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Abstract Offset printing is a common method to produce large amounts of printed

matter. We consider a real-world offset printing process that is used to imprint

customer-specific designs on napkin pouches. The production equipment used gives

rise to various technological constraints. The planning problem consists of allo-

cating designs to printing-plate slots such that the given customer demand for each

design is fulfilled, all technological and organizational constraints are met and the

total overproduction and setup costs are minimized. We formulate this planning

problem as a mixed-binary linear program, and we develop a multi-pass matching-

based savings heuristic. We report computational results for a set of problem

instances devised from real-world data.

Keywords Real-world production process � Mixed-binary linear program �
Symmetry-breaking constraints � Savings heuristic � Matching problem

1 Introduction

In many economic sectors, small and medium enterprises (SMEs) are the primary

drivers of innovation and competition. For SMEs in the manufacturing sectors,

efficient utilization of the production equipment is particularly important for staying

globally competitive. The problem discussed in this paper was reported to us by an

SME that operates in the printing industry.
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The company uses an offset printing process for manufacturing napkin pouches;

a significant fraction of the demand is for pouches with customer-specific designs,

which are manufactured make-to-order, whereas the remainder is for pouches with

standard designs, which are manufactured make-to-stock. Both types of designs are

imprinted on the pouches by offsetting the respective inked image from some

rotating printing plates to the surface of some paper; afterwards, the pouches are

produced by cutting, folding and gluing this paper. The printing plates used here

include seven slots; an individual design is allocated to each slot. The planning

problem involves determining the number of required printing plates, the allocation

of the designs to the slots of these plates, and the number of rotations of each plate

such that a given demand for each design is fulfilled, all technological constraints

are met, and the total costs are minimized. These costs comprise (a) overproduction

costs, which arise when the production quantity of a design exceeds the given

demand, and (b) setup costs, which arise for each printing plate that is used.

Currently, this problem is solved manually using a time-consuming, spreadsheet-

based approach; further drawbacks of this approach are the potential risk of

inefficient utilization of the production equipment and of infeasible plans.

To the best of our knowledge, this problem has not yet been discussed in the

literature. Related planning problems known from the literature are the job-splitting

problem, the layout problem, and the cover-printing problem. Compared to these

problems, however, the production process discussed in the present paper comprises

various additional technological constraints which increase the complexity of the

planning problem.

The contribution of this paper is twofold. First, we formulate the problem as a

mixed-binary linear program. To render this optimization problem computationally

tractable at least for small-sized instances, we enhance the problem formulation by

using constraints that eliminate three different types of symmetries from the search

space. Second, we propose a heuristic approach for medium- and large-sized

instances. This heuristic is inspired by the well-known savings algorithm of Clarke

and Wright (1964) for the vehicle routing problem: in the initial solution of the

heuristic, one plate is set up for each design; these plates are then successively

merged, where the savings associated with such a merger are devised from the

economized setup-cost and the additional overproduction cost. Similar to the

heuristics proposed in Altinkemer and Gavish (1991) and Wark and Holt (1994), our

heuristic uses repeated matching, i.e., in each iteration of the heuristic, several pairs

of plates are merged simultaneously. Eventually, a local-search improvement

procedure is applied to the resulting solution. We implement this heuristic as a

multi-pass procedure, in which in each pass, the matching problem for identifying

the pairs of plates to be merged is varied.

To evaluate the performance of the proposed model formulation and the proposed

heuristic, we have generated a set of instances based on the original data provided

by the company. Using standard optimization software, the model formulation can

be used to determine optimal solutions for small-sized instances within reasonable

CPU times. Moreover, the heuristic computes optimal solutions for all small-sized

instances and provides good feasible solutions for medium- and large-sized

instances.
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The remainder of this paper is organized as follows. In Sect. 2, we describe the

planning problem in detail. In Sect. 3, we review the related literature. In Sect. 4,

we present the formulation as a mixed-binary linear program and the symmetry-

breaking constraints. In Sect. 5, we describe the savings heuristic and its

implementation as a multi-pass matching-based procedure. In Sect. 6, we report

the design and the results of the computational analysis. In Sect. 7, we close the

paper with some concluding remarks and directions for future research.

2 Planning situation

In Sect. 2.1, we describe the real-world planning problem to be solved. In Sect. 2.2,

we present an illustrative example.

2.1 Planning problem

In offset printing, the image to be printed is indirectly transferred from a metal

printing plate to the paper. In general, one printing plate is required for each primary

color, and one for black color. The plates are chemically treated such that the ink

adheres to specific areas of the plate only. By rotating the plate, the image is first

transferred to a rubber cylinder that in turn transfers the image onto the paper as it

passes below; the term offset refers to the fact that the image is not printed directly

on the paper but on another surface that then makes contact with the paper. In

relation to the variable cost, the production and setup costs of the printing plates are

relatively high. Therefore, offset printing is best suited for producing large amounts

of high-quality printed matter. Typical applications include newspapers, magazines

and books. The company involved uses the offset-printing technology to produce

napkin pouches.

Each week, a set of customer orders is given, each consisting of a customer-

specific design (with or without a white border), a napkin color, and a demand. In

typical problem instances of the company mentioned above, between 50 and 90

different customer-specific designs are to be planned. The company concentrates on

customer-specific designs; therefore no demand for standard designs is given here,

but these designs are produced in separate batches.

In the following, we refer to a set of four printing plates (one for each primary

color and one for black) as a single plate. The planning problem discussed in this

paper is to determine (1) the number of printing plates to be used; (2) the allocation

of the ordered designs to the slots of these plates; and (3) the number of rotations of

each plate. The objective is to minimize the total costs, which comprise

(a) overproduction costs, which arise when the production quantity of a design

exceeds the given demand; and (b) setup costs, which arise for each printing plate

that is used. Basically, the constraints of the planning problem are that the given

demand for each design must be fulfilled and that the allocation of the designs to the

plates must be feasible with respect to the technology and the organization of the

shop floor. In detail, the latter can be divided into the following constraints.
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1. Plate constraint The number of different designs that can be printed using the

same plate depends on the size of the plate and the size of the napkin pouches.

Here, all pouches have the same size, and a plate comprises seven slots, i.e., at

most, seven different designs can be produced using the same plate. It is not

possible to leave a slot empty. The number of produced units for a specific design

depends on the number of slots allocated to this design and on the number of plate

rotations. Whenever a new printing plate is used, setup costs are incurred; these

costs include production, cleaning, and installation costs. Note that before and

after the respective quantities are imprinted, the plates perform some additional

rotations in order to reach the required speed and to stop, respectively; therefore,

we assume that the number of plate rotations may be non-integer.

2. White-border constraint When the printing plate is wrapped around the

cylinder, a small gap between the plate borders arises due to technological

reasons. This gap leads to a white stripe on the paper. Therefore, at least two

slots on the plate must be occupied by a design that has a white border.

Alternatively it is possible to avoid the white stripe by assigning a standard

design to one slot. Standard designs use one color only and are printed with an

additional fifth cylinder that requires no setup. By rotating the fifth cylinder out

of phase, the white stripe is overprinted. It is not feasible to allocate more than

one standard design to a plate. A standard design exists for each napkin color.

3. Color constraint After printing, the paper is cut, folded and glued. Finally, the

napkins are inserted into the resulting pouches using a process-specific

machine; this machine can insert napkins of at most two different colors

simultaneously. Therefore, a plate must not contain designs with more than two

different napkin colors.

4. Split constraint The packing of the pouches into the boxes used for delivery

imposes an organizational constraint. If a design were allocated to two or more

plates (i.e., the order would be split among several plates), then the packing

would require significantly more space in the limited packing area and more

manpower. Therefore, each design must be allocated to a single plate.

2.2 Illustrative example

We illustrate the planning problem with an example with three customer orders (cf.

Table 1). The setup cost per plate is €540 and the overproduction cost per unit of a

standard design is €0.001. Due to the color constraint, at least two printing plates are
required to fulfill the demand.

Figure 1 shows an optimal solution to the illustrative example.

In this solution, a standard design is allocated to plate B to satisfy the white-

border constraint. The number of produced units can be computed by multiplying

the number of allocated slots times the corresponding number of rotations of plate p

(Rp). In the solution shown in Fig. 1, overproduction costs of €5.83 for the standard

design on Plate B occur. The total costs of this solution of €1,085.83 comprise setup

costs of €540 for each plate and total overproduction costs of €5.83.
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3 Literature review

In this section, we review the literature on problems that are closely related to the

planning problem presented in Sect. 2. In particular, we refer to the so-called job-

splitting, the layout, and the cover-printing problem, respectively.

The planning problem discussed in this paper can be interpreted as an extension

of the job splitting problem (JSP), which we summarize as follows. Given quantities

of n products must be produced on a machine with m slots. A particular assignment

of a set of jobs to the slots is called a run and requires a setup. The length of a run

determines the quantity produced in each slot during that run. The objective is to

find a set of runs that minimizes the total setup and overproduction costs. The JSP

relates to the planning problem discussed in the present paper as follows. The

machine corresponds to a printing plate, the number of slots on the machine

corresponds to the number of slots available on the plate, the different types

correspond to the different designs, and the run length corresponds to the number of

plate rotations. However, the JSP does not include neither the white-border nor the

color constraint. Ekici et al. (2010) prove that the JSP is strongly NP-hard, and

present a non-linear integer programming formulation, two linear integer program-

ming formulations with some preprocessing steps, and two specific, constructive

heuristics.

The so-called layout problem is a variant of the JSP arising in the apparel

industry. The layout problem refers to a production process where first several

layers of fabric are put on a cutting table, then a combination of several stencils are

fixed on top of this stack, and eventually parts of clothing are cut of the fabric. The

optimization problem is to find a set of stencil combinations and to determine for

each combination the number of layers of fabric that are put together on the cutting

Fig. 1 Optimal solution to the
illustrative example

Table 1 Input data of illustrative example

Design White border Napkin color code Demand (units) Overproduction

cost per unit (€)

D1 No 1 15,000 0.0035

D2 Yes 2 20,000 0.0035

D3 No 3 35,000 0.0035
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table such that total setup cost and excess is minimized for a given demand. The

layout problem compares to the planning problem discussed in the present paper as

follows. The combinations of stencils correspond to the printing plates, the number

of stencils that fit on the cutting table corresponds to the number of slots available

on a printing plate, the different stencils correspond to the different designs, and the

number of layers corresponds to the number of plate rotations. However, the layout

problem does not include neither the white-border nor the color constraint;

moreover, the number of layers per cutting operation is limited from above, and

only a part of the cutting table may be used. Degraeve and Vandebroek (1998)

formulate this layout problem as a mixed-integer linear program. Degraeve et al.

(2002) propose two alternative mixed-integer linear models; the first model includes

symmetry-breaking constraints, whereas the second model requires as input a set of

all possible stencil combinations and uses binary variables to select a subset of these

combinations. Martens (2004) develops two genetic algorithms for the layout

problem based on a non-linear and a linear integer programming formulation. Rose

and Shier (2007) address a variant of the layout problem in which the entire cutting

table must be occupied by stencils except for the last stencil combination, and the

demand must be satisfied exactly; the authors present an enumerative approach to

minimize the total setup cost.

In the context of book-cover printing, the JSP is also called the cover-printing

problem; here, the number of slots is four. Teghem et al. (1995) provide a non-linear

and a linear programming formulation and a heuristic of the simulated-annealing

type. Elaoud et al. (2007), Tuyttens and Vandaele (2010), and Romero and Alonso-

Pecina (2012) propose a genetic algorithm, a greedy random adaptive search

procedure and an ad-hoc heuristic, respectively. Peeters and Degraeve (2004)

propose a branch-and-price algorithm for the co-printing problem, which is a variant

of the cover printing problem. In this problem, the number of rotations is prescribed,

not every slot must by occupied by an item, and the number of different item colors

per plate is limited from above. Mohan et al. (2007) present a non-linear integer

programming formulation and three specific constructive heuristics for an adver-

tisement printing problem, which corresponds to a cover-printing problem with

additional bounds on the number of rotations of each plate. Yiu et al. (2007) propose

a two-level heuristic for the label-printing problem, which is another variant of the

cover-printing problem in which empty slots are allowed, but penalized in the

objective function.

4 MBLP model

In this section, we formulate the planning problem presented in Sect. 2 as a mixed-

binary linear program. In Sect. 4.1, we formulate the objective function and the

technological constraints. In Sect. 4.2, we introduce additional constraints for

eliminating symmetric solutions from the search space.

We use the following notation.
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Sets

C ¼ f1; . . .; j C jg Color codes

I ¼ f1; . . .; j I jg Designs

IO � I Customer-specific designs

IS � I Standard designs

Ic � I Designs with color code c

Iw � I Designs with white border

J ¼ f1; . . .; j J jg Slots

P ¼ f1; . . .; j P jg Plates

Parameters

c Maximum number of different color codes per plate

cOi Overproduction cost per unit of customer-specific design i

cP Setup costs per plate

cS Overproduction cost per unit of standard design

di Demand of design i

M Sufficiently large number

Continuous variables (all non-negative)

uijp Units of design i produced in slot j of plate p

vi Overproduced units of design i

Binary variables

Wp =1, if plate p is used; =0, else

Xijp =1, if design i is allocated to slot j of plate p; =0, else

Yip =1, if customer-specific design i is allocated to plate p; =0, else

Zcp =1, if any design with color code c is allocated to plate p; =0, else

Due to the split constraint, there is no feasible solution in which the number of

plates used exceeds the number of customer-specific designs. Therefore, we define

set P such that jPj ¼ jIOj. W.l.o.g., we assume that di [ 0 for all i 2 IO. We choose

the parameter M to be M ¼ maxi2I di.

4.1 Basic model formulation

The objective is to minimize the total cost for (a) overproduction of customer-

specific designs,
P

i2IO c
O
i vi; (b) overproduction of standard designs,

P
i2IS c

Svi; and

(c) setups,
P

p2P c
PWp. Thus, the objective function is
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Min:
X

i2IO
cOi vi þ

X

i2IS
cSvi þ

X

p2P
cPWp ð1Þ

The number of overproduced units of a design is the difference between the number

of units produced and the demand for this design, i.e.,

vi ¼
X

j2J; p2P
uijp � di ði 2 IÞ ð2Þ

where di ¼ 0 for standard designs i 2 IS. Because of vi � 0 (i 2 I), constraint (2)

implies that the demand will be fulfilled.

If plate p is used, then one design must be allocated to each slot of this plate, i.e.,
X

i2I
Xijp ¼ Wp ðj 2 J; p 2 PÞ ð3Þ

If some units of design i are produced in slot j of plate p, then the design is allocated

to this slot, i.e.,

uijp �MXijp ði 2 I; j 2 J; p 2 PÞ ð4Þ

The number of units produced in each slot of a plate must be the same for all slots,

i.e., the number of rotations of the plate:

X

i2I
uijp ¼

X

i2I
ui;j�1;p ðj 2 J : j[ 1; p 2 PÞ ð5Þ

To each plate p, designs with at most c different color-codes can be allocated, i.e.,

X

c2C
Zcp � c ðp 2 PÞ ð6Þ

where Zcp ¼ 1 if a design with color code c is allocated to one or several slots of

plate p:

Jj jZcp �
X

i2Ic; j2J
Xijp ðc 2 C; p 2 PÞ ð7Þ

Moreover, for each plate, either a white-border design must be assigned to at least

two slots or a standard design must be assigned to one slot, i.e.,

Wp �
X

i2Iw; j2J

1

2
Xijp þ

X

i2IS;j2J
Xijp ðp 2 PÞ ð8Þ

At most one standard design can be allocated to each plate, i.e.,

X

i2IS;j2J
Xijp � 1 ðp 2 PÞ ð9Þ

A customer-specific design must not be allocated to several plates, i.e.,
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X

p2P
Yip ¼ 1 ði 2 IOÞ ð10Þ

where Yip ¼ 1 if customer-specific design i is allocated to some slots of plate p, i.e.,

Jj jYip �
X

j2J
Xijp ði 2 IO; p 2 PÞ ð11Þ

In total, the basic optimization problem is

ðPÞ

Min. ð1Þ
s.t. ð2Þ�ð11Þ

uijp � 0 ði 2 I; j 2 J; p 2 PÞ
vi � 0 ði 2 IÞ

Wp 2 f0; 1g ðp 2 PÞ
Xijp 2 f0; 1g ði 2 I; j 2 J; p 2 PÞ
Yip 2 f0; 1g ði 2 IO; p 2 PÞ
Zcp 2 f0; 1g ðc 2 C; p 2 PÞ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

4.2 Symmetry-breaking constraints

The set of feasible solutions to problem (P) contains many symmetric solutions, i.e.,

solutions that coincide with other solutions except that some slots or plates are

interchanged. Jans (2009) demonstrates for the lot-sizing problem on parallel

identical machines that the performance of the model improves considerably when

symmetric solutions are removed by additional symmetry-breaking constraints.

Recently, Jans and Desrosiers (2013) also applied symmetry-breaking constraints

successfully to the so-called job grouping problem. In this subsection, we introduce

additional constraints to eliminate such symmetries from the solution space w.l.o.g.

The designs allocated to the slots of a plate p can always be sorted according to a

non-decreasing design index, i.e.,
X

i2I
iXi;j�1;p �

X

i2I
iXijp ðj 2 J : j[ 1; p 2 PÞ ð12Þ

Moreover, the plates with the smallest indices should be used, i.e.,

Wp�1 �Wp ðp 2 P : p[ 1Þ ð13Þ

The plates can always be sorted according to a non-decreasing index of the design

allocated to the first slot, i.e.,

X

i2I
iXi;j;p�1 �

X

i2I
iXijp ðj ¼ 1; p 2 P : p[ 1Þ ð14Þ

In total, the optimization problem with symmetry-breaking constraints is
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(PS)

Min. ð1Þ
s.t. ð2Þ�ð14Þ

uijp � 0 ði 2 I; j 2 J; p 2 PÞ
vi � 0 ði 2 IÞ

Wp 2 f0; 1g ðp 2 PÞ
Xijp 2 f0; 1g ði 2 I; j 2 J; p 2 PÞ
Yip 2 f0; 1g ði 2 IO; p 2 PÞ
Zcp 2 f0; 1g ðc 2 C; p 2 PÞ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

5 Heuristic

In this section, we present a savings-based heuristic for the planning problem

described in Sect. 2. The heuristic consists of a construction phase, in which an

initial solution is computed, and an improvement phase, in which a simple local-

search procedure is iteratively applied to the initial solution.

Roughly speaking, the construction phase proceeds as follows. First, we assign each

design to an individual plate. Then, we iteratively merge plates such that the resulting

solution is feasible, and the merger results in a reduction of the total cost. We analyze

three alternative strategies to select the plates to be merged. The first strategy is to

merge in each iteration one of the pairs of plates that results in the highest reduction of

the total cost. The second strategy is similar to the first one, but we use a roulette-wheel

procedure for selecting the pair of plates to be merged. The third strategy is to solve a

matching problem in each iteration and to determine the pairs of plates to be merged

from the solution to this matching problem; we formulate the matching problem such

that some edge weights are influenced by random numbers. The solution obtained

using the second and third strategies depends on the random numbers used; therefore,

we propose implementing these strategies in a multi-pass procedure.

In Sect. 5.1, we describe the construction phase in more detail. In Sect. 5.2, we

present the improvement phase.

5.1 Construction phase

In the construction phase, an initial feasible solution is computed as follows.

(C1) Each design is allocated to a separate plate. If necessary, a standard design is

allocated to satisfy the white-border constraint.

(C2) For each pair of plates, the savings Spp0 that result when merging plate p and

plate p0 are computed as follows.

Spp0

¼ Cost of plate pþ Cost of plate p0 � Cost of merged plate;

if merger is feasible

¼ �1; otherwise

8
><

>:
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A higher number of single-color plates tends to increase the number of

possible mergers in later iterations. To favor mergers that result in single-

color plates, we increase the cost of a plate by a penalty if more than one

napkin color is allocated.

The allocation of designs to slots of the merged plate is as follows. First, one

slot is allocated to each customer-specific design. If necessary, a standard

design is allocated to one slot to satisfy the white-border constraint. Second,

for each design i, the minimum number of required rotations ri ¼
Demanddi

Numberofoccupiedslots
is computed. Third, the design with the highest value for

ri receives an additional slot. These three steps are repeated until all slots are

occupied. Then, ri is again updated and the number of rotations of the

merged plate is set to the maximum value of ri. Finally, the total cost of the

merged plate, including the penalty cost, is computed.

(C3) If no positive savings exist, then the construction phase terminates.

(C4) Otherwise, one or multiple mergers are selected according to the specific

selection strategy.

(C5) The selected mergers are performed, and the savings for the resulting

solution are computed (!C2).

As mentioned above, we propose the following three alternative strategies to select

the plates to be merged.

1. Greedy selection In each iteration, a merger with maximum savings is selected.

2. Roulette-wheel-based selection In each iteration, one merger with positive

savings is selected using a roulette wheel. The probability Ppp0 that the merger

of plates p and p0 is selected is computed as follows:

Ppp0 ¼
ðSpp0 � SÞk

P

p;p02P
ðSpp0 � SÞk

;

where S denotes the minimum saving among all positive savings and k is a

parameter that controls the relation between the savings and the corresponding

selection probabilities. With increasing k, the relative selection probability of

large savings increases.

3. Matching-based selection In each iteration, a maximum-weighted matching

problem is solved to select one or several mergers with positive savings. This

problem involves selecting a subset of the edges of a graph such that no two

edges are adjacent and the total weight of the selected edges is maximized. We

construct the graph for this matching problem as follows. The plates of the

current solution represent a subset of the nodes of the underlying graph. If the

merger of two plates p and p0 results in positive savings, an edge between the

corresponding plate nodes p and p0 with weight Spp0 is introduced. Similar to the

matching-based approaches for the vehicle routing problem (cf., e.g., Altink-

emer and Gavish 1991), our heuristic performs advantageously when the

number of different designs on the plates does not increase uniformly. To this
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end, we add a set of n dummy nodes to the graph of the matching problem. We

choose n such that it is smaller than both, the number of positive savings and the

number of plate nodes (see below). If a plate node is merged with a dummy

node, then the corresponding plate will not be merged in the current iteration,

i.e., the number of different designs on that plate remains constant.

In order to increase the number of possible mergers in later iterations, we propose

rather not to merge plates with few designs and white-border designs in early

iterations. Every dummynode d is connected to every plate node p by an edgewith

weight Sdp.We chose this weight Sdp as follows. Let S denote themaximum saving

among all savings, RD and RW denote random integers in the interval [0,100), and

jJj denote the number of slots on a plate. Moreover, let
P

i2IO Yip denote the

current number of customer-specific designs on plate p. We compute Sdp by

Sdp

¼ Sþ RDðjJj �
P

i2IO YipÞ þ RW ; if the plate associated with p

comprises a white-border design

¼ Sþ RDðjJj �
P

i2IO YipÞ; otherwise

8
><

>:

The term S ensures that all dummy-nodes are merged in the optimal solution of

the matching problem. The term RDðjJj �
P

i2IO YipÞ increases with decreasing

number of different designs on the plate. The term RW additionally increases the

edge weight if the plate has a white-border design.

Based on a non-negative user-defined parameter DR\1, which we refer to as

the dummy ratio, the number n of dummy nodes is computed as follows:

n ¼ DR minðn1; n2Þ
� �

where n1 denotes the number of positive savings and n2 denotes the number of

plate nodes in the current matching problem. The dummy ratio DR is squared

and the matching problem is solved again if no merger is performed despite the

existence of positive savings.

Figure 2 depicts the graph of the maximum-weighted matching problem for the

illustrative example (cf. Sect. 2.2). The graph refers to the first iteration of the

heuristic and was constructed using a dummy ratio of 0.5 and a penalty cost for

different napkin colors of €200.

5.2 Improvement phase

After the construction phase, an iterative improvement procedure is applied to the

initial schedule. This procedure is as follows.

(I1) For each pair of customer-specific designs that are not allocated to the same

plate, it is determined whether the total cost could be decreased by swapping

the corresponding designs. The allocation of designs to slots is recomputed

as described in step C2. Step I1 is repeated until no further cost reduction

can be achieved; then, the improvement procedure continues with step I2.
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(I2) For each design, every feasible move to another plate is evaluated. The

allocation of designs to slots is recomputed as described in step C2. If some

cost reduction can be achieved, the improvement procedure continues with

step I1. Otherwise, the procedure stops.

6 Results

In this section, we report the results of an experimental analysis of the mixed-binary

linear model presented in Sect. 4 and the multi-pass matching-based heuristic

presented in Sect. 5. In Sect. 6.1, we describe the set of problem instances used for

the analysis. In Sect. 6.2, we report the results. First, we compare the results of the

MBLP formulations with and without the symmetry-breaking constraints. Second,

we compare the results of the heuristic under the three alternative selection

strategies against the best result obtained using the MBLP formulations.

We implemented the MBLP models in AMLP and used the Gurobi Mixed-

Integer Optimizer 5.6.2 as the solver. For the implementation of the multi-pass

heuristic, we used ANSI-C; thereby, we used the Gurobi solver to obtain a solution

of the matching problems. All computations were performed on a standard

workstation with two Intel Xeon CPUs (model E5-2687W) with 3.10 GHz clock

speed and 128 GB of RAM.

6.1 Test set and experimental design

We have generated the set of benchmark instances by varying the following

problem characteristics.

1
D1

2
D2

3
D3

4
Dummy

342.50

330.83

32
3.
96

402.50 562.5

852
.5

p Spp p

d
Sdp p

Fig. 2 Graph of the weighted-matching problem for the first iteration of the illustrative example
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• Number of designs N This parameter mainly drives the size of the MBLP model

in terms of the number of decision variables and constraints. We have generated

small-sized instances with 5, 10, and 15 different customer-specific designs,

medium-sized instances with 20 and 25 different customer-specific designs, and

large-sized instances with 30, 50, 70, and 90 different customer-specific designs.

• White-border ratio WR This parameter controls the number of designs with a

white border relative to the total number of designs. We have generated

instances with a low white-border ratio of 0.33 and with a high white-border

ratio of 0.66. For each design, a random number between 0 and 1 is drawn. If

this number is equal to or smaller than the white-border ratio, then the design

belongs to the set of white-border designs.

• Color-code ratio CR This parameter is used to compute the maximum number of

different napkin colors relative to the total number of designs. We have

generated instances with a low color-code ratio of 0.15 and with a high color-

code ratio of 0.3. For each instance, we first computed the maximum number of

different napkin colors by rounding up the product of the corresponding values

for CR and N. Then, an integer random number between 1 and the computed

maximum number of different napkin colors is drawn for each customer-specific

design of this instance; this random number is the color code of the respective

design.

• Demand ratio DR Similar to the color-code ratio, the demand ratio computes the

maximum number of different demand values relative to the total number of

designs. We have generated instances with a low demand ratio of 0.2 and a high

demand ratio of 0.4. For each instance, we computed the maximum number of

different demand values by rounding up the product of the corresponding values

of DR and N. Then, we divide the interval [5,000, 80,000] (which has been

derived from the original data provided by the company) evenly into several

intervals; the number of these intervals is defined by the computed maximum

number of different demand values. Then, one of these intervals is chosen

randomly; the demand value is then computed by rounding the center of this

interval to the nearest multiple of 500.

We have generated one instance for each combination of the above-described

parameters. In total, the test set comprises 40 small- and medium-sized instances

and 32 large-sized instances. In all instances, the overproduction cost are €0.0035
per unit of customer-specific design and €0.001 per unit of standard design. The

setup cost per plate are €540.
We applied the MBLP model with and without symmetry-breaking constraints to

all of the 72 instances. Thereby, we set a CPU time limit of 1,800 seconds per

instance for the Gurobi Optimizer. For the heuristic approaches, we have used a

penalty cost for the allocation of different napkin colors of €200. We applied both

the heuristic with the roulette-wheel-based and the heuristic with the matching-

based selection strategy 50 times to each instance.

For the roulette-wheel-based selection strategy, we used the value k ¼ 3 for the

computation of the relative selection probabilities. We tested the values

k ¼ 0; 1; . . .; 15; 20; . . .; 95; 100; Table 2 indicates for each value of k, the number
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of instances for which the best objective function value among these values for k

was obtained. The best results were obtained for k ¼ 3 and for k ¼ 6.

For the matching-based selection strategy, we set the dummy ratio to DR ¼ 0:5
and prescribed a CPU time limit of 5 s per iteration for the Gurobi Optimizer.

6.2 Numerical results

The numerical results of our analysis for the MBLP formulations and the heuristic

with the different selection strategies are reported in Tables 3, 4, 5 and 6,

respectively. In the first part of this subsection, we are concerned about the results

obtained with the MBLP formulations; in the second part of this subsection, we

discuss the results obtained with the heuristic approach.

The second to the fifth column of Table 3 refer to the characteristics that were

varied to generate each small- and medium-sized instance. In columns 6–11 of

Table 3, we present for each instance and the MBLP model without symmetry-

breaking constraints, i.e., model (P), and the MBLP model with symmetry-breaking

constraints, i.e., model (PS), the objective function value (OF), the MIP gap (G) and

the required CPU time (T). For each instance, the best objective function value

found is marked in bold face. The entry lim means that the solver was stopped

because the prescribed time limit had been reached; the entry na indicates that no

feasible solution was found within the prescribed time limit.

For small-sized instances, model (PS) considerably outperforms model (P). Model

(PS) solves all of the 24 small-sized instances to optimality, whereas model (P) solves

only 12 instances to optimality within the prescribed time limit. For all medium-sized

instances, however, the solutions found bymodel (P) have the same or a better objective

function value than the solutions found by model (PS). However, for instances with up

to N ¼ 20 customer-specific designs, the MIP gaps obtained with model (PS) are

smaller than the gaps obtained with model (P); in particular for N ¼ 20, the lower

bounds provided by model (PS) are considerably higher than for model (P).

In Table 4, we report analogously the results of both MBLP models for the 32 large-

sized instances. Model (P) finds feasible solutions for 23 of all large-sized instances,

whereas model (PS) can only devise feasible solutions for two large-sized instances.

Hence, the symmetry-breaking constraints seem to exclude large areas of the search

space, such that finding a feasible solution gets more difficult. From the results for model

(P), we conclude that a high color-code ratio seems to render the problem instance more

difficult.

Table 2 Number of best solutions (best) obtained for different values of parameter k within the roulette-

wheel-based heuristic

k 0 1 2 3 4 5 6 7 8 9 10 11 12 15 20 25

Best 22 21 27 28 27 26 28 27 27 25 24 27 24 25 24 21

k 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Best 20 22 21 21 22 21 24 21 20 21 19 19 20 20 20
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Asmodel (PS) often has difficulties to find a feasible solution within the prescribed

time limit, we analyzed the usefulness of providing an initial feasible solution tomodel

(PS), which we generated using the heuristic under the greedy selection strategy (cf.

also Tables 5, 6). In the last three columns of Tables 3 and 4, we list the respective

objective function values, the gaps, and the requiredCPU time. Instances for which the

MILP solver found a better solution than the provided initial solution are marked with

Table 4 Numerical results of the MBLP-models (P) and (PS) for large-sized instances

Inst N WR CR DR Model (P) Model (PS) Model (PS) ? Hbest

OF (€) G

(%)

T

(s)

OF (€) G

(%)

T

(s)

OF (€) G

(%)

T

(s)

41 30 0.33 0.15 0.2 3,832.3 41.4 Lim na na Lim 4,088.0 34.0 Lim

42 30 0.33 0.15 0.4 4,226.0 36.1 Lim na na Lim 4,434.5 50.9 Lim

43 30 0.33 0.30 0.2 4,812.9 43.9 Lim na na Lim 4,847.9 44.3 Lim

44 30 0.33 0.30 0.4 4,927.8 55.1 Lim na na Lim 4,622.1 41.6 Lim

45 30 0.66 0.15 0.2 3,569.2 35.6 Lim 4,572.3 49.4 Lim 3,933.2 31.4 Lim

46 30 0.66 0.15 0.4 3,957.4 43.9 Lim na na Lim 4,361.6 47.0 Lim

47 30 0.66 0.30 0.2 4,245.6 46.6 Lim na na Lim 4,148.4 34.9 Lim

48 30 0.66 0.30 0.4 4,421.3 50.8 Lim na na Lim 4,494.8 39.9 Lim

49 50 0.33 0.15 0.2 7,954.8 48.4 Lim na na Lim 7,641.8 48.8 Lim

50 50 0.33 0.15 0.4 7,253.5 49.5 Lim na na Lim 6,879.8 55.1 Lim

51 50 0.33 0.30 0.2 8,063.6 59.8 Lim na na Lim 7,253.1 52.8 Lim

52 50 0.33 0.30 0.4 na na Lim na na Lim 7,992.3 56.7 Lim

53 50 0.66 0.15 0.2 7,372.9 48.6 Lim na na Lim 6,528.0 48.3 Lim

54 50 0.66 0.15 0.4 6,977.9 45.8 Lim na na Lim 6,525.7 48.2 Lim

55 50 0.66 0.30 0.2 8,434.7 55.2 Lim na na Lim 7,043.1 53.8 Lim

56 50 0.66 0.30 0.4 8,699.0 50.3 Lim na na Lim 6,968.8 57.0 Lim

57 70 0.33 0.15 0.2 14,311.7 62.3 Lim na na Lim 9,087.1 61.5 Lim

58 70 0.33 0.15 0.4 12,034.2 57.2 Lim na na Lim 9,285.7 65.9 Lim

59 70 0.33 0.30 0.2 na na Lim na na Lim 10,161.7* 66.7 Lim

60 70 0.33 0.30 0.4 13,809.2 63.5 Lim na na Lim 10,777.4 62.3 Lim

61 70 0.66 0.15 0.2 11,667.4 56.9 Lim na na Lim 9,096.8 50.7 Lim

62 70 0.66 0.15 0.4 10,244.2 49.9 Lim na na Lim 9,415.5 46.0 Lim

63 70 0.66 0.30 0.2 na na Lim na na Lim 10,624.4 71.4 Lim

64 70 0.66 0.30 0.4 na na Lim na na Lim 9,743.9 61.5 Lim

65 90 0.33 0.15 0.2 na na Lim na na Lim 12,263.8 68.1 Lim

66 90 0.33 0.15 0.4 na na Lim na na Lim 12,297.3 69.8 Lim

67 90 0.33 0.30 0.2 na na Lim na na Lim 12,375.2 69.0 Lim

68 90 0.33 0.30 0.4 na na Lim na na Lim 13,204.1 72.1 Lim

69 90 0.66 0.15 0.2 18,005.0 68.1 Lim na na Lim 11,952.4 70.9 Lim

70 90 0.66 0.15 0.4 na na Lim na na Lim 12,259.6 66.7 Lim

71 90 0.66 0.30 0.2 15,983.8 67.9 Lim na na Lim 12,946.0 74.0 Lim

72 90 0.66 0.30 0.4 na na Lim na na Lim 12,943.9 70.3 Lim
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Table 7 Robustness of multi-pass heuristics for small- and medium-sized instances

Inst Heuristic roulette Heuristic matching

OFI (€) OFI (€)

Min Avg Max ðmax�minÞ
min

Min Avg Max ðmax�minÞ
min

1 731.3 731.3 731.3 0.00 731.3 731.3 731.3 0.00

2 665.3 665.3 665.3 0.00 665.3 665.3 665.3 0.00

3 731.3 731.3 731.3 0.00 731.3 731.3 731.3 0.00

4 1,079.3 1,079.3 1,079.3 0.00 1,079.3 1,079.3 1,079.3 0.00

5 731.3 731.3 731.3 0.00 731.3 731.3 731.3 0.00

6 610.9 610.9 610.9 0.00 610.9 610.9 610.9 0.00

7 731.3 731.3 731.3 0.00 731.3 731.3 731.3 0.00

8 816.8 816.8 816.8 0.00 816.8 816.8 816.8 0.00

9 1,354.5 1,385.4 1,464.8 0.08 1,354.5 1,398.7 1,689.6 0.25

10 1,310.5 1,452.8 2,046.5 0.56 1,310.5 1,427.8 2,114.5 0.61

11 1,202.3 1,392.8 1,841.3 0.53 1,202.3 1,351.9 1,841.3 0.53

12 1,375.8 1,410.1 1,522.8 0.11 1,375.8 1,431.0 1,522.8 0.11

13 1,223.3 1,227.7 1,333.5 0.09 1,223.3 1,227.7 1,333.5 0.09

14 1,242.6 1,245.8 1,322.0 0.06 1,242.6 1,247.3 1,322.0 0.06

15 1,333.5 1,488.9 1,558.9 0.17 1,333.5 1,503.7 1,558.9 0.17

16 1,363.1 1,661.5 1,845.3 0.35 1,363.1 1,694.3 2,021.5 0.48

17 1,904.4 2,112.3 2,491.3 0.31 1,904.4 2,113.1 2,670.0 0.40

18 2,059.2 2,237.7 2,449.8 0.19 2,051.0 2,198.9 2,801.3 0.37

19 2,018.1 2,358.5 2,797.1 0.39 2,018.1 2,193.7 2,508.5 0.24

20 2,028.0 2,523.0 2,915.6 0.44 2,028.0 2,319.9 2,817.6 0.39

21 1,676.3 1,921.8 2,393.3 0.43 1,676.3 1,911.2 2,400.6 0.43

22 1,802.6 2,096.7 2,588.8 0.44 1,832.6 2,012.3 2,378.6 0.30

23 1,818.8 2,361.9 2,919.2 0.61 1,818.8 2,224.2 2,666.3 0.47

24 2,023.4 2,359.0 2,884.9 0.43 2,023.4 2,235.9 2,662.6 0.32

25 2,394.3 2,603.7 3,198.8 0.34 2,366.8 2,526.2 2,921.1 0.23

26 2,563.8 2,801.8 3,069.3 0.20 2,563.8 2,725.0 3,069.3 0.20

27 2,895.0 3,195.3 3,583.9 0.24 2,675.7 3,046.7 3,448.1 0.29

28 2,986.8 3,221.2 3,649.7 0.22 2,940.8 3,164.3 3,407.0 0.16

29 2,172.8 2,544.4 2,997.8 0.38 2,172.8 2,410.4 2,997.8 0.38

30 2,361.3 2,678.7 3,052.3 0.29 2,405.4 2,676.9 3,218.3 0.34

31 2,587.9 2,962.8 3,551.9 0.37 2,587.9 2,834.5 3,424.9 0.32

32 2,675.4 3,194.0 3,643.6 0.36 2,675.4 3,020.2 3,421.4 0.28

33 3,100.4 3,545.9 3,924.4 0.27 3,056.0 3,418.3 3,906.9 0.28

34 3,416.8 3,686.3 4,279.3 0.25 3,304.3 3,571.6 3,927.0 0.19

35 3,435.3 3,973.4 4,643.4 0.35 3,319.0 3,729.9 4,168.3 0.26

36 3,713.3 4,047.4 4,670.7 0.26 3,713.6 3,900.9 4,333.1 0.17

37 3,089.0 3,430.5 3,865.8 0.25 2,973.8 3,299.3 3,624.2 0.22

38 2,898.0 3,458.9 3,911.0 0.35 3,163.9 3,437.8 3,834.0 0.21

39 3,638.9 4,090.9 4,698.3 0.29 3,449.1 3,791.5 4,237.3 0.23
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asterisk. For the small- and medium-sized instances, the initial solution could be

improved for 19 instances. By providing an initial solution, the MIP gaps of model

(PS) could be reduced for 9 instances. However, for 7 instances larger MIP gaps were

obtained. For the large-sized instances, only one initial solution could be improved.

The impact on the MIP gaps of model (PS) for large-sized instances cannot be

evaluated properly as there is only one instance for which model (PS) found a feasible

solution. Overall, providing an initial solution does not increase the performance of

model (PS) substantially.

Next, we turn to the heuristic approach. In Tables 5 and 6, we present the results

of the heuristic under the three alternative selection strategies for the small- and

medium-sized, and the large-sized instances, respectively. For each selection

strategy and each instance, we report the objective function value that was obtained

after the construction (column OFC) and after the improvement phase (column

OFI), respectively. For the multi-pass implementations, we applied the improve-

ment phase after each pass and report the best solution found within the 50 passes

after the construction and after the improvement phase. For each instance we set the

best objective function value(s) in bold face. In addition, we report for each strategy

the total CPU time required T, and the relative deviation D to the best solution

found by the MBLP models. The CPU time reported for the multi-pass

implementations includes all 50 passes.

Both the roulette-wheel based and the matching-based selection strategy outper-

form the greedy selection strategy for the small- and medium-sized instances (cf.

Table 5). Both approaches devise for 23 of the 24 small-sized instances an optimal

solution within short CPU times. The cost reduction achieved by the improvement

phase tends to increase in the number of designs. From Table 6, we conclude that for

the large-sized instances, all solutions found by the matching-based strategy have

smaller objective function values than the best solutions found by either MBLP

formulation. The relative advantage of the matching-based selection strategy tends to

increase in the number of designs. Furthermore, for large-sized instances, the roulette-

wheel based selection strategy is generally outperformed by the greedy selection

strategy. One reason for that may be that the large portion of the roulette wheel which

represents mergers that result inmoderate or low savings deteriorates the performance

of this selection strategy.

To evaluate the robustness of the multi-pass implementations, we report in

Tables 7 and 8 the minimum, the average, and the maximum objective function

value after the improvement phase. In columns five and nine of these two tables, we

Table 7 continued

Inst Heuristic roulette Heuristic matching

OFI (€) OFI (€)

Min Avg Max ðmax�minÞ
min

Min Avg Max ðmax�minÞ
min

40 3,771.8 4,285.8 5,052.4 0.34 3,613.9 3,929.9 4,282.0 0.18

£ 0.25 0.23
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state the relative gap between the minimum and the maximum objective function

value for each instance. The results indicate that the matching-based selection

strategy is more robust, especially for large-sized instances.

Table 8 Robustness of multi-pass heuristics for large-sized instances

Inst Heuristic roulette Heuristic matching

OFI (€) OFI (€)

Min Avg Max ðmax�minÞ
min

Min Avg Max ðmax�minÞ
min

41 3,951.0 4,307.1 4,827.5 0.22 3,844.3 4,161.8 4,546.9 0.18

42 4,048.0 4,480.9 5,193.0 0.28 3,693.1 4,290.3 4,905.7 0.33

43 4,854.4 5,225.5 5,777.6 0.19 4,450.0 4,797.0 5,113.8 0.15

44 4,246.1 4,801.4 5,607.6 0.32 4,097.2 4,353.2 4,797.8 0.17

45 3,757.0 4,087.0 4,505.9 0.20 3,616.1 3,965.2 4,327.2 0.20

46 3,893.0 4,313.2 4,861.4 0.25 3,868.0 4,136.8 4,520.9 0.17

47 4,312.5 4,758.8 5,181.9 0.20 3,903.9 4,146.7 4,492.9 0.15

48 4,272.0 5,071.2 5,665.9 0.33 4,290.8 4,616.4 5,020.1 0.17

49 7,192.5 7,937.5 8,916.9 0.24 6,634.5 7,213.1 7,800.8 0.18

50 6,677.6 7,396.8 8,161.2 0.22 6,304.4 6,748.9 7,055.3 0.12

51 7,817.0 8,853.4 10,085.0 0.29 6,808.0 7,172.5 7,603.5 0.12

52 8,636.0 9,431.3 10,417.9 0.21 7,513.4 7,889.0 8,247.3 0.10

53 6,647.8 7,310.2 8,129.5 0.22 6,163.1 6,691.1 7,164.6 0.16

54 6,808.2 7,454.2 8,258.7 0.21 6,394.8 6,806.4 7,102.2 0.11

55 7,723.1 8,731.8 10,124.9 0.31 6,963.6 7,311.5 7,803.8 0.12

56 7,927.4 8,827.2 9,761.7 0.23 7,115.6 7,438.7 7,896.2 0.11

57 10,662.2 11,663.1 13,294.0 0.25 9,270.2 9,729.2 10,396.8 0.12

58 10,490.9 11,512.9 12,609.7 0.20 8,938.7 9,505.8 10,044.6 0.12

59 11,670.4 13,116.2 14,625.7 0.25 9,614.4 10,191.9 10,696.8 0.11

60 11,854.2 13,465.1 14,706.4 0.24 9,935.2 10,351.0 10,907.5 0.10

61 9,556.1 10,788.3 12,037.4 0.26 8,926.1 9,396.5 10,126.0 0.13

62 9,900.2 10,784.7 11,931.7 0.21 8,665.3 9,180.7 9,768.3 0.13

63 11,920.7 13,465.6 15,191.7 0.27 9,902.6 10,532.4 11,006.4 0.11

64 11,765.5 13,174.0 14,762.2 0.25 9,486.6 9,879.9 10,236.4 0.08

65 14,322.7 15,510.8 17,396.9 0.21 11,835.3 12,391.6 12,924.9 0.09

66 13,742.8 15,077.3 16,749.9 0.22 11,894.3 12,500.6 13,076.9 0.10

67 15,848.1 17,710.1 20,428.1 0.29 12,540.4 13,150.2 13,795.6 0.10

68 16,516.4 17,894.8 19,411.0 0.18 12,527.9 13,041.3 13,637.2 0.09

69 12,905.2 14,099.3 15,650.1 0.21 10,902.7 11,491.3 12,276.6 0.13

70 12,655.3 14,848.1 16,406.1 0.30 10,655.4 11,410.3 12,132.4 0.14

71 14,952.9 17,216.1 19,035.3 0.27 12,416.6 12,729.0 13,264.6 0.07

72 15,639.6 17,215.5 18,934.7 0.21 12,063.2 12,594.1 13,209.3 0.10

£ 0.24 0.13
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7 Conclusions

Within the context of a real-world offset printing process for manufacturing napkin

pouches, we have analyzed the problem of determining a number of printing plates,

a feasible allocation of designs to the slots of these plates, and a number of rotations

of each plate such that a given customer demand is fulfilled for all designs and the

total overproduction and setup costs are minimized. First, we have formulated this

problem as a mixed-binary linear program, which we have then extended by

additional constraints to remove symmetric solutions from the search space. Second,

we have developed a heuristic solution approach, which consists of a construction

phase and an improvement phase; the construction phase is related to matching-

based savings heuristics for the vehicle routing problem. Our computational results

indicate that within reasonable CPU times, optimal solutions to small-sized

instances can be determined using the MBLP model with symmetry-breaking

constraints. For medium- and large-sized instances, the model without symmetry-

breaking constraints performs better; however, no feasible solution is found for

approximately half of the large-sized instances, and rather large MIP gaps are

observed. Using the multi-pass savings-based heuristic, we could devise optimal

solutions for all small-sized instances; for medium and large-sized instances, the

heuristic outperforms the MBLP model considerably.

The real business world situation discussed and the solution approaches proposed

in this paper open up an interesting area for the application of combinatorial

optimization in production planning and control. An important area of future

research is the development of hybrid solution approaches, i.e., to combine the

MBLP model formulation presented in this paper with an heuristic search strategy.

In addition, alternative mixed-integer linear programming formulations should be

investigated; one possible direction would be to generate a set of promising plate

patterns, and to use linear programming for selecting a feasible subset of these plate

patterns with minimal total cost.
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