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Abstract Facing an acute shortage of surgical nurses, operating room suites in

China are more and more aware of the need to use surgical nurses efficiently. This

goal is hard to achieve due to the strong interactions between the nurse and the

surgery scheduling process. This paper addresses the benefit of integrating elective

surgery and surgical nurse scheduling in terms of nurse utilization. First, an integer

programming (IP) model is proposed to schedule elective surgeries and surgical

nurses simultaneously. Then an efficient genetic algorithm (GA) is proposed based

on the IP formulation due to the computational complexity of the integrated

scheduling problem. A case study using real-life data is presented to validate the

performance of the integrated approaches (the IP model and the GA) by comparing

them with a two-stage approach that schedules elective surgeries and surgical nurses

sequentially.
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1 Introduction

During the last decades, the increasing demand for surgical services along with the

ever-rising nursing costs leads to an acute shortage of surgical nurses for operating

room (OR) suites (Oulton 2006; Beliën and Demeulemeester 2008). In China, the

aging population results in significant increases in surgical demand and hence

exacerbates the surgical nurse shortage, said to be 218,000 in 2011, i.e., 11 % of the

total number of registered nurses, and expected to grow to 450,000 by 2020, i.e.,

15 % of the estimated total number of registered nurses (National Health Services

Statistics in China 2011). Therefore, it is of vital importance for OR suites to use

surgical nurses as efficiently as possible in delivering surgical services.

Optimal use of surgical nurses is a complicated task for OR suites due to the

strong dependencies between the daily surgery and nurse scheduling. Surgery

scheduling allocates a set of elective surgeries to ORs and sequences elective

surgeries in each OR (Denton et al. 2010; Min and Yih 2010). Then, nurse

scheduling assigns a set of surgical nurses to each elective surgery based on their

specific demands, functioning in scrub or circulating roles during surgery. Surgery

scheduling consequently determines surgical nurse demands among ORs and

obviously has an important impact on nurse scheduling. Besides, a high volume of

elective surgeries with time windows (i.e., release time and deadline), and a

multiple OR setting with fixed regular working hours give rise to a difficult

integrated scheduling problem in highly constrained environments.

In this paper, we focus on the integrated scheduling of elective surgeries and

surgical nurses, which is a fundamental, but understudied aspect of OR scheduling.

The purpose of this paper is to evaluate the benefit of integrating elective surgery

and surgical nurse scheduling in terms of nurse utilization, comparing with a two-

stage approach that is frequently used (Jebali et al. 2006; Testi et al. 2007; Roland

and Riane 2011). The two-stage approach optimizes the surgery scheduling problem

and the nurse scheduling problem sequentially while ignoring their strong

dependencies, which could lead to poor utilization of surgical nurses. It is our

belief that integrating elective surgery and surgical nurse scheduling is an effective

way to improve surgical nurse use for OR suites.

To the best of our knowledge, most previous studies on surgery scheduling only

consider the aggregated capacity (i.e., total working hours per workday) of nurses,

and neglect the important impact of surgery scheduling on nurse scheduling. Guinet

and Chaabane (2003) propose an assignment model with surgical nurse capacity

constraint for assigning elective surgeries to ORs over a planning horizon. Jebali

et al. (2006) develop a two-step approach for allocation and sequencing of elective

surgeries with the objective of improving OR utilization. They take into

consideration the availabilities of surgical nurses. Roland et al. (2010) apply the

resource constrained project scheduling model to formulate the allocation and

sequencing of elective surgeries. Several constraints regarding human resources’

availabilities and preferences are included in their model. Fei et al. (2010) formulate

the surgery scheduling problem as a set partitioning problem, taking into account

the maximal working hours of surgical nurses. Pham and Klinkert (2008) treat the

surgery scheduling problem as a multi-mode job shop problem. A mode is defined
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as a possible choice of resource set that includes both personnel and facilities. Mode

availability is also considered. Lamiri et al. (2009) study the surgery scheduling

problem for ORs shared between elective and emergency patients. Staffed OR

capacity is considered in the constraints. Marques et al. (2011) develop an integer

linear programming model for scheduling elective surgeries with time-window

constraints. Surgical nurses’ regular working hours are considered in the model.

The extreme importance of optimal use of surgical nurses has been emphasized

by several researchers. Beliën and Demeulemeester (2008) formulate the nurse

rostering problem using a branch and price approach, combined with different

surgery workload patterns. He et al. (2012) propose a newsvendor framework to

determine the optimal nurse staffing levels for an OR suite. Different surgery

information sets are considered at the time of decision: no information, information

on number of surgeries, and information on number and types of surgeries.

Altamirano et al. (2012) propose a particle swarm optimization algorithm to

determine the shift (i.e., elective-day, emergency-day and emergency-night)

assignment of surgical nurses at a French public hospital. However, these studies

fall into the category of tactical nurse rostering problem (NRP), which involves

producing a periodic (i.e., weekly, fortnightly, or monthly) duty roster for nursing

staff, subject to legal regulations, personnel policies, nurses’ preferences and many

other hospital-specific requirements (Cheang et al. 2003; Burke et al. 2004; Ernst

et al. 2004). In contrast, the nurse scheduling problem concerned in this paper lies

on a daily basis and is based on the rostering of surgical nurses. Specifically, nurse

scheduling in OR suites assigns surgical nurses of elective-day (emergency-day and

emergency-night) shift to elective (emergency) surgeries on each workday.

Our work differs from the aforementioned studies in the following ways. First,

we propose an integer programming (IP) model for integrating the elective surgery

and the surgical nurse scheduling processes with the objective of improving nurse

utilization. So far as we know, no models have been proposed to integrate both areas

of decision making. Second, we develop a genetic algorithm (GA) based on the IP

formulation to solve the problem more efficiently. The use of a GA is notably

justified by its advantage of proposing a population of good solutions in a

reasonable time. Finally, in order to evaluate the practical benefit of integrated

scheduling of elective surgeries and surgical nurses, we test the IP model and the

GA against the two-stage approach in various problem settings.

The remainder of the paper is organized as follows. In Sect. 2, we describe both

the IP model and the two-stage approach. Section 3 presents a GA to solve the IP

model. In Sect. 4, we describe a case study for testing the IP model and the GA

against the two-stage approach. The results of the case study are discussed in

Sect. 5. Finally, in Sect. 6 we give concluding remarks and directions for future

work.

2 Problem statement and formulation

The problem addressed in this paper involves daily scheduling of elective surgeries

and surgical nurses for OR suites. Specifically, at a specified cutoff time (e.g., 10
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A.M. the workday before surgery), a set of elective surgeries submitted by surgeons

are allocated into ORs and given predicted start times. Then each elective surgery is

assigned with a set of surgical nurses. Here we use block to define groups of one or

more elective surgeries done consecutively in an OR by the same surgeon (Denton

et al. 2010; Batun et al. 2010). We schedule elective surgeries in blocks because in

practice, a given surgeon’s elective surgeries on a workday are scheduled

consecutively and assigned with the same set of surgical nurses.

Scheduling of elective surgeries and surgical nurses has to satisfy various

constraints such as regular working hours, time windows of surgeries, surgical nurse

demands of surgeries. And the objective is to use as few surgical nurses and ORs as

possible for a given set of elective surgeries, which is equivalent to improving OR

and nurse utilization. This is for two reasons. First, free surgical nurses and ORs

may allow the OR suite to increase its surgery volume, which can be easily

translated to significant increase in revenue (Guerriero and Guido 2011). Second,

free surgical nurses and ORs can also absorb unforeseen events like large lateness or

arrivals of emergency (Lamiri et al. 2009; Persson and Persson 2010). This should

prevent the surgery schedule from being too much disrupted, and therefore improve

service quality.

The integrated scheduling of elective surgeries and surgical nurses addressed in

this paper is formulated as a discrete time integer programming model, which is

presented below.

2.1 Notations

The notations used for formulating the problem are as follows:

B number of blocks to be scheduled, b = 1, …, B;

N number of available surgical nurses, n = 1, …, N;

J number of available ORs, j = 1, …, J;

T number of time periods of a regularly scheduled workday, t = 1, …, T;

pb duration of block b;

rb release time of block b;

db deadline of blockb;

hb surgical nurse demand of block b;

Decision variables:

xbjt 1 if block b is allocated to OR j, starting at time period t; 0 otherwise;

ynb 1 if surgical nurse n is assigned to block b; 0 otherwise;

Xj 1 if OR j is open; 0 otherwise;

Yn 1 if surgical nurse n is used; 0 otherwise.
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2.2 Integer programming model

We first introduce the IP model that integrates the nurse and the surgery scheduling

process.

Minimize
XJ

j¼1

Xj þ w
XN

n¼1

Yn ð1Þ

Subject to:

XJ

j¼1

Xdb�pbþ1

t¼rb

xbjt ¼ 1; 8b ¼ 1; . . .;B ð2Þ

xbjt �Xj; 8b ¼ 1; . . .;B; 8j ¼ 1; . . .; J; 8t ¼ 1; . . .; T ð3Þ

XB

b¼1

Xt

s¼t�pbþ1

xbjs � 1; 8j ¼ 1; . . .; J; 8t ¼ 1; . . .; T ð4Þ

XN

n¼1

ynb ¼ hb; 8b ¼ 1; . . .;B ð5Þ

ynb � Yn; 8n ¼ 1; . . .;N; 8b ¼ 1; . . .;B ð6Þ

XJ

j¼1

Xt

s¼t�pbþ1

xbjs þ
XJ

j¼1

Xt

s¼t�pb0þ1

xb0js � 3� ynb � ynb0 ;

8b; b0 ¼ 1; . . .;B; 8n ¼ 1; . . .;N; 8t ¼ 1; . . .; T

ð7Þ

xbjt 2 f0; 1g; 8b ¼ 1; . . .;B; 8j ¼ 1; . . .; J; 8t ¼ 1; . . .; T ð8Þ

Xj 2 f0; 1g; 8j ¼ 1; . . .; J ð9Þ

ynb 2 f0; 1g; 8b ¼ 1; . . .;B;8n ¼ 1; . . .;N ð10Þ

Yn 2 f0; 1g; 8n ¼ 1; . . .;N ð11Þ

The above IP model schedules elective surgeries and surgical nurses simulta-

neously with the objective function (1) of minimizing the number of ORs and

surgical nurses used. We set w in Eq. (1) at 0.5 because in practice, the planning

ratio of surgical nurse to OR is usually 2, i.e., one OR is staffed with two surgical

nurses on average.

For surgery scheduling, Constraints (2) ensure that each block is allocated to one

OR and starts within the time window defined by release time and deadline.

Constraints (3) state that blocks can only be allocated to open ORs. Constraints (4)

prevent the allocation of overlapping blocks in one OR. For nurse scheduling,

Constraints (5) guarantee that the surgical nurse demand of each block is satisfied.
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Constraints (6) indicate used surgical nurses. Constraints (7) link the two scheduling

processes by preventing the assignment of surgical nurses to blocks that overlap in

time. Constraints (8–11) are the integrality constraints.

2.3 Two-stage approach

We also present the two-stage approach for evaluating the benefit of integrating

elective surgery and surgical nurse scheduling. The two-stage approach proceeds as

follows:

Stage 1: Surgery scheduling

By using the notations defined in Sect. 2.1, the surgery scheduling problem can

be formulated as follows:

Minimize
XJ

j¼1

Xj ð12Þ

Subject to: (2)�ð4Þ; ð8Þ� ð9Þ

The objective function (12) seeks to minimize the number of ORs used. The

resulting schedule determines the OR and start time of block b, which are denoted as

ob and sb, respectively.

Stage 2: Nurse scheduling

Given the schedule generated in stage 1, the nurse scheduling problem can be

formulated as follows:

Minimize
XN

n¼1

Yn ð13Þ

Subject to: (5)�ð6Þ; ð10Þ� ð11Þ

ynb þ ynb0 � 1;

8n ¼ 1; . . .;N; 8b; b0 ¼ 1; . . .;B with ob 6¼ ob0

and max sb; sb0ð Þ\min sb þ pb; sb0 þ pb0ð Þ ð14Þ

The objective function (13) minimizes the number of surgical nurses used.

Constraints (14) prevent the assignment of surgical nurses to overlapping blocks in

different ORs.

3 Genetic algorithm

Due to the complexity of the integrated scheduling problem, finding the optimal

solution of the IP model is computationally intractable given practical-sized

problem. Therefore, a genetic algorithm based on the IP formulation is developed to
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generate good surgery schedules (i.e., that satisfy all the constraints and produce a

satisfactory objective) in a reasonable time.

3.1 The basic architecture of the GA

The procedure of our GA is described below, where G(t) is the current population,

popsize is the population size. This procedure is repeated until a number maxgen of

generations is reached.

Procedure of the GA

1. t: = 0;

2. Initialize popsize individuals in G(t);

3. Repeat
4. Evaluate G(t);

5. t: = t ? 1;

6. Repeat
7. Select parents from G(t -1) into the mating pool;

8. Apply crossover and mutation to the individuals in the mating pool;

9. Until popsize offsprings are created

10. Copy popsize best individuals from G(t -1) and the mating pool to G(t);

11. Until t[maxgen

3.2 Chromosomal representation of individuals

Each individual is modeled by three uncorrelated chromosomes,I = (a, b, c), which
correspond to the three decisions to be made in surgery and nurse scheduling (i.e.,

block allocation and sequence; surgical nurse assignment). Each chromosome has B

genes representing B blocks.

I ¼
a
b
c

0
@

1
A ¼

j1; . . .; jB
t1; . . .; tB
n1; . . .; nB

0
@

1
A

A combination (jb, tb, nb) means that block b is allocated to OR jb, starting at time

period tb, and assigned with surgical nurses in set nb. The size of nb equals hb, which

is the surgical nurse demand of block b.

3.3 Initial population

The initial population composed of popsize individuals is generated in the following

way. The OR jb of block b is randomly selected from the set of available ORs. The

start time tb is randomly chosen within the time window of block b, i.e., [rb, db -

pb ? 1]. The set of surgical nurses nb assigned to block b is selected randomly

without replacement from the set of available surgical nurses.
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3.4 Fitness evaluation

Based on the IP formulation (see Sect. 2.2), the fitness value of an individual I is

computed according to the satisfaction of the non-overlap constraints with respect to

blocks and surgical nurses, i.e., constraints (4) and (7). We define two variables RB

and RN to represent the number of violations of the two sets of constraints. The

fitness function of an individual I is defined as:

f ðIÞ ¼ CðIÞ ; if I is feasible

M þ RB þ RN ; otherwise

�

where C(I) is the objective function value (i.e., Eq. (1)) associated with feasible

individual I, and M is the upper bound of the objective function value. Here M is

computed considering the situation that all ORs and surgical nurses are used. Given

this fitness function, the goal of the GA is to minimize the fitness value.

3.5 Selection

We choose among the three selection methods well known in the GA literature to

select the individuals to be included in the mating pool: binary tournament, n-size

tournament and linear ranking. Computational experience proves that binary

tournament gives the best results among the three selection methods. The chosen

selection method has to be repeated until the number of individuals in the mating pool

equals the population size. Then pairs of individuals (i.e., the parents) are randomly

selected from the mating pool for offspring generation with probability pc = 0.8.

3.6 Offspring generation

Once the parents have been selected, the crossover and mutation operators are

applied to create and modify new individuals.

3.6.1 Crossover

This operator generates two offsprings ID and IS from two parents IF and IM by

applying the single-point crossover to each of the three chromosomes in IF and IM.

We first draw three random integers q1, q2 and q3 such that 1 B q1, q2, q3 B B.

Taking the daughter ID = (aD, bD, cD)for example, the first q1 genes of a
D are taken

from the mother IM:

jDb :¼ jMb ; 8b ¼ 1; . . .; q1

The remaining genes q1 ? 1,…, B are then derived from the father IF:

jDb :¼ jFb ; 8b ¼ q1 þ 1; . . .;B

The same applies to the other two chromosomes bD and cD of the daughter ID using

q2 and q3, respectively. The son IS is created following the same way by inverting

father and mother.
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3.6.2 Mutation

The mutation operator is then applied to each offspringI = (a, b, c)with probability

pm = 0.1, following the same way we generate the initial population (see Sect. 3.3).

The offspring generation phase terminates when the population size of the mating

pool is reached. Then we retrieve the best popsize individuals (based on their fitness

values) from the current population and the mating pool to form the next generation.

4 Case study

A case study from the OR suite in a Chinese hospital is used to evaluate the benefit

(in terms of savings in nursing costs) of integrating surgery and nurse scheduling

using the IP model and the GA. The two-stage approach is used as the standard

against which the IP model and the GA are compared.

The OR suite has 13 multifunctional ORs, i.e., a block can be assigned to any

available OR, and 25 surgical nurses are employed on a long-term basis (i.e.,

annually). A dataset composed of 200 blocks is obtained from the OR suite given

the historical surgery application sheets that contain detailed information of

surgeries, such as surgeon, duration, release time and deadline, surgical nurse

demand and so on. Each regularly scheduled workday (8 h) is composed of 32 time

periods (of 15 min), because in practice the head nurse of the OR suite schedules

blocks in increments of 15 min. The durations of the blocks range from 3 to 27 time

periods, with a mean of 12.3 time periods and a standard deviation of 5.7 (see

Fig. 1). The surgical nurse demands of the blocks range from 1 to 3, with a mean of

2.1 and a standard deviation of 0.9 (see Fig. 2).

The performance of the IP model and the GA is tested on both large and small

problems (see Table 1). For large problem, we generate 10 instances, each

composed of 25 blocks that are randomly selected from the dataset. For small

problem, we also generate 10 instances, each composed of 10 blocks that are

randomly selected from the dataset.
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Fig. 1 Histogram of the block durations
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All computational tests are carried out on a Windows desktop machine with

2.00 GB of memory running at 2.4 GHz on an Intel Core 2 CPU processor. The

mathematical models are coded in C?? and solved using the Cplex 12.1, and the

GA is coded in C??.

5 Discussion of results

5.1 Efficiency of the IP model and the GA

The computational efficiency of the IP model and the GA is validated on both large

and small instances. Due to the complexity of the problem, we expect long

computation time for solving the IP model on large instances. Hence, we limit the

computation time of solving the IP model to 10 h per large instance after trials. We

report the classical outputs of the Cplex solver, i.e., the objective value (Obj.), the

relative gap between the current best integer solution and the lower bound (Gap),

and the computation time in minutes.

The GA is applied ten times to each instance with parameters popsize (of

individuals) and maxgen (of generations) chosen based on computational experi-

ence. Specifically (popsize, maxgen) is set at (100, 400) and (100, 200) for large and

small instances, respectively. The average (Avg.), best and worst objective values

over ten runs are reported. The number of times that the GA finds the optimum

(#OPT) over ten runs, and the average time to get the final population are
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Fig. 2 Histogram of the surgical nurse demands

Table 1 Number of blocks by workday of week (all workdays between August 1 and 31, 2011)

Monday Tuesday Wednesday Tuesday Friday

Mean 14.3 15.5 18.6 20.7 16.3

Minimum 10 11 14 17 13

Maximum 17 19 23 24 20
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mentioned. In order to assess the efficiency of the GA, we report the average

improvement (Impv.) achieved by the GA over initial solutions. We also give the

average difference between the GA and the IP model, i.e.,DGA–IP.

DGA�IP ¼ ðObjGA � ObjIPÞ=ObjIP � 100%. Table 2 presents the computational

results.

Table 2 shows that the IP model provides better objective values (as indicated

byDGA–IP) for both large and small instances. However, it is proved to be quite time-

consuming, especially for large instances. Therefore, it is necessary to find a

compromise between computational efficiency and solution quality, and this goal is

achieved by the GA. The GA can find good solutions (within 10.77 % of global

optimality on average) in a much shorter computation time as compared with the IP

model. Moreover, for small instances, the GA finds the optimal solutions at high

percentages. Whereas the optimal solutions for large instances (if found by the IP

Table 2 Comparisons between the IP model and the GA

Instance IP model GA 4GA–IP

(%)
Obj. Gap

(%)

Time

(min)

Avg. Obj.

best

Worst #OPT Time

(min)

Impv.

(%)

Small instances

1 10.5 0.00 22.3 11.1 10.5 13.0 7 5.5 10.30 5.71

2 9.0 0.00 18.5 10.6 9.0 14.5 6 6.3 6.94 17.78

3 8.5 0.00 31.8 9.2 8.5 12.5 8 8.2 5.49 8.24

4 11.0 0.00 28.6 11.8 11.0 15.0 7 5.8 12.36 7.27

5 9.5 0.00 17.2 10.6 9.5 14.0 5 7.6 7.06 11.58

6 10.0 0.00 34.1 11.0 10.0 16.5 8 6.5 14.61 10.00

7 10.5 0.00 25.9 12.2 10.5 16.0 6 8.4 12.84 16.19

8 12.0 0.00 20.5 12.4 12.0 15.5 9 6.7 13.04 3.33

9 10.0 0.00 19.4 11.7 10.0 15.0 5 8.1 8.15 17.00

10 8.5 0.00 24.7 9.6 8.5 14.5 7 5.9 10.46 12.94

Average 24.3 6.8 6.9 10.13 11.00

Large instances

1 16.5 0.00 538.5 18.2 16.5 22.5 3 21.4 16.05 10.30

2 17.5 0.06 600.0 20.4 18.0 24.0 – 37.6 21.49 16.57

3 19.0 0.14 600.0 19.6 18.5 23.5 – 24.7 14.85 3.16

4 17.0 0.00 510.4 19.1 17.5 22.5 0 19.1 17.61 12.35

5 16.0 0.00 494.6 18.3 16.0 22.0 2 26.3 15.57 14.38

6 19.5 0.21 600.0 20.5 18.5 24.5 – 27.4 20.16 5.13

7 17.5 0.00 542.3 19.7 17.5 23.0 1 21.6 17.38 12.57

8 19.5 0.27 600.0 21.2 19.0 24.0 – 32.6 12.09 8.72

9 16.5 0.00 521.6 18.9 17.0 21.5 0 26.4 11.63 14.55

10 17.0 0.00 489.4 18.3 17.0 22.5 3 18.9 16.84 7.65

Average 549.68 – 25.6 16.37 10.54

‘‘–’’ in the #OPT column indicates that no optimum is found by the IP model after 10 h
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model) are harder for the GA to find. The GA also obtains significant improvements

in solution quality, especially for large instances.

The GA also shows its distinctive ability to generate a set of feasible surgery

schedules in a reasonable time. At the last generations, 29.4 and 17.1 feasible

surgery schedules can be produced on average per small and large instance,

respectively. In practice, these feasible surgery schedules can provide the head nurse

of the OR suite with the option of selecting the most appropriate schedule based on

various considerations, i.e., surgeons’ and nurses’ preferences and unforeseen

events like large lateness or arrivals of emergency surgeries.

5.2 Benefit of integrating surgery and nurse scheduling

The benefit of integrating surgery and nurse scheduling by the IP model and the GA

is validated through comparison with the two-stage approach on both large and

small instances. The parameter settings of the IP model and the GA are the same as

Table 3 Comparisons between the two-stage approach and the integrated approaches

Instance Two-stage approach IP model GA

Obj. Obj. 42SA–IP (%) Obj. 42SA–GA (%)

Small instances

1 12.0 10.5 14.29 11.1 8.26

2 11.0 9.0 22.22 10.6 4.15

3 10.0 8.5 17.65 9.2 7.46

4 12.5 11.0 13.64 11.8 4.82

5 11.0 9.5 15.79 10.6 3.27

6 11.5 10.0 15.00 11.0 3.36

7 13.0 10.5 23.81 12.2 5.93

8 13.0 12.0 8.33 12.4 6.49

9 12.5 10.0 25.00 11.7 7.18

10 10.0 8.5 17.65 9.6 4.25

Average 17.34 5.52

Large instances

1 19.5 16.5 18.18 18.2 8.04

2 21.5 17.5 22.86 20.4 6.25

3 21.5 19.0 13.16 19.6 10.19

4 20.0 17.0 17.65 19.1 6.27

5 20.5 16.0 28.13 18.3 11.51

6 22.5 19.5 15.38 20.5 10.27

7 22.0 17.5 25.71 19.7 11.31

8 22.5 19.5 15.38 21.2 7.65

9 21.0 16.5 27.27 18.9 12.39

10 19.0 17.0 11.76 18.3 5.45

Average 19.55 8.93
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those in Sect. 5.1. Table 3 gives the average improvements of the IP model and the

GA over the two-stage approach, i.e., D2SA–IP and D2SA–GA, where D2SA�IP ¼
ðObj2SA--ObjIPÞ=ObjIP � 100%

and D2SA�GA ¼ ðObj2SA � ObjGAÞ=ObjGA � 100%
As we can see from Table 3, for both large and small instances, applying the IP

model and the GA leads to better objective values as compared with the two-stage

approach. Specifically, the IP model gives the best solutions, however, at the cost of

long computation time (see Table 2). And the savings achieved by the IP model and

the GA are more significant for large instances, which suggests a greater potential of

improvements in large size problems.

We also present the detailed use of ORs and surgical nurses by the IP model, the

GA and the two-stage approach. Table 4 gives the average OR utilization (UOR) and

surgical nurse utilization (USN) by the two-stage approach, which are frequently

used as OR suite performance measures in practice (Jeang and Chiang 2012).

Utilization is calculated as the time that an OR (or a surgical nurse) is used, divided

Table 4 Utilization of ORs and surgical nurses

Instance Two-stage approach IP model GA

UOR (%) USN (%) D2SA–IP
OR (%) D2SA–IP

SN (%) D2SA–GA
OR (%) D2SA–GA

SN (%)

Small instances

1 77.6 56.1 -2.92 18.53 -5.13 9.32

2 83.1 62.2 -1.03 12.34 -3.62 5.58

3 72.9 59.9 -3.47 12.22 -1.38 6.14

4 80.1 64.7 -1.54 17.71 -2.82 8.67

5 85.1 68.0 -2.05 22.60 -3.47 13.81

6 89.2 52.5 -1.15 24.28 -2.24 11.58

7 78.2 61.5 -1.75 17.64 -0.45 13.45

8 76.1 57.3 -2.10 15.32 -0.72 6.39

9 73.3 62.4 -3.32 10.77 -1.46 4.91

10 79.4 59.9 -0.78 12.55 -1.47 7.25

Average 79.5 60.5 -1.91 16.40 -2.28 8.71

Large instances

1 80.8 52.7 -1.47 16.36 -3.31 11.26

2 76.7 58.5 -2.31 14.29 -2.42 7.28

3 81.8 63.2 -0.74 14.68 -1.34 9.36

4 77.0 57.8 -1.04 17.17 -1.72 10.69

5 77.8 58.2 -0.75 23.30 -2.75 13.16

6 74.7 64.1 -2.07 19.18 -2.84 7.68

7 82.8 60.5 -1.55 21.04 -2.57 14.18

8 78.1 59.2 -2.14 25.12 -2.49 12.15

9 76.7 64.4 -4.32 20.47 -4.68 9.74

10 72.8 57.4 -3.58 24.45 -4.16 15.37

Average 77.9 59.6 -2.00 19.61 -2.83 11.09
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by the regularly scheduled hours per workday (8 h). The average improvements of

the IP model and the GA over the two-stage approach in OR and surgical nurse

utilization are reported.

Table 4 clearly shows that with respect to the use of ORs, no significant

difference is measured between the integrated approaches (the IP model and the

GA) and the two-stage approach, and the two-stage approach performs slightly

better than the IP model and the GA. This can be easily understood by the fact that

the two-stage approach optimizes surgery scheduling alone without considering

nurse scheduling and their strong dependencies. To the contrary, both the IP model

and the GA achieve significant higher utilization in the use of surgical nurses as

compared with the two-stage approach. Specifically, the utilization improvements

are even greater for the IP model and for large instances.

This comparative study clearly reveals that integrating surgery and nurse

scheduling may yield important savings in nursing costs for OR suites. Actually, by

scheduling elective surgeries and surgical nurses simultaneously, the important

impact of surgery scheduling on nurse scheduling, i.e., the distribution of surgical

nurse demands among ORs, can be considered explicitly in surgery scheduling. This

imposes modifications on surgery scheduling and hence leads to improvements on

nurse scheduling.

6 Conclusions

This paper tackles the integrated scheduling of elective surgeries and surgical nurses

for OR suites, which is a fundamental, but understudied aspect of OR scheduling.

The objective is to optimize the use of surgical nurses given the close interactions

between the surgery and the nurse scheduling process. To this aim, an integer

programming model is proposed for scheduling elective surgeries and surgical

nurses simultaneously. Moreover, a genetic algorithm is developed based on the IP

formulation to solve the problem more efficiently. In order to demonstrate the

benefit of integrating nurse and surgery scheduling in terms of surgical nurse

utilization, both the IP model and the GA are tested against a two-stage approach

which is typically used to schedule surgeries and nurses sequentially while ignoring

their dependencies.

The computational results from a real-life case study show that considerable

improvements in surgical nurse utilization can be achieved by the IP model and the

GA as compared with the two-stage approach, meanwhile no significant differences

in the use of ORs are observed. Moreover, compared with the IP model that gives

the optimal solution in a long computation time, the GA can achieve promising

compromise between solution quality and computational efficiency.

In this paper, we assume deterministic surgery duration. Other studies showed

that lognormal or normal distribution is a better approximation of surgery duration

in practice (Hans et al. 2008). Indeed, uncertainty involved in surgery durations can

lead to sub-optimality even infeasibility of the surgery schedules proposed by the IP

model and the GA. This scenario arises commonly when a surgical nurse is assigned

to several blocks in different ORs. If former blocks finish later than scheduled, all
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latter blocks of the surgical nurse could be delayed. In order to avoid such delays,

which are most undesirable for surgeons and patients in practice, uncertainty in

surgery durations needs to be considered explicitly in further works.
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