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Abstract The stochastic nature of both patient arrivals and lengths of stay leads

inevitably to periodic bed shortages in healthcare units. Physicians are challenged

to fit demand to service capacity. If all beds are occupied eligible patients are

usually referred to another ward or hospital and scheduled surgeries may be

cancelled. Lack of beds may also have consequences for patients, who may be

discharged in advance when the number of occupied beds is so high as to com-

promise the medical care of new incoming patients. In this paper we deal with the

problem of obtaining efficient bed-management policies. We introduce a queuing

control problem in which neither the arrival rates nor the number of servers can be

modified. Bed occupancy control is addressed by modifying the service time rates,

to make them dependent on the state of the system. The objective functions are

two quality-of-service components: to minimize patient rejections and to minimize

the length of stay shortening. The first objective has a clear mathematical for-

mulation: minimize the probability of rejecting a patient. The second objective

admits several formulations. Four different expressions, all leading to nonlinear

optimization problems, are proposed. The solutions of these optimization problems

define different control policies. We obtain the analytical solutions by adopting

Markov-type assumptions and comparing them in terms of the two quality-of-

service components. We extend these results to the general case using optimi-
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zation with simulation, and propose a way to simulate general length of stay

distributions enabling the inclusion of state-dependent service rates.

Keywords Queuing theory � Healthcare � Optimization � Control problem �
Simulation � ICU

Mathematics Subject Classification 60K25 � 80M50 � 93E20 � 93C65

1 Introduction

Intensive care units (ICU) are specialized sections of a hospital that provide care for

critically ill patients requiring immediate attention. The type of equipment and

clinicians needed to staff intensive care units makes them very costly to run and it is

a challenge for hospital managers to fit demand to service capacity.

An ICU can bemathematically modelled as a queuing system, where the clients are

the patients, the servers are the beds and there is no waiting room. Queuing theory has

been widely used in the health care context, (see Lakshmi and Sivakumar (2013) for a

review of its applications in health care management problems). Some studies have

used queuing models to address management problems in various hospital depart-

ments [emergency department (ED), ICU, wards, etc.]. As an example, the reader is

referred to Green (2002), a study estimating bed unavailability in obstetrics and ICUs

units; de Bruin et al. (2007), which included ED, ICU and cardiac care wards; Cochran

and Roche (2008), an analysis of hospital bed capacity at four care levels (ICU,

telemetry,medical/surgical and obstetrics); and deBruin et al. (2010), a sizing analysis

of 24wards in amedical center, including general and critical care. Nevertheless, there

are few papers that focus on ICUs: Shmueli et al. (2003) used queuing theory to find

optimal admission policies; McManus et al. (2004) analyzed bed availability,

utilization rates and rejection rates using queuing theory; and Griffiths et al. (2013)

proposed a queuing model to improve bed management distinguishing between

emergency and elective surgery patients.

Queuing theory is a powerful analytical tool for building simple models with

relatively few little data, while including randomness. Simulation is another common

approach in queuing modelling, which enables a more detailed representation of the

complexity in health systems. Reviews and discussion papers dealing with the

application of simulation modelling in health care can be found in Brailsford et al.

(2009), Günal and Pidd (2010), Eldabi et al. (2007) and Katsaliaki and Mustafee

(2011). Many studies use simulation to analyze hospital capacity and bed allocation,

but, again, only a few deal specifically with ICUs. Worth noting are Kim et al. (1999,

2000), in which ICU admission and discharge processes are analyzed through

simulation and several bed allocation rules are evaluated; Litvak et al. (2008), Ridge

et al. (1998), Costa et al. (2003) and Zhu et al. (2012), in which the ICU capacity

problem is studied; Masterson et al. (2004) which presents a case study of an ICU at a

military medical centre analyzing staffing, sizing and operational policies; and Kolker

(2009), in which an ICU simulation model is used to establish a quantitative link

between the daily load levelling of elective surgeries and ICU diversion.
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Queue systemperformance (particularly in an ICU) is greatly influencedby the client

(patient) arrival pattern and the service time (length of stay in the ICU). The ICU arrival

pattern usually consists of amix of emergency and elective patients. Emergency patient

arrivals are typically modeled as Poisson processes (see, for example, Griffiths et al.

(2005), de Bruin et al. (2010)), including patient arrivals from different sources

(emergency surgery, ward, emergency room, another hospital, etc.). Elective arrivals,

however, are scheduled and therefore very unlikely to follow a Poisson process. While

some authors use other arrival distributions for scheduled patients: empirical

distributions (Mallor and Azcárate (2014)), non-stationary Poisson processes (Griffiths

et al. (2005)), and deterministic distributions (Zhu et al. (2012)), other consider it

reasonable to assume Poisson arrivals [see for example Litvak et al. (2008) or Kim et al.

(2000)]. Inter-arrival exponential distribution is taken in Green (2002), Shmueli et al.

(2003), McManus et al. (2004), Griffiths et al. (2006) and Troy and Rosenberg (2009).

Patient length of stay (LoS) has also been extensively studied (Zimmerman et al.

2006). Some authors consider exponential distributions to approximate patient LoS

in ICU analytical approaches. Examples can be found in the model proposed by

McManus et al. (2004) and that presented by Shmueli et al. (2003). Kim et al.

(1999) assume exponentially distributed service times for all the patient groups

included in their simulation model. Nevertheless, several studies have proved that

LoS distributions are usually heavily skewed to the right (see for example, Rauner

et al. (2003) and Vasilakis and Marshall (2005)). These empirical findings support

the choice of weighted-tail distributions for LoS modeling purposes: Weibull

distributions are used in Ridge et al. (1998); Lognormal distributions in Costa et al.

(2003) and in Masterson et al. (2004); Pearson VI in Griffiths et al. (2005); phase-

type distributions in Griffiths et al. (2006) and Bowers (2013). Mallor and Azcárate

(2014) proposed non-normal regression models including variables with the power

to explain some of the LoS variability, such as the Apache index. An overview of

LoS and patient flow modeling techniques can be found in Marshall et al. (2005).

The stochastic nature of both patient arrivals and LoS periodically lead to

inevitable bed shortages. If all beds are occupied, eligible patients are usually

referred to another ward or hospital and scheduled surgeries can be cancelled. Bed

shortages may also have consequences for ICU patients, who may be eligible for

early discharge when the number of occupied beds is so high as to compromise the

medical care of new incoming patients. Therefore, both patient admissions and

discharges are triaged (Shmueli et al. (2003), Sinuff et al. (2004), Capuzzo et al.

(2010) and Anderson et al. (2011), Chan et al. (2012, 2014).

Ridge et al. (1998) pointed out that the ‘‘early discharge’’ of less critical patients

to other wards is a solution commonly adopted to cope with ICU bed shortages.

Costa et al. (2003) observed the dynamical changes in ICU management when units

become full and physicians attempt to limit admissions or to discharge patients who

are closer to recovery. Although these studies suggest early discharge as a bed

management tool, they do not include it in their mathematical models. The impact

of workload on service time in health care has been considered by Kc and Terwiesch

(2009), who show that hospital resources are sensitive to load levels and that service

workers can adapt to system needs by increasing the service rate. Mallor and

Azcárate (2014) demonstrated in a real setting that patient LoS is not independent of
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the ICU workload and may be influenced by the ICU bed occupancy level. As a

consequence, they signalled the need to include these discharge policies to obtain a

valid simulation model.

The bed capacity planning problem has drawn much attention in ICUmanagement

studies, where various economic and quality-of-service (QoS) criteria have been

considered. They includeminimization of total operating costs, full demand coverage,

reasonable bed utilization rates, a lower rejection rate, minimization of the number of

surgery cancelations, maximization of the expected incremental number of lives

saved. We consider the following two QoS criteria. The first is of a social nature: i.e.,

the percentage of population that can benefit from the ICU care when needed. The

second is of an individual nature: i.e., the degree of recovery reached by a patient on

discharge from the ICU. Thus, high quality of service in an ICU means both a low

percentage of rejected patients and sufficient LoS.

This paper deals with the problem of obtaining efficient bed-management policies to

control the ICU bed occupancy level. Queuing theory addresses the problem of resource

allocationunder uncertainty (Gross andHarris 2008) to provide queuedesigns and control

policies that optimize some measure of interest. Here, we consider a different queuing

control problem in which neither the arrival rates nor the number of servers can be

modified. The bed occupancy control problem is addressed by adjusting the service time

rates tomake themdependent of the state of the system.Best values for these service times

must then be determined to achieve the twoQoS targets alreadymentioned: i.e., minimal

patient rejection (due to full ICUoccupancy) andminimal shortening of the LoS. The first

objective has a clear mathematical formulation: minimize the probability of rejecting a

patient. The second objective admits several formulations, which will be discussed later.

Four different expressions, all leading to nonlinear optimization problems, are proposed.

The analytical solutions to theseproblems-whichdefine thedesiredmanagementpolicies-

are obtained and compared in terms of the two QoS components.

The paper is organized as follows. Section 2 presents a Markovian analysis of the ICU

and provides some theoretical results for the ICU queuing model. We focus on the

mathematicalmodellingof the ICUcontrol problem, considering the twoQoScomponents

already mentioned. We propose four different nonlinear multi-objective problems for the

Markovian case and give the efficient management policies based on the analytical

solutions to the different control problems. Section 3 presents the extension of the control

problemsand themanagementpolicies to thegeneralG/G/c/cmodel andproposes ahazard

function method to simulate general LoS distributions with service time dependent on the

number of occupied beds. The optimal management policies are obtained by combining

optimization with simulation. Finally, Sect. 4 contains the conclusions and final remarks

regarding our work in progress and some suggestions for future research.

2 Markovian analysis for an ICU

2.1 Queuing modelling and analysis

As mentioned in the introduction, an ICU can be mathematically modelled as a

queuing system, where the clients are the patients, the servers are the beds and there
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is no waiting room. Then a general model that fits this system is a G/G/c/c queue

model with several types of customers, each characterised by an arrival pattern and

a service time. The complexity of this model generally demands the use of

simulation to obtain a full and detailed probabilistic analysis. We first study a

simplified version of the ICU queuing model by adopting Markovian assumptions

on arrivals and service times. These assumptions could be considered not totally

unrealistic in an ICU serving only emergency patients. Specifically, we assume a M/

M/c/c queue model where arrival rate is a constant k and the service rates l ¼
ðl1; . . .; li; . . .; lcÞ can be dependent on the state of the system i, that is, dependent

on the number i of occupied beds.

Let X(t) be the variable denoting the number of occupied beds at time t and

P ¼ ðp0; p1; . . .; pcÞ the stationary probability distribution of process XðtÞf g when

the service is provided according to service rates l ¼ ðl1; . . .; li; . . .; lcÞ.

Proposition Given a constant arrival ratio k and a probability distribution P[ 0,

there is a unique set of service rates l ¼ ðl1; . . .; lcÞ such that the stationary

probability distribution of process XðtÞf g is P.

Proof Straightforward from steady state equilibrium equations:

li ¼ k
pi�1
ipi

8i ¼ 1; . . .; c and
Xc

i¼0
pi ¼ 1

h

This proposition shows that there exist service-rate values leading to any

probability distribution of the number of occupied beds.

Let us consider a queuing model with input and service rates k and l,
respectively, and denote the steady state probabilities by p�i i ¼ 0; . . .; c. Suppose
that a new target distribution for the state probabilities pi; i ¼ 0; . . .; c, is desired for

the queueing model and that this new distribution has to be achieved by determining

new, state-dependent service rates.

Then, by the previous proposition, the new service rates li i ¼ 1; . . .; c verify the

expression:

li
l
¼ pi�1=pi

p�i�1
�
p�i
¼

pi�1
�
p�i�1

pi=p
�
i

¼ ui�1
ui

ð1Þ

where ui denotes the relative change with respect to the initial probabilities:

ui ¼ pi
�
p�i

This result relates the necessary changes in the service rates with the magnitude

of change in the probabilities and shows that this change is a continuous function:

8e[ 0; 9d[ 0
�
li � lj j\e; 8p�i

�
p�i � pi
�� ��\d

Let us now consider the LoS of a patient in an ICU when the service rates are

dependent of the number of occupied beds. The transitions of the patient among the
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different states of the queuing system can be modeled as a continuous-time Markov

process with an absorbing state representing the patient’s discharge from the health

facility.

Thus, a patient remains at state i during an exponentially distributed time with

rate ðkþ iliÞ and then jumps to

• state i ? 1 with probability k=ðkþ iliÞ
• state i - 1 with probability ði� 1Þli=ðkþ iliÞ
• the absorbing state with probability li=ðkþ iliÞ

The LoS of a patient can be seen as the absorption time of that continuous-time

Markov process in which the initial distribution for the states is the bed occupancy

stationary distribution conditioned to a state smaller than c. We denote this initial

distribution by vector a. Therefore, the LoS, denoted by variable Z, follows a Phase-

type distribution characterized by the following transition rate matrix:

This matrix can be expressed as
T T0

0 0

� �

Then it is well known that the distribution function of the LoS, Z, verifies the

following expression:

P Z� xf g ¼ FZ xð Þ ¼ 1� aexp Txf ge

where e is the vector with all components equal to 1.

The conditional stationary distribution a is expressed in terms of the steady state

probabilities pi as

a ¼ p0=1� pc;
p1=1� pc; . . .;

pc�1=1� pc

� �

which leads to the following nonlinear expression in terms of lii ¼ 1; . . .; c:

a ¼ c1=h;
c2=h; . . .;

cc=h
� 	

where:

h ¼ kc�1 þ
Xc�1

i¼1
kc�i�1

ðc� 1Þ!
c� i� 1ð Þ!

Yc�1

j¼c�i
lj

and
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ci ¼ ki�1
ðc� 1Þ!
i� 1ð Þ!

Yc�1

j¼i
lj i ¼ 1; . . .; c

The first two moments of the random variable Z representing the LoS are given

by:

E Z½ � ¼ �ðaT�1eÞ

E Z2

 �

¼ 2ðaT�2eÞ

Let be ai a c-dimensional vector with 1 in position i ? 1 and the rest equal to

0. The substitution of vector a by ai in the above expressions provides the

distribution function of variable ZðiÞ representing the LoS conditioned on the

patient having entered the system at state i, FZðiÞ xð Þ ¼ 1� aiexp Txf ge, and the

first two moments:

E ZðiÞ

 �

¼ �ðaiT�1eÞ

E Z2
ðiÞ

h i
¼ 2ðaiT�2eÞ

These expressions are used in next section in the mathematical definition of the

queue control problems.

2.2 Mathematical modeling of control problems

Queuing theory has studied the problem of resource allocation under uncertainty

(Gross and Harris 2008) to provide queue designs and control policies that optimize

some measure of interest, such as a customer’s expected waiting time. One example

of this type of control problem is the determination of a policy for switching

workers in a facility with front room and back room operations in order to cope with

changing customer demand (Terekhov and Beck 2008, and references therein).

Another is how to control the queue by developing optimal admission policies

taking customer behavior characteristics into account, which has led to the idea of

controlling arrivals by pricing (see Stidham 2002).

We consider a type of control problem in which the objective is to maximize QoS

(by reducing as far as possible the probability of patient rejection and to minimize

the shortening of patient’s LoS). Nevertheless, two ICU characteristics need to be

taken into account: fixed resources and unadjustable patient arrival rates. Thus, in

our queuing control problem, neither the arrival rate nor the amount of resources can

be modified. Therefore, bed occupancy is controlled by modifying service time rates

to make them state-dependent.

In this section, we study this control problem in a M/M/c/c queue model with

constant arrival rate k and ‘‘normal’’ service rate l which can be adjusted to

individual service rate values li, when i beds are occupied, i ¼ 1; . . .; c. Then, the
aim of the control problem is to determine new values for service rates
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li; i ¼ 1; . . .; c, that minimize the probability of rejecting a new patient with

minimum adjustment of the LoS of an admitted patient.

The first objective has a clear mathematical formulation: Minimize pc. By the

PASTA property (Poisson Arrivals See Time Averages), pc is the probability of a

patient finding a full ICU on arrival. The second objective admits different

formulations. We propose two approaches, one based on the variation in services

rates and another on the variation in the expected LoS. Expressions (2) and (3) are

two alternative mathematical formulations for the ‘‘variation in services rates’’

objective functions. Expressions (4) and (5) are proposed for ‘‘variation in the

expected LoS’’ objectives.

The first approach considers the magnitude by which the original service rate l is

adjusted in order to obtain the new service rates li i ¼ 1; . . .; c:

minmaxi li � lj j ð2Þ

or

min
Xc

i¼1
li � lj j ð3Þ

Expression (4) minimizes the difference between the expected LoS of a patient in

the ICU ‘‘with no control policy’’ (constant service rate l) and the expected LoS

‘‘with control policy’’ (service rate li i ¼ 1; . . .; c depending on the bed occupancy

level i):

min � aT�1e
� 	

� 1

l

����

���� ð4Þ

Expression (5) modifies (4) by considering the patient’s expected LoS

conditioned by the state i of the ICU at arrival time.

minmaxi � aiT
�1e

� 	
� 1

l

����

���� ð5Þ

Each of these formulations for the second objective leads to a different multi-

objective optimization problem:

min Pc

min maxi li � lj j
subject tol1� l2� � � � � lc

ðMOP1Þ

min Pc

min
Xc

i¼1
li � lj j

subject to l1� l2� � � � � lc

ðMOP2Þ
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min Pc

min � aT�1e
� 	

� 1

l

����

����

subject to l1� l2� � � � � lc

ðMOP3Þ

min Pc

minmaxi � aiT
�1e

� 	
� 1

l

����

����

subject to l1� l2� � � � � lc

ðMOP4Þ

Observe that monotonicity constraints on the values of li reflect the fact that

service times become shorter as the ICU gets busier.

We estimate the Pareto frontier by using the e-constraint method and considering

different bounds for the probability of rejected patients (ej-values):

min maxi li � lj j

subject to
Pc� ej
l1� l2� � � � � lc

� ðP1Þ

min
Xc

i¼1
li � lj j

subject to
Pc� ej
l1� l2� � � � � lc

� ðP2Þ

min � aT�1e
� 	

� 1

l

����

����

subject to
Pc� ej
l1� l2� � � � � lc

� ðP3Þ

minmaxi � aiT
�1e

� 	
� 1

l

����

����

subject to
Pc� ej
l1� l2� � � � � lc

� ðP4Þ

All these models are nonlinear optimization problems with the following

structure:

All optimization problems have c decision variables (l1; l2; . . .; lc). The

nonlinearity of the problems comes from the absolute value functions and from

the term Pc, which is given by the following nonlinear expression:
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Pc ¼
kc

kc þ
Pc

i¼1ðk
c�ii!

c

i

� �Qc
j¼c�iþ1 ljÞ

ð6Þ

Optimization problem (P3) also includes the following nonlinear function:

aT�1e
� 	

¼
b1 þ

Pc
i¼2 bi

Qc
j¼c�iþ2 ljPc

i¼1 bi
Qc

j¼c�iþ1 lj
ð7Þ

where bi are constant values depending on k and c.

Expression aiT
�1e

� 	
in optimization problem (P4) is a complex, nonlinear

function, which, for i = c, includes a monomial for each of the proper subsets of

l1; l2; . . .; lc, that is, 2
c � 2 terms.

Furthermore, (P1) and (P4) have min max objective functions.

Observe that some of the nonlinear terms in the above problems admit

reformulation. For example, minmax objective functions admit linear reformulation

by considering an additional variable (d), as illustrated in the following expression

for the problem (P1) case:

min d

subject to

li � lj j � d i ¼ 1; . . .; c
Pc� ej
l1� l2� . . .� lc

8
<

:

Let devi; i ¼ 1; . . .; c be the deviational variables associated with the deviation

from 1 of ratios li=l; i ¼ 1; . . .; c. Optimization problems (P1) and (P2) can also be

reformulated [(P1b) and (P2b)] by considering both the steady state equilibrium

equations and expression (1).

minmaxj devj ðP1bÞ

or

min
Xc

j¼1
devj ðP2bÞ

subject to

ucP
�
c � ej

ui�1
ui

� devi ¼ 1; i ¼ 1; . . .; c

Pc

i¼0
uiP

�
i ¼ 1

ui�1uiþ1
u2
i

� 1; 8i ¼ 1; . . .; c

8
>>>>>>><

>>>>>>>:

This nonlinear formulation has 2c ? 1 variables (u0; ::;uc; dev1; . . .; devc) and
avoids the calculation of the term Pc in expression (6).
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2.3 Efficient management policies for the control problem

Management policies are obtained from the solution of the mathematical problems

formulated in the previous section. Different optimization problems lead to different

solutions and then to different management policies. Solutions differ not only in

service rate values but also in structure, with management philosophy implications.

In some cases, the only dramatical increase in the service rate occurs at full

occupancy, while, in the other cases, the service rates are moderately and evenly

increased in all states. We label these two types of policies aggressive and

equitable, respectively. Another, intermediate structure is also found: the higher the

occupancy level, the higher the service rate. We label this last policy as cautious.

To illustrate these results we study a small ICU with five beds and then a larger

one with 20 beds, based on a real ICU analyzed in a previous study by the authors.

The 5-bed ICU is represented by the M/M/5/5 queuing model. Without loss of

generality, in our study we consider the time unit as the average LoS, so that l = 1.

Then, the different studied scenarios are defined by varying the values of k to

achieve certain desired occupancy ratios. In this way values of l = 1 and k = 4, 3

and 2 lead to occupancy rates of 80, 60 and 40 %, respectively. The four

optimization problems are solved in each scenario. Optimization problems (P3) and

(P4) always provide aggressive policies, (P1) leads to equitable policies and (P2)

leads to cautious policies. Results are presented in Tables 1, 2 and 3.

Table 1 shows the results for k = 4 (server utilization = 80 %) and

P�5 ¼ 0:199067. Recall that this means that 19.9 % of patients are rejected due to

full ICU occupancy, in the absence of any control by physicians. To estimate the

Pareto frontier by using the e-constraint method, we consider the following ej-
values, ej = 19, 16, 13, 10, 7, 4 and 1 %. Table 2 shows the results for k = 3

(server utilization = 60 %) and P�c ¼ 0:110054, considering the following ej-
values, ej = 10, 8, 6, 4, 2 and 1 %. Table 3 shows the results for k = 2 (server

utilization = 40 %) and P�c ¼ 0:036697, considering the following ej-values,
ej = 3, 2.5, 2, 1.5, 1 and 0.5 %.

In these results, we see the three policy structures previously defined:

• Aggressive policy: l1 ¼ l2 ¼ � � � ¼ lc�1 ¼ 1 and lc � 1 in (P3) [and also

(P4)] results.

• Equitable policy: l1 ¼ l2 ¼ � � � ¼ lc [ 1 in (P1) results.

• Cautious policy: 1� l1� l2� � � � � lc in (P2) results.

The same pattern appears in the results for the simplified version of a real ICU

(the Hospital of Navarre, Spain) with 20 beds (M/M/20/20 queuing model).

In this case, we simplify the problem by distinguishing three levels for the bed

occupancy state:

• low occupancy (\50 %): 1–10 occupied beds,

• moderate occupancy (50–75 %): 11–14 occupied beds,

• high occupancy (C75 %): 15–20 occupied beds.
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We assume:

l1 ¼ l2 ¼ � � � ¼ l10� l11 ¼ l12 ¼ � � � ¼ l14� l15� l16� l17� l18� l19� l20

This assumption reduces the number of decision variables, thereby simplifying

both the computational analysis and the presentation of results.

Table 4 includes the results for k = 16 and l = 1 (server utilization = 80 %)

and P�c ¼ 0:064411. We consider the following ej-values, ej = 6, 5, 4, 3, 2, 1 %.

The question that clearly arises is which of the three types of ICU management

policy is the best. Each is optimal in terms of one specific aspect of LoS shortening

but none is optimal in all the LoS shortening objectives. Determining which is the

best or the most appropriate management policy is therefore no easy task. The

decision must be based on the performance assessment of each policy type in all the

different LoS shortening-related measures and on the judgment of physicians.

Table 1 Optimal management policies for a M/M/5/5, with k = 4 and l = 1 (server

utilization = 80 %)

l1 l2 l3 l4 l5 Objective function

Aggressive policies

19 % 1 1 1 1 1.0596 0.0175

16 % 1 1 1 1 1.3049 0.0726

13 % 1 1 1 1 1.6633 0.1239

10 % 1 1 1 1 2.2367 0.1718

7 % 1 1 1 1 3.3018 0.2166

4 % 1 1 1 1 5.9644 0.2586

1 % 1 1 1 1 24.6058 0.2981

Equitable policies

19 % 1.0260 1.0260 1.0260 1.0260 1.0260 0.0260

16 % 1.1219 1.1219 1.1219 1.1219 1.1219 0.1219

13 % 1.2386 1.2386 1.2386 1.2386 1.2386 0.2386

10 % 1.3884 1.3884 1.3884 1.3884 1.3884 0.3884

7 % 1.5977 1.5977 1.5977 1.5977 1.5977 0.5977

4 % 1.9443 1.9443 1.9443 1.9443 1.9443 0.9443

1 % 2.9395 2.9395 2.9395 2.9395 2.9395 1.9395

Cautious policies

19 % 1 1 1 1 1.0596 0.0596

16 % 1 1 1 1 1.3049 0.3049

13 % 1 1 1 1.1027 1.5534 0.6561

10 % 1 1 1 1.3507 1.8014 1.1521

7 % 1 1 1 1.7380 2.1887 1.9267

4 % 1 1 1.4516 2.2721 2.6332 3.3568

1 % 1 1.3959 2.9959 3.7080 3.9000 7.9997
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Comparison of the three management strategies shows that cautious policies are

the best for their associated objective (min
Pc

i¼1 li � lj j) and the second best for the
other objectives. Aggressive policies are the best for the objectives associated with

maximizing average LoS, the second best for minimizing the maximum deviation

from the original service rate and the worst for the sum of service rate deviations.

Equitable policies are the best for minimizing maximum deviation from the original

service rate, the second best for the sum of service rate deviations, and the worst for

the objectives associated with maximizing average LoS. See Fig. 1. From this

analysis, cautious policies appear to display the best behavior overall. Furthermore,

ICU physicians agree that cautious policies are the best choice in bed shortage

situations. In fact, the representation of the bed-occupancy distribution under the

different policies (Fig. 2) shows that the one corresponding to the cautious policy is

the closest to histograms built from historical occupancy data collected in real ICUs

[see, for example, Costa et al. (2003) and Mallor and Azcárate (2014)]. Common

characteristics in both the cautious distribution and real data distributions are a

sharp decline on the right side of the histogram and a skewed histogram with a peak

around a set of desirable bed occupancy values (leading to high utilization of

resources without compromising the entry of new patients).

Table 2 Optimal management policies for a M/M/5/5, with k = 3 and l = 1 (server

utilization = 60 %)

l1 l2 l3 l4 l5 Objective function

Aggressive policies

10 % 1 1 1 1 1.1130 0.0209

8 % 1 1 1 1 1.4221 0.0612

6 % 1 1 1 1 1.9374 0.0997

4 % 1 1 1 1 2.9679 0.1367

2 % 1 1 1 1 6.0595 0.1721

1 % 1 1 1 1 12.2420 0.1893

Equitable policies

10 % 1.0413 1.0413 1.0413 1.0413 1.0413 0.0413

8 % 1.1388 1.1388 1.1388 1.1388 1.1388 0.1388

6 % 1.2680 1.2680 1.2680 1.2680 1.2680 0.2680

4 % 1.4582 1.4582 1.4582 1.4582 1.4582 0.4582

2 % 1.8103 1.8103 1.8103 1.8103 1.8103 0.8103

1 % 2.2046 2.2046 2.2046 2.2046 2.2046 1.2046

Cautious policies

10 % 1 1 1 1 1.1130 0.1130

8 % 1 1 1 1.0788 1.3384 0.4172

6 % 1 1 1 1.3026 1.5622 0.8647

4 % 1 1 1.1001 1.6295 1.8732 1.6028

2 % 1 1 1.6175 2.1469 2.3318 3.0962

1 % 1 1.1015 2.2265 2.7318 2.8705 4.9304
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3 Control problems and management policies in the general case G/G/c/c

Section 2 modeled the control problem of a health care service through a set of

optimization problems which were solved by means of classical mathematical

programming. This setting could be applied to the Markovian case. When other,

non-exponential distributions are considered, the analytical expressions for the

second objective in problems (P3) and (P4) do not hold and even the decision

variables li need to be reinterpreted. This section addresses these questions, first by

assessing the combination of optimization with simulation as an appropriate

optimization problem-solving tool and then by providing a way to simulate general

LoS distributions allowing the inclusion of state-dependent service rates. We then

present the management policies obtained from this new optimization and

simulation framework when different Weibull-type LoS distributions are considered

and compare them with those obtained in the Markovian case.

Table 3 Optimal management policies for a M/M/5/5, with k = 2 and l = 1 (server

utilization = 40 %)

l1 l2 l3 l4 l5 Objective function

Aggressive policies

3 % 1 1 1 1 1.2317 0.1792

2.5 % 1 1 1 1 1.4857 0.3114

2 % 1 1 1 1 1.8667 0.4422

1.5 % 1 1 1 1 2.5016 0.0572

1 % 1 1 1 1 3.7714 0.0700

0.5 % 1 1 1 1 7.5810 0.8268

Equitable policies

3 % 1.0665 1.0665 1.0665 1.0665 1.0665 0.0665

2.5 % 1.1285 1.1285 1.1285 1.1285 1.1285 0.1285

2 % 1.2069 1.2069 1.2069 1.2069 1.2069 0.2069

1.5 % 1.3122 1.3122 1.3122 1.3122 1.3122 0.3122

1 % 1.4697 1.4697 1.4697 1.4697 1.4697 0.4697

0.5 % 1.7667 1.7667 1.7667 1.7667 1.7667 0.7667

Cautious policies

3 % 1 1 1 1.0615 1.1668 0.2283

2.5 % 1 1 1 1.1762 1.2814 0.4576

2 % 1 1 1.0438 1.3104 1.4122 0.7664

1.5 % 1 1 1.1916 1.4583 1.5497 1.1996

1 % 1 1 1.4224 1.6891 1.7680 1.8796

0.5 % 1 1.1785 1.8451 2.0860 2.1438 3.2534
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3.1 Finding optimal policies by combining optimization with simulation

Optimization problems (P1) to (P4) include the expected LoS, E[Z], the expected

conditional LoS, E[Z(i)], and the probability of rejecting a patient, Prej, which have

an explicit expression in terms of the decision variables in the Markovian case but

not in the general case. The formulation of the optimization problems for the general

case is:

min maxi li � lj j

subject to
Prej� ej
l1� l2� � � � � lc

� ðGP1Þ

min
Xc

i¼1
li � lj j

subject to
Prej� ej
l1� l2� � � � � lc

� ðGP2Þ

Table 4 Optimal management policies for the Markovian version of the ICU of the Hospital of Navarre,

with 20 beds

l1 l11 l15 l16 l17 l18 l19 l20

Aggressive policies

6 % 1 1 1 1 1 1 1 1.0786

5 % 1 1 1 1 1 1 1 1.3086

4 % 1 1 1 1 1 1 1 1.6522

3 % 1 1 1 1 1 1 1 2.2260

2 % 1 1 1 1 1 1 1 3.3724

1 % 1 1 1 1 1 1 1 6.8166

Equitable policies

6 % 1.0410 1.0410 1.0410 1.0410 1.0410 1.0410 1.0410 1.0410

5 % 1.0492 1.0492 1.0492 1.0492 1.0492 1.0492 1.0492 1.0492

4 % 1.0910 1.0910 1.0910 1.0910 1.0910 1.0910 1.0910 1.0910

3 % 1.1431 1.1431 1.1431 1.1431 1.1431 1.1431 1.1431 1.1431

2 % 1.2138 1.2138 1.2138 1.2138 1.2138 1.2138 1.2138 1.2138

1 % 1.3299 1.3299 1.3299 1.3299 1.3299 1.3299 1.3299 1.3299

Cautious policies

6 % 1 1 1 1 1 1 1 1.0786

5 % 1 1 1 1 1 1 1.1029 1.1963

4 % 1 1 1 1 1 1.0837 1.2096 1.2972

3 % 1 1 1 1 1.0452 1.2102 1.3314 1.4081

2 % 1 1 1 1 1.2096 1.3746 1.4813 1.5419

1 % 1 1 1 1.2616 1.4742 1.6099 1.6848 1.7223

76 F. Mallor et al.

123



min E½Z� � 1

l

����

����

subject to
Prej� ej
l1� l2� � � � � lc

� ðGP3Þ

minmaxi E½ZðiÞ� �
1

l

����

����

subject to
Prej� ej
l1� l2� � � � � lc

� ðGP4Þ

Now objective functions in (GP1) and (GP2) and the constraint on the probability

of rejecting a patient Prej� �j have to be assessed by simulation. To solve this set of

problems, we combine simulation with an optimization procedure, which

determines a solution, that is, a value for the decision variables li of the problem

which define the configuration of the simulated system. The output of the simulation

is used to evaluate the stochastic elements and assess the quality of the current

solution. The optimization procedure, with this information and its search method,

provides the next solution to be evaluated by simulation. This iterative process goes
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on until the stopping conditions of the optimization method are met. The simulation-

based optimization (SBO) methodology just described has been widely applied to

solve stochastic optimization problems in different contexts, including healthcare.

For example, in de Angelis et al. (2003) a simulation model is combined with

nonlinear programming and neuronal networks to determine the optimal configu-

ration of a transfusion center; in Azcárate et al. (2008) a multicriteria optimization

simulation model is proposed to solve a hospital sizing problem; in Ahmed and

Alkhamis (2009) one is used to obtain the optimal staff distribution for a hospital

emergency unit; in Brailsford et al. (2007) a discrete-event simulation model is

embedded in an ant colony optimization model for the optimal choice of screening

policies for diabetic retinopathy; in Lin et al. (2013) simulation is combined with a

genetic algorithm and data envelopment analysis to determine optimal resource

levels in surgical services. The reader is referred to Fu et al. (2005) for a descriptive

review of the main approaches for SBO.

The SBO methodology to solve the above control problems is validated by

solving the Markovian case and comparing the results with the analytical ones. The

SOB technique was implemented in ARENA simulation software and OptQuest

optimization software. Figure 3 plots Pareto frontiers for optimization problems

obtained by nonlinear programming techniques (black lines) and simulation and

optimization techniques (red lines).

Figure 4 plots the relative error between analytical and simulated optimal

solutions, expressed as

lanalyticali � lsimuli
�� ��

lanalyticali

0

2

4

6

8

10

12

14

16

0 2 4 6 8

10 12 14 16

18

20

Fr
eq

ue
nc

y

Bed occupancy

Aggressive Equitative Cautious No intervention

Fig. 2 Bed occupancy distribution plots for the different optimal management policies. Scenario with
1 % probability of rejecting a patient
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It can be observed that, in general, simulation provides a good estimation of the

analytical solutions. The relative error in almost all cases is less than 3 %, only a

few cases for (GP2) show values between 4 and 6 %. Comparing the optimal

objective functions, the differences between analytical and simulated results are less

than 0.01. Thus, we can conclude that the SBO methodology is able to solve the

proposed control problems and obtain the management policies.

3.2 Simulation from general distributions with varying service rates

The application of the SBO methodology outlined in previous section requires the

simulation of queuing systems with varying service rates. In the Markovian case, the

procedure is straightforward due to the lack of memory of the exponential

distribution. When the system enters a new state i, which has to operate with a

service rate of li, the remaining LoS of each patient is updated by sampling a value

from an exponentially-distributed random variable Tli with mean 1=li. Assuming

that the LoS is initially distributed as an exponential random variable Tl with mean
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1=l, the variation to another service rate li can be interpreted as a change in the

time scale:

P Tli � t
 �

¼ 1� e�li t ¼ 1� e�
li
l lt ¼ P Tl�

li
l
t

� �
¼ P

l
li
Tl� t

� �

Then, Tli ¼
l
li
Tl and FTli

ðtÞ ¼ FTl
li
l t

� �
.

When the system enters state i with an associated service rate li the remaining

LoS of that patient is adjusted by a scale factor of l=li.
This relationship is extended to the hazard function:

hTli tð Þ ¼
F0Tli
ðtÞ

1� FTli
tð Þ ¼

F0Tlð
li
l tÞ

1� FTl
li
l t

� � ¼ li
l
hTl

li
l
t

� �
ð8Þ

The hazard function at time t describes the probabilistic behaviour of a random

variable at time t conditioned to a value greater than t:

hTli tð Þ ¼ lim
Dt!0

Pft\Tli � tþ Dt=Tli [ tg
Dt

Then, the probability that a patient’s LoS falls within the time interval ðt; t þ Dt�,
given that at time t the patient is still in the health system, can be approximated by
hTli

tþDtð ÞþhTli tð Þ
2

Dt.
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This expression is obtained from the two first terms of the Taylor series

expansion [(1) in (9)] and numerical integration by trapezoidal method [(2) in (9)].

P T

2
ð9Þ

This interpretation of the hazard function, together with expression (8), is used to

simulate the LoS patients in the health system when both the general LoS

distributions and varying service rate are considered.

As usual, the discrete event simulation model considers both patient arrival and

end of service as state-changing events. However, the simulation is now driven by

the patient LoS hazard functions as follows:

Step 0 Choose a small value for Dt.

Step 1 Simulate a time for the next patient arrival.

Step 2 If less than Dt time units left to a new patient arrival, then the system is

updated, the clock is advanced to the arrival time of the new patient and step 1 is

repeated. Let te be the patient́s accelerated time in system. At the entry time of a

patient, te ¼ 0.

Step 3 If the system is in state i at time t (bed occupancy level is i) the hazard

function hTli teð Þ of the LoS of each patient is calculated, according to expression

(8).

Step 4 For each patient the probability of leaving the health system in the next

time interval of length Dt is calculated according to expression (9) and is used to

decide whether the patient leaves or not the system.

Step 5 If, as a result of the simulation in step 4, none of the patients leaves the

system, then the simulation clock is advanced by Dt time units and step 2 is

repeated.

Step 6 If, as result of step 4, a patient leaves the system in the interval t; t þ Dtð Þ,
then the patient is discharged at a time uniformly distributed between t and t þ Dt.
The state of the system is updated and the simulation clock is advanced by Dt.
Repeat step 2.

Each time the simulation clock is advanced, the accelerated time in system of a

patient is updated according to expression:

te  te þ ðt � teÞ
li
l

These results allow us to use discrete-event simulation to simulate the G/G/c/c

queuing model with varying service times dependent on the number of occupied

beds.
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For example, in the case of the Weibull distribution with parameters a and b, a
patient’s probability of leaving the health system during the next Dt time interval, if

the current bed level occupancy is i, is calculated using the hazard function

hTli tð Þ ¼
li
l
a
b

li
lb t

� �a�1
.

Of course, the smaller step Dt, the greater the accuracy of the approximation, but

also the greater computational effort because more steps are necessary to progress

through time. Thus a compromise solution has to be adopted to balance accuracy

and computational effort.

We have tested this method with the exponential distribution and obtained very

good results taking 10 min-steps for average LoS = 1 day. Nevertheless, the

accuracy of the approximation in (9) not only depends on the size of Dt, but also on

the shape of the hazard function h tð Þ. When h tð Þ is upper bounded, the error term in

approximation (1) in (9) is proportional to ðDtÞ2. This is the case for the usual

distribution functions used to model LoS (loglogistic, lognormal and phase-type).

When h tð Þ increases as a linear function (h tð Þ� ctÞ then, the error term is

proportional to tDt. This is the case for Weibull distribution with shape parameter

a ¼ 2. Exponential increments in the hazard function produces large error terms, as

for example in the Smallest Extreme Value distribution. However, this type of

distribution has not been reported on the statistical modelling of LoS studies. The

approximation error in trapezoidal method depends on h00 tð Þ, the second derivative

in the interval t; t þ Dtð Þ:

errorj j\k
ðDtÞ3

48
; under the assumption h00 tð Þj j\k:

We conduct a computational study to analyze the stability of the estimations of

the rejection probability depending on the size of parameter Dt. Table 5 shows the

results for different distribution functions and considering the optimal service rates

for a rejection value of 4 % for the M/M/5/5 model, with k = 4 and l = 1 (see

Table 1). The distributions considered are: Exponential (with both Markovian and

non-Markovian arrivals), Weibull with shape parameter a = 5, Loglogistic with

scale parameters r = 0.1 and r = 0.6, Smallest Extreme Value distribution with

scale parameters r = 1.1 and r = 1.5. Six values for parameter Dt are analysed

Table 5 Estimations of the rejection probability with different sizes of parameter Dt

Dt (min)

60 30 20 10 5 1

M/M/5/5 4.189 4.092 4.062 4.023 4.013 4.002

G/M/5/5 1.702 1.686 1.675 1.671 1.664 1.669

M/Weib (a = 5)/5/5 4.109 4.046 4.028 4.014 4.010 4.006

M/Loglog (r = 0.1)/5/5 4.008 3.996 3.997 3.999 3.999 3.999

M/Loglog (r = 0.6)/5/5 3.680 3.810 3.858 3.924 3.953 3.985

M/SEV (r = 1.1)/5/5 4.165 4.085 4.060 4.040 4.030 4.021

M/SEV (r = 1.5)/5/5 8.602 8.485 8.444 8.404 8.394 8.377
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(60, 30, 20, 10, 5 and 1 min), representing 4.2, 2.1, 1.39, 0.69, 0.35 and 0.069 % of

the expected LoS, respectively. The simulations were extended to attain a

confidence interval with precision ±0.01. A rapid convergence in the estimation

and a small difference between the values obtained for Dt = 10, 5, 1 is observed for

the Weibull and Loglogistic distributions. Nevertheless, according to above

comments, the Smallest Extreme Value distribution presents a slower convergence.

3.3 Results for the general model

The methodology presented in Sects. 3.1 and 3.2 can be used to find optimal

management policies in any general ICU model including elective patients and

more realistic LoS distributions. As an example, we have chosen a 5-bed ICU (M/G/

5/5 queuing model) and several distributions for modelling the patient LoS:

Weibull, Loglogistic and Phase-type distributions. The Weibull distribution with

shape parameter a = 1 provides the exponential distribution, when a[ 1 (a\ 1)

the hazard function is monotonically increasing (decreasing). As the shape

parameter becomes closer to 1, the Weibull distribution gets closer to the

exponential distribution. Loglogistic distribution, as the lognormal, is frequently

used to model LoS. Its hazard function reaches a maximum and then decreases

asymptotically to zero. The Phase-type distributions allow for a more realistic

modelling of the LoS of a patient by associating each state of the distribution to a

different health status. The influence of the distribution of the arrival process is also

considered by mixing an arrival Poisson process for outpatients with a Deterministic

arrival process for elective patients (G/G/5/5 queuing model).

Modelling the LoS by a phase-type distribution can prevent from discharge a

patient not sufficiently recovered. In this study, we consider a phase-type

distribution with three states. When a patient enters to the ICU, the Markov chain

is in state 1, representing a very bad health condition. States 2 and 3 are used to

represent better health status, in such a way that a patient can only be discharged

from state 3. To model the clinical worsening of the patient’s health (due to

infections, for example) the transition from upper to lower states is allowed (Fig. 5).

Control problems (GP1) to (GP4) are solved by using optimization with

simulation and the method presented in Sect. 3.2. Tables 6, 7, 8 show the results for

several M/G/5/5 queuing models, considering different LoS distributions (Weibull

with shape parameter a = 5, Loglogistic with scale parameters r = 0.2 and

3-phase-type distribution with q2 = 0.2 and q3 = 0.15). We study the phase-type

distribution model allowing the shortening of a patient stay in both any phase-state

(case 1) and only in state 3 (case 2), a more realistic situation. G/G/5/5 queuing

Entry  
S1 S2 S3

Fig. 5 Phase-type distribution diagram
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model is also analysed by mixing a Poisson process with rate arrival k ¼ 2 and 2

elective patients per day. This general arrival process is considered for both

exponential and Weibull (a = 5) LoS distributions. The parameters of the

distributions has been adjusted to provide a distribution with mean

1 ¼ E Gð Þ ¼ 1=l. In all cases the arrival rate is constant, k ¼ 4. The Erlang Loss

expression, provides the probability of a full ICU, P�c ¼ 0:199067. The optimization

problems are solved for percentage of rejected patients of ej = 16, 10, and 4 %.

An important conclusion is that the same structure of solutions is obtained for the

general case than for the Markovian case. Aggressive, equitable and cautious

policies are obtained as solutions to the optimization problems. Furthermore, the

values that determine the service rates are very similar to those provided by the

exponential distribution (see Table 1) for all the Markovian arrival models but the

Phase-type distribution (case 2). Results for the non-Markovian arrival case also

differ from the M/M/5/5 model.

4 Conclusions and final remarks

In this paper we have formulated a new control problem to represent the triage

process that many physicians frequently face: the allocation of the available health

Table 6 Aggressive policies: Optimal management policies for (GP3) and (GP4) control problems, for

different G/G/5/5 models and percentage of rejected patients ej = 16, 10, and 4 %

ej l1 l2 l3 l4 l5

M/Weib (a = 5)/ 16 % 1 1 1 1 1.31

M/Loglog (r = 0.1)/ 16 % 1 1 1 1 1.3

M/Phase (case 1)/ 16 % 1 1 1 1 1.32

M/Phase (case 2)/ 1 1 1 1 1.85

G/M/ 1 1 1 1 1

G/Weib (a = 5)/ 1 1 1 1 1

M/Weib (a = 5)/ 10 % 1 1 1 1.36 1.8

M/Loglog (r = 0.1)/ 10 % 1 1 1 1.3 1.83

M/Phase (case 1)/ 10 % 1 1 1 1.39 1.77

M/Phase (case 2)/ 1 1 1.35 2.26 6.6

G/M/ 1 1 1 1.15 1.26

G/Weib (a = 5)/ 1 1 1 1.15 1.26

M/Weib (a = 5)/ 4 % 1 1 1.49 2.37 2.5

M/Loglog (r = 0.1)/ 4 % 1 1 1.4 2.47 2.47

M/Phase (case 1)/ 1 1 1.43 2.47 2.47

M/Phase (case 2)/ Unfeasib Unfeasib Unfeasib Unfeasib Unfeasib

G/M/ 1 1 1.1 1.81 1.81

G/Weib (a = 5)/ 1 1 1.1 1.81 1.81
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resources in the best way. We focus on intensive care units, where rejection of

incoming patients has to be balanced with the early discharge of current patients.

Control problems (P1) to (P4) are not convex optimization problems. By using a

convex representation of the posynomials included in the expressions (6) and (7),

the problems turn out to be the maximization of a convex function over a set. Such

problems are usually hard to solve. Queuing theory and classical nonlinear

optimization methods provide the solution to the control problem in the Markovian

case while a simulation based optimization method has been developed to deal with

the general case.

An interesting contribution is the interpretation of the three types of solutions

obtained from the optimization problems when different expressions for the

shortening of the LoS are considered. Physicians of the ICU understood them and

identified the cautious type solution as representative of the way to deal with the

pressure of a near-full ICU in the real setting.

Through a broad computational analysis we can conclude that the three

management policy structures emerge as solution of the control problems

independently of the LoS distribution, the size of the ICU, the occupancy ratio

and the arrival pattern.

Experimental results show the capability of the proposed methodology to deal

with optimization problems posed on real size ICUs without computational issues.

Studies analyzing the size of hospital’s ICUs conclude that 8–12 beds are

considered as the optimum [see for example Vallentin and Ferdinandi (2011)] while

Table 7 Equitable policies: Optimal management policies for (GP1) control problem, for different G/G/

5/5 models and percentage of rejected patients ej = 16, 10, and 4 %

ej l1 l2 l3 l4 l5

M/Weib (a = 5)/ 16 % 1.12 1.12 1.12 1.12 1.12

M/Loglog (r = 0.1)/ 16 % 1.12 1.12 1.12 1.12 1.12

M/Phase (case 1)/ 1.13 1.13 1.13 1.13 1.13

M/Phase(case 2)/ 1.43 1.43 1.43 1.43 1.43

G/M/ 1 1 1 1 1

G/Weib (a = 5)/ 1 1 1 1 1

M/Weib (a = 5)/ 10 % 1.38 1.38 1.38 1.38 1.38

M/Loglog (r = 0.1)/ 10 % 1.39 1.39 1.39 1.39 1.39

M/Phase (case 1)/ 1.39 1.39 1.39 1.39 1.39

M/Phase (case 2)/ 4.24 4.24 4.24 4.24 4.24

G/M/ 1.15 1.15 1.15 1.15 1.15

G/Weib (a = 5)/ 1.15 1.15 1.15 1.15 1.15

M/Weib (a = 5)/ 4 % 1.93 1.93 1.93 1.93 1.93

M/Loglog (r = 0.1)/ 4 % 1.95 1.95 1.95 1.95 1.95

M/Phase (case 1)/ 1.95 1.95 1.95 1.95 1.95

M/Phase (case 2)/ Unfeasib Unfeasib Unfeasib Unfeasib Unfeasib

G/M/ 1.52 1.52 1.52 1.52 1.52

G/Weib (a = 5)/ 1.52 1.52 1.52 1.52 1.52
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descriptive analysis indicates that the average number of beds is 17, 20 and 12 in

cardiac, medical/surgical and pediatric intensive care units, respectively [Leleu et al.

(2012)].

The recovery status of the patient has been modeled by using the states of a

phase-type distribution to prevent the early discharge of a patient which has not

recovered sufficiently.

The model presented in this paper can be readily extended to include different

types of patients. In practice patients are clustered in different groups according to

the type of illness, origin, necessary treatment, etc. Each group is characterized by

its own arrival pattern and stochastic LoS.

Nevertheless, in order to make this theoretical analysis useful for the effective

control of the health care system, it is necessary to take further steps in the analysis

of the solution: physicians need flexible and medically-meaningful operative rules

for shortening the LoS of a patient to the degree that will result in the service rates

dictated by the theoretical analysis. The discussion of how the theoretical solutions

can be transformed into effective management rules to guide doctors’ decisions

constitutes our work in progress.

Acknowledgments This paper has been in part supported by Grant MTM2012-36025.

Table 8 Cautious policies: Optimal management policies for (GP2) control problem, for different G/G/

5/5 models and percentage of rejected patients ej = 16, 10, and 4 %

ej l1 l2 l3 l4 l5

M/Weib (a = 5)/ 16 % 1 1 1 1 1.31

M/Loglog (a = 0.1)/ 16 % 1 1 1 1 1.3

M/Phase (case 1)/ 1 1 1 1 1.32

M/Phase (case 2)/ 1 1 1 1 1.85

G/M/ 1 1 1 1 1

G/Weib (a = 5)/ 1 1 1 1 1

M/Weib (a = 5)/ 10 % 1 1 1 1.36 1.8

M/Loglog (r = 0.1)/ 10 % 1 1 1 1.3 1.83

M/Phase (case 1)/ 1 1 1 1.39 1.77

M/Phase (case 2)/ 1 1 1.35 2.26 6.6

G/M/ 1 1 1 1.15 1.26

G/Weib (a = 5)/ 1 1 1 1.15 1.26

M/Weib (a = 5)/ 4 % 1 1 1.49 2.37 2.5

M/Loglog (r = 0.1)/ 4 % 1 1 1.4 2.47 2.47

M/Phase (case 1)/ 1 1 1.43 2.47 2.47

M/Phase (case 2)/ Unfeasib Unfeasib Unfeasib Unfeasib Unfeasib

G/M/ 1 1 1.1 1.81 1.81

G/Weib (a = 5)/ 1 1 1.1 1.81 1.81
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