be made. Firstly, the average

Fig. 4 Factor level trend with 5,000 schedules

An estimation of distribution algorithm 597

123

deviation from the lower bound (Ave.LB.Dev) increases with increasing variance of

the distribution function. This effect is consistent for all problem parameters and

parameter levels and confirms the results of Heller (1981) and Ballestin (2007).

Secondly, the type of distribution function does not have an impact but the variance

of the distribution does. This can be observed for the uniform distribution U1 and

Fig. 5 Factor level trend with 25,000 schedules

Table 2 Average percentage deviation for different project parameters and distributions (5,000

schedules)

Project parameters U1 U2 Exp B1 B2 Deter

NC

1.5 45.65 54.53 69.95 45.98 56.36 39.34

1.8 45.35 54.49 70.45 45.79 56.35 38.83

2.1 50.87 60.61 77.11 51.17 62.16 44.51

RF

0.25 19.58 31.04 50.73 19.9 32.48 12.31

0.5 44.52 54.15 70.83 44.74 55.5 36.29

0.75 58.3 66.7 80.91 58.74 68.32 52.31

1 66.76 74.3 87.54 67.21 76.87 62.67

RS

0.1 120.51 131.51 148.07 120.84 133.67 111.33

0.2 60.63 69.3 83.67 60.89 71.27 53.68

0.3 29.31 37.48 52.06 29.69 39.13 23.71

0.4 17.16 26.38 43.17 17.66 27.79 11.87

0.5 8.84 18.04 35.55 9.15 19.59 3.88

598 C. Fang et al.

123

Fig. 6 Average percentage deviation for different project parameters and distributions

Table 3 Average percentage deviation for different project parameters and distributions (25,000

schedules)

Project parameters U1 U2 Exp B1 B2 Deter

NC

1.5 45.03 54.16 69.62 45.57 55.93 38.28

1.8 44.79 54.07 70.02 45.14 55.88 37.84

2.1 50.16 59.97 76.52 50.42 61.66 42.82

RF

0.25 19.41 30.89 50.6 19.68 32.34 12.09

0.5 43.89 53.85 70.33 44.09 55.12 34.87

0.75 57.41 65.96 80.36 57.91 67.75 50.75

1 65.94 73.57 86.93 66.48 76.09 60.88

RS

0.1 119.05 130.47 147.04 119.58 132.74 108.77

0.2 59.95 68.73 83.13 60.2 70.66 52.24

0.3 28.79 37.07 51.73 29.07 38.71 22.62

0.4 16.82 26.12 42.92 17.32 27.54 11.06

0.5 8.7 17.95 35.45 9.02 19.46 3.54

An estimation of distribution algorithm 599

123

the beta distribution B1 which have the same variance of d�i =3. Thirdly, the average

deviation from the lower bound increases for increasing resource factor RF, i.e.

more resources are requested by an activity, and decreasing resource strength RS,

i.e. scarcer resources. These findings are basically in line with observations on the

impact of the problem parameters on the RCPSP (see Kolisch 1995). The impact of

the network complexity NC is not as clear. While there is no impact when increasing

NC from 1.5 to 1.8, there is a decrease of the average deviation from the lower

bound when NC is increased from 1.8 to 2.1. This effect deviates from previous

findings for the deterministic case where Kolisch (1995) did not observe a

significant impact from the NC on the performance of priority rule based heuristics.

However, Kolisch (1995) measured the deviation from the optimal solution while,

due to the size of the problems, we are measuring the deviation from the critical

path based lower bound. In order to analyze the impact of the lower bound in more

detail, Table 4 provides the critical path based lower bound (LB) and the upper

bound (UB) generated by the proposed EDA for different project parameters for the

deterministic case. Based on the results listed in Table 4, the impacts of different

project parameters are illustrated in Figs. 7, 8 and 9. Figure 7 shows that the NC has

an impact on both the LB and the UB. When NC increases, LB and UB increase as

well. The reason is that additional (non-redundant) precedence relations lead to an

increase in the length of the critical path of the project (LB) as well as a resource-

feasible project makespan (UB). Interestingly, the slope of LB decreases for

increasing NC, while the slope of UB increases. That is, from a medium level of NC

on, the impact of additional precedence relations on the critical path decreases

noticeably, while the impact on the resource feasible makespan increases mildly.

Table 4 LB and UB for different project parameters (deterministic case)

Project

parameters

LB UB

(500 schedules)

UB

(2,500 schedules)

NC

1.5 86.78 120.24 119.33

1.8 95.92 132.83 131.88

2.1 102.16 146.78 145.08

RF

0.25 94.69 105.99 105.8

0.5 95.29 129.41 128.06

0.75 95.51 144.75 143.28

1 94.31 152.97 151.23

RS

0.1 95.06 199.26 196.8

0.2 93.86 143.99 142.63

0.3 97.62 120.52 119.46

0.4 93.28 104.13 103.39

0.5 94.93 98.5 98.19

600 C. Fang et al.

123

This gives evidence for the assumption that the increase in Ave.LB.Dev when

increasing NC from 1.8 to 2.1 does not primarily stem from a poor performance of

EDA, but from the decreasing impact on the critical path based lower bound.

Figures 8 and 9 show that the effect of the two resource parameters RF and RS on

Fig. 7 The impact of NC on LB
and UB

Fig. 8 The impact of RF on LB
and UB

Fig. 9 The impact of RS on LB
and UB

An estimation of distribution algorithm 601

123

the critical path based lower bound is null, which is as expected. The impact of RF

and RS on the upper bound is considerable.

4.4 Performance comparison with other heuristics

In this section, we compare the EDA with the state-of-the-art algorithms for the

SRCPSP. The algorithms compared include the genetic algorithm of Ballestin

(2007), denoted as ABGA, the greedy randomized adaptive search procedure

proposed by Ballestin and Leus (2009), denoted as ABGR, and the two-phase

genetic algorithm of Ashtiani et al. (2011), denoted as PPGA. The comparison

results are depicted in Tables 5 and 6 where the best performance for each

distribution is set in bold.

Tables 5 and 6 reveal that the EDA outperforms the ABGA and PPGA in all

cases. Like the PPGA, the EDA outperforms the ABGR in the medium and high-

variability cases (U2, Exp and B2). However, the ABGR is slightly better than the

EDA for low variability (U1 and B1). Since ABGR employs an activity-based

policy and EDA employs a resource-based policy this might be an indication for the

superiority of activity-based policies for problems with small variability of activity

durations. This conjecture is backed up by theoretical and experimental results for

the deterministic case, i.e. the extreme case of the SRCPSP where variability

converges to zero. There, Sprecher (2000) has proven that when scheduling activity

lists according to the serial scheduling scheme with side constraints siðdÞ� sjðdÞ if

i �p j, which is the deterministic counterpart of the activity-based scheduling

policy, there is always one activity list with minimum makespan. Kolisch (1996) has

proven that the parallel schedule generation scheme, the deterministic counterpart of

the resource-based policy, searches in the set of nondelay schedules which does not

Table 5 Comparison with other algorithms (5,000 schedules)

Procedure Distribution

U1 U2 Exp B1 B2

ABGA (Ballestin 2007) 51.49 78.65 120.22 – –

ABGR (Ballestin and Leus 2009) 46.84 72.58 114.42 47.17 75.97

PPGA (Ashtiani et al. 2011) 48.86 58.91 76.03 49.01 58.82

EDA 47.29 56.54 72.50 47.65 58.29

Table 6 Comparison with other algorithms (25,000 schedules)

Procedure Distribution

U1 U2 Exp B1 B2

ABGA (Ballestin 2007) 49.63 75.38 116.83 – –

ABGR (Ballestin and Leus 2009) 45.21 70.95 112.37 45.60 74.17

PPGA (Ashtiani et al. 2011) 47.21 58.07 74.56 47.25 57.95

EDA 46.66 56.07 72.05 47.04 57.82

602 C. Fang et al.

123

always include an optimal solution. Kolisch and Hartmann (2006) have experi-

mentally shown that heuristics which employ the serial schedule generation scheme

perform better than heuristics which use the the parallel schedule generation

scheme, if the runtime and thus the number of generated schedules is sufficiently

large.

5 Conclusion and future work

In this paper, we proposed the estimation of distribution algorithm (EDA) for the

stochastic resource-constrained project scheduling problem (SRCPSP). The EDA

utilizes the statistic information obtained from the elite individuals of the former

generation to predict the promising area in the searching space. By adopting a novel

probability model and an updating mechanism, the promising area could be tracked

effectively. By adopting the permutation-based local search strategy (PBLS), the

exploitation ability is further enhanced. Using an experimental design with

orthogonal array, suitable parameter settings for the EDA were determined.

Simulation results based on the PSPLIB benchmarks and comparisons with some

existing algorithms demonstrated the effectiveness of the proposed EDA and the

impact of problem parameters and the activity distributions on its performance.

Comparing EDA to state-of-the-art heuristics for the SRCPSP, we could show that

the proposed procedure is quite competitive and, indeed, yields the best

performance if the variance of the activity duration is medium to large. Possible

future work is to develop an adaptive EDA with a parameter learning mechanism

and to develop a new class scheduling policy for the SRCPSP.

Acknowledgments This paper was written during Chen Fang’s one year research stay at the TUM

School of Management. The authors thank two anonymous reviewers for their valuable comments. This

research has been partially supported by National Key Basic Research and Development Program of

China (Grant No. 2013CB329503), National Science Foundation of China (Grant No. 61174189), and

Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 20130002110057).

References

Aickelin U, Li J (2007) An estimation of distribution algorithm for nurse scheduling. Ann Oper Res

155(1):289–309

Aickelin U, Burke EK, Li J (2007) An estimation of distribution algorithm with intelligent local search

for rule-based nurse rostering. J Oper Res Soc 58(12):1574–1585

Ashtiani B, Leus R, Aryanezhad M (2011) New competitive results for the stochastic resource-

constrained project scheduling problem: exploring the benefits of pre-processing. J Sched

14(2):157–171

Ballestin F (2007) When it is worthwhile to work with the stochastic RCPSP? J Sched 10(3):153–166

Ballestin F, Leus R (2009) Resource-constrained project scheduling for timely project completion with

stochastic activity durations. Prod Oper Manag 18(4):459–474

Bendavid I, Golany B (2009) Setting gates for activities in the stochastic project scheduling problem

through the cross entropy methodology. Ann Oper Res 172(1):259–276

Blazewicz J, Lenstra JK, Rinnooy K (1983) Scheduling subject to resource constraints: classification and

complexity. Discrete Appl Math 5(1):11–24

Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling:

notation, classification, models, and methods. Eur J Oper Res 112(1):3–41

An estimation of distribution algorithm 603

123

Fliedner T (2011) Development and experimental investigation of scheduling approaches for the

stochastic resource-constrained multi-project scheduling problem. Master Thesis, TUM School of

Management, Technische Universität München, München

Graham RL (1966) Bounds on multiprocessor timing anomalies. Bell Syst Tech J 45:1563–1581

Hartmann S (1998) A competitive genetic algorithm for resource-constrained project scheduling. Naval

Res Logist 45(7):733–750

Hartmann S (2002) A self-adapting genetic algorithm for project scheduling under resource constraints.

Naval Res Logist 49(5):433–448

Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project

scheduling problem. Eur J Oper Res 207(1):1–14

Heller U (1981) On the shortest overall duration in stochastic project networks. Methods Oper Res

42:85–104

Herroelen W, Leus R (2005) Project scheduling under uncertainty: survey and research potentials. Eur J

Oper Res 165(2):289–306

Jarboui B, Eddaly M, Siarry P (2009) An estimation of distribution algorithm for minimizing the total

flowtime in permutation flowshop scheduling problems. Comput Oper Res 36(9):2638–2646

Kolisch R (1995) Project scheduling under resource constraints: efficient heuristics for several problem

classes. Springer, Heidelberg

Kolisch R (1996) Serial and parallel resource-constrained project scheduling methods revisited: theory

and computation. Eur J Oper Res 90(2):320–333

Kolisch R, Hartmann S (1999) Heuristic Algorithms for Solving the Resource-Constrained Project

Scheduling Problem: Classification and Computational Analysis. In: Weglarz J (ed) Project

scheduling: recent models, algorithms, and applications. Kluwer Academic Publishers, Norwell,

pp 147–178

Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project

scheduling: an update. Eur J Oper Res 174(1):23–37

Kolisch R, Sprecher A (1996) PSPLIB-A project scheduling problem library. Eur J Oper Res 96:205–216

Larranaga P, Lozano JA (2002) Estimation of distribution algorithms: a new tool for evolutionary

computation. Kluwer Academic Publishers, Norwell

Möhring R, Radermacher F, Weiss G (1984) Stochastic scheduling problems I—general strategies. Math

Methods Oper Res 28(7):193–260

Montgomery D (2009) Design and analysis of experiments, 7th edn. Wiley, Hoboken

Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce

resources, 2nd edn. Springer, Berlin

Pan Q-K, Ruiz R (2012) An estimation of distribution algorithm for lot-streaming flow shop problems

with setup times. Omega 40(2):166–180

Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial

optimization, Monte-Carlo simulation, and machine learning. Springer, Berlin

Sprecher A (2000) Scheduling resource-constrained projects competitively at modest memory require-

ments. Manage Sci 46(5):710–723

Stork F (2000) Branch-and-bound algorithms for stochastic resource-constrained project scheduling.

Research report, 702, Technische Universität Berlin, Fachbereich Mathematik

Stork F (2001) Stochastic resource-constrained project scheduling. Doctoral Thesis, Technische

Universität Berlin

Tsai YW, Gemmill D (1998) Using tabu search to schedule activities of stochastic resource-constrained

projects. Eur J Oper Res 111(1):129–141

Wang L, Fang C (2012) An effective estimation of distribution algorithm for the multi-mode resource-

constrained project scheduling problem. Comput Oper Res 39(2):449–460

Zhang Y, Li Z (2011) Estimation of distribution algorithm for permutation flow shops with total flowtime

minimization. Comput Ind Eng 60(4):706–718

Chen Fang received his PhD in Control Theory and Control Engineering from Tsinghua University. His

research interest is in project scheduling based on computational intelligence.

604 C. Fang et al.

123

Rainer Kolisch is Professor of Operations Management in the TUM School of Management at

Technische Universität München in Germany. He obtained his Diploma degree in Industrial Engineering

from Technische Universität Darmstadt and his Doctoral degree from Christian-Albrechts Universität

Kiel. His current research is in service operations and project management.

Ling Wang is Professor in the Department of Automation at Tsinghua University. He received his PhD in

Control Theory and Control Engineering from Tsinghua University. His research interest is in

optimization and scheduling based on computational intelligence. He has authored over 260 papers and 5

books in this research field.

Chundi Mu is Professor in the Department of Automation at Tsinghua University. She received his BS

in Automation from Tsinghua University. Her research interest is in control and optimization for

engineering systems.

An estimation of distribution algorithm 605

123

	An estimation of distribution algorithm and new computational results for the stochastic resource-constrained project scheduling problem
	Abstract
	Introduction
	Definitions and problem statement
	The stochastic RCPSP
	Scheduling policies

	Estimation of distribution algorithm for the SRCPSP
	Representation and fitness function
	Probability model
	Distribution-based offspring sampling
	Local search strategy
	Updating mechanism
	Initial population
	EDA-procedure for the SRCPSP

	Computational results
	Problem instances
	Setting the parameters of the EDA
	The impact of the project characteristics and distribution types
	Performance comparison with other heuristics

	Conclusion and future work
	Acknowledgments
	References

