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Abstract This paper extends the problem of stowing a given set of different type

containers in the available slots of a containership, i.e. the so-called master bay plan

problem (MBPP), to the multi-port master bay plan problem (MP-MBPP). MP-

MBPP considers the whole route of the ship and the different sets of containers

which must be loaded at each port of the route for shipping to successive ports. The

sequence of alternate unloading and loading operations is relevant for the effec-

tiveness of stowage plans. This paper introduces two exact mixed integer pro-

gramming (MIP) models for MP-MBPP, aimed to deal with practical and operative

aspects of the problem. It also examines some computationally efficient relaxed

formulations of the proposed MIP models and reports an extensive computational

experimentation performed on real size instances. The results show the effectiveness

of the proposed models and the related resolution methods.

Keywords Maritime logistics � Stowage plans � Mathematical programming

models

1 Introduction

Maritime terminals play a strategic role within logistics networks. For this reason, a

still increasing number of works have been recently proposed in the literature,

aiming to optimize the flow of both import/export and transhipment containers and

minimising the total logistics cost. A recent overview of relevant literature for these

problems is provided in Stahlbock and Voss (2008).

In this paper, the focus is on the quay and ship activities; more precisely, the

stowage planning problem is analysed, with the aim to minimize the overall
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berthing costs. This problem is denoted in literature master bay plan problem

(MBPP). A detailed description of MBPP, together with its main constraints, is

given in Ambrosino et al. (2004). MBPP is a NP-Hard problem (Avriel et al. 2000).

Heuristic methods for MBPP are compared in Ambrosino et al. (2010).

Note that MBPP involves only the loading decisions at the first port, without

taking into account possible loading operations in the successive ports of the ship

route.

At least to the authors’ knowledge, few papers deal with the placement of

containers into a containership on a multi-port journey. In this paper MBPP is

extended to the multi-port master bay plan problem (MP-MBPP), where there is the

need of determining a stowage plan for each port in the route of the ship,

considering all different sets of containers that must be loaded for shipping to the

successive ports. Since loading is a very difficult task and strongly impacts on the

efficiency of the terminal operations (Imai et al. 2002; Rashidi and Tsang 2013), this

work focuses on the optimization of the stowage plans at each port visited by the

ship.

MBPP involves stowage plans at a single port and it is faced by the terminal

manager, while MP-MBPP is a planning problem concerning the shipping line

operator. Interested readers can find in Steenken et al. (2004) an explanation of how

the stowage planning problem is split into a two-step process concerning,

respectively, the shipping line operator and the terminal manager.

Imai et al. (2006) present a unified approach for taking into account the route

planning problem from both the liner and the terminal manager point of view. Some

MIP models for MP-MBPP are presented in Li et al. (2008) and Ambrosino et al.

(2009). Li et al. (2008) present an 0/1 integer programming model aimed to

determine the exact location of each container, in order to minimize the number of

container shifting and maximise the stowage space utilization in real operative

scenarios for different instances of 800 TEU and 18,000 tons containerships. The

obtained solutions are verified by a simulation and visualization tool. No other

details are reported on the test of the model. Ambrosino et al. (2009) proposed a

MIP model for finding stowage plans at each port visited by the ship, while

minimizing the total berthing time of the whole trip of the ship, the number of not

loaded containers and the number of unproductive movements. For each stowage

location is specified the kind of container assigned (i.e. its class of weight, its length

200 or 400 and its destination). The model is tested only with small instances.

Decomposition approaches are commonly used for facing MP-MBPP. For

instance, Wilson and Roach (2000) and Wilson et al. (2001) propose a methodology

for generating stowage plans for a containership on a multi-port journey that

decomposes the decision process into two planning sub-processes: a strategic and a

tactical one. The strategic objective function includes, among others, the minimi-

zation of: (1) the cargo space occupied by each destination; (2) the re-handles; (3)

the cargo blocks occupied by containers. It is also considered the maximization of

the number of cranes simultaneously in operation at each port. A decomposition of

the stowage planning problem into two sub-problems is also proposed by Kang and

Kim (2002); in the first phase the authors assign groups of 200 and 400 containers to
holds of the ship, while in the second one they determine the loading sequence of
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containers in each hold. Heuristics methods are proposed with the aim to minimize

the total handling time in each port on the route of the ship. They optimize the

berthing time at each port by minimizing both overstows and the number of bays

occupied by the containers with the same destination port. Further, Zhang et al.

(2005) decompose the stowage planning problem for a containership that serves

many ports into two sub-problems; their aim is to minimize re-handles and the

number of bays occupied by the containers at each port.

Pacino et al. (2011) solve the multi-port stowage planning problem by a two

phase approach, in which computationally efficient heuristics are able to solve quite

large size practical instances.

Delgado et al. (2012) present a constraint programming approach for dealing

with multi-port routes, focusing the attention on the loading problem at each port.

They decompose the problem and present a model for stowing containers in each

bay sections of the ship; the stowage concerns standard 200 and 400 containers, either
reefer or not reefer. The objectives of the model are the minimization of overstows,

the number of stacks of containers with different discharge ports and the number of

used stacks.

Following the decomposition approach proposed by Wilson and Roach (2000),

this paper presents two mixed integer programming (MIP) models for solving MP-

MBPP at a strategic level. The proposed models can be considered an extension of

that proposed in Ambrosino et al. (2009); they take into account the hatches and the

irregular keels of a containership. In this way, all the available spaces of a

containership can be considered for the stowage thus being able to maximize the

number of loaded containers. Differently from Delgado et al. (2012), our model is

related to the whole ship and, from an operative point of view, it allows the loading

of re-handled containers in slots different from where they are unloaded.

The paper reports an extensive computational experimentation concerning some

relaxations of the proposed models. It is worth noting that the proposed models have

been tested with many instances with different levels of loading of the

containerships. The results obtained prove the applicability of the models in real

operations.

The remaining of the paper is organized as follows: in the next section the multi-

port stowage planning problem is introduced in more details. The mathematical

formulations for this NP-hard problem are given in Sect. 3, whereas the solution

approaches, based on relaxations of the proposed models, are described in Sect. 4.

Results of an extensive computational experimentation are reported in Sect. 5.

Finally, some conclusions and an outline of future works are drawn in Sect. 6.

2 Problem description

MP-MBPP is to find the stowage plan for a containership assigned to a specific route

by the owner line operator; the objective is to satisfy the service demand and to

minimize the berthing time at each port. The route consists of a set of ports P = {1,

…, Pmax}, where Pmax denotes the index of the last port visited in the voyage of the

ship. Here, only linear routes are considered; note that this is not a limiting
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assumption as circular routes can be viewed as linear ones with several occurrences

of the same ports.

For each port p [ P a set Cpd of containers must be loaded for shipping to port d,

Vd [ P such that d[ p. At each port p two sets of terminal operations are

performed; first, the containers bound for p are unloaded, so freeing ship stowage

slots, then the containers departing from p to successive destinations (in the

following referred as the transportation demand at p) are loaded.

This paper introduces two simplifying assumptions, which do not actually affect

the applicability of the proposed approaches. More precisely it is assumed that: (1)

at the first port of the trip, i.e. p = 1, are considered only the loading operations; this

implies that the stowage planning starts as soon as the unloading operations at the

first port are completed; (2) at the last port of the trip, i.e., p = Pmax, are considered

only the relevant unloading operations; this implies that the stowage planning ends

as soon as the unloading operations at the last port are completed. Note that the ship

may not be empty after unloading at the last port of its route.

The transportation demand at port p can be further partitioned into several sets, in

accordance with the type of container t, class of weight g and destination d, d [
P. Here t [ {200, 400} and g [ {light, medium, heavy}.

The unloading and loading operations at each port p are performed by a set of

quay cranes (QCs) working in parallel. As common practice, it is assumed that the

subsets of bays served by each crane in all ports of the route are a priori defined and

fixed. In general, the assignment of QCs to vessels and the scheduling of QC

operations are closely related to the stowage plans (see e.g., Bierwirth and Meisel

2010) and they all impact on the berthing time. In this work, it is assumed that a

given number of QCs is assigned to homogeneous portions of the ship. Note that this

assumption reflects rules usually adopted to satisfy some operational and security

constraints when unloading and loading operations are executed (i.e. weight

balancing, spatial constraints, bays distance between cranes working on a vessel,

etc.). Moreover, this assumption allows the minimization of the berthing time by

balancing the work load of the quay cranes, as it will be described in the following.

MP-MBPP provides aggregate decisions for line planners, which concern the

assignment of containers to groups of hold/deck slots, positioned under and above

the hatches of the ship, respectively, in order to satisfy the transportation demand

along the ship route. Structural and operative constraints have to be satisfied too.

Each slot of the ship is identified by means of its exact position with respect to its

bay, tier and row address (see Fig. 1). As shown in Fig. 1, each stack (set of slots

identified by a fixed bay and row) can be used for stowing either 200 or 400 standard
containers. Therefore, when defining stowage plans it is necessary to select the type

associated to each stack. In addition, stability conditions relevant to horizontal and

cross ship equilibrium must be imposed. Further details about structural and

operative constraints can be found in (Ambrosino et al. 2004).

As a consequence of the presence of hatches in the structure of the ship, in order

to properly define stowage plans, it is natural to distinguish hatch hold from hatch

deck slots. It is assumed that hatch slots, either on the deck or in the hold, can be

assigned to a single destination. Even though an apparent limitation, this hypothesis

can be considered a reasonable assumption for the line shipper planning level and,
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in addition, it corresponds to an operational practice quite often adopted in many

Italian terminals. Moreover, many authors [i.e. Kang and Kim (2002), Delgado et al.

(2012)] prefer to have containers with the same destination port in the same stacks

or bays. Otherwise, there may be overstows which means non-productive

movements (unloading and re-loading of containers in deck hatch slots are

necessary for accessing hold slots below the same hatch). As an example, a situation

in which re-handles are performed is depicted in Fig. 2. Note that re-handled

containers are not necessarily re-loaded into the same deck slots. Of course, re-

handles should be avoided as much as possible, as they increase both the berthing

time and the handling costs.

When dealing with real ship planning problems there is the possibility of having

irregular keels; in these cases particular stowage conditions must be satisfied. For

instance, in the stowage plan reported in Fig. 3, a 200 container must be located at

the bottom of a stack of 400 container for granting the stack stability.

Several objectives can be considered for MP-MBPP. This multi-objective

problem is modelled by introducing a scalar objective function including three

components. The first component penalizes the unmet demand at each port of the

route, that is, the number of containers that cannot be loaded due to either slot

availability or weight and stability constraints. The second component of the

objective function penalizes the number of re-handles, while the last component

Fig. 1 The structure of a ship with hatches

Fig. 2 Non-productive
movements (re-handles)
at port p

Experimental evaluation of mixed integer programming models 267

123



aims to balance the workload of the quay cranes available at ports. Since loads and

unloads at each port are performed in parallel by a set of quay cranes, the total

operation time at a port corresponds to the longest one among the cranes; therefore,

the difference between the operation time of each pair of cranes (in the following

referred as crane imbalance) at each port is penalised.

3 Mixed integer programming models for MP-MBPP

This section presents two MIP models for MP-MBPP, denoted M1 and M2,

respectively. For the sake of clarity, the required notation is summarized in the

following.

Sets

P set of ports (1 = first port, Pmax = last port)

I set of bays of the ship (I = E [ O, E set of even bays and O set of odd

bays)

J set of rows of the ship

K set of tiers of the ship

H set of hatches of the ship

HA/HP subset of aft/prow hatches

HR/HL subset of right/left hatches

Ih subset of bays included in hatch h

Rh subset of rows included in hatch h

Yp set of quay cranes serving the ship in parallel at port p

Ipc subset of bays served by crane c at port p

Hpc subset of hatches served by crane c at port p

G set of weight classes of the containers (1 = light, 2 = medium,

3 = heavy)

T set of types of containers (200 and 400)

Parameters

CHtij/CDtij number of hold/deck slots of type t available in bay i row j

CAPHh/CAPDh number of available slots (capacity) in the hold/deck of hatch h

CAPHht/CAPDht number of available slots of type t (capacity) in the hold/deck of

hatch h

Fig. 3 Example of stowage of
containers into irregular keel
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TEUHh/TEUDh capacity in TEU in the hold/deck of hatch h

Nptgd number of containers of type t, weight class g to be loaded at port

p with destination port d

Wg weight for a container of class g

Q1 maximum cross equilibrium tolerance

Q2 maximum horizontal equilibrium tolerance

PWf penalization weight of the objective function components, f = 1,

…, 3

Variables

x hphtgd 2 Zþ; x dphtgd 2 Zþ 8p 2 P; h 2 H; t 2 T; g; d 2 P; d[ p

Hatch hold/deck state variables; x_hphtgd (x_dphtgd) is the number of containers of

type t, weight class g with destination port d located in the hold (on the deck) below

(above) hatch h after the completion of loading operations at port p;

l hphtgd 2 Zþ; l dphtgd 2 Zþ 8p 2 P; h 2 H; t 2 T ; g 2 G; d 2 P; d[ p

Hatch hold/deck loading variables; l_hphtgd (l_dphtgd) is the number of containers

of type t, weight class g with destination port d loaded in the hold (on the deck)

below (above) hatch h at port p;

y hphd 2 0; 1f g; y dphd 2 0; 1f g 8p 2 P; h 2 H; d 2 P; d[ p

Hatch assignment variables for hold/deck slots; y_hphd = 1 (y_dphd = 1) if at

port p the slots in hold (on deck) below (above) hatch h are assigned to containers

bound for d, y_hphd = 0 (y_dphd = 0) otherwise;

u hpij 2 0; 1f g; u dpij 2 0; 1f g 8p 2 P; i 2 I; j 2 J

Use of bay-row; u_hpij = 1 (u_dpij = 1) if at port p the stack of bay i and row j in

the hold (deck) is used. Note that if i is even then 400 containers can be loaded,

otherwise 200 ones can be loaded;

rphtgd 2 Zþ 8p 2 P; h 2 H; t 2 T ; g 2 G; d 2 P; d[ p

Non-productive movement variables; rphtgd is the number of re-handles executed

at port p for unloading and successively reloading, the containers bound for d[ p

over hatch h on the deck for unloading containers in the hold below h bound for p;

fph 2 0; 1f g 8p 2 P; h 2 H

Need to free deck slots over hatch (non-productive movements); fph = 1 if the

containers on the deck over hatch h must be removed at port p to unload other

containers from the hold below h, fph = 0 otherwise;

vptgd 2 Zþ 8p 2 P; t 2 T ; g 2 G; d 2 P; d[ p

Number of not served containers; vptgd represents the unsatisfied transportation

demand at port p, that is the number of containers of type t, weight class g with

destination port d not loaded at port p;
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Dpce 2 R 8p; 8c; ep; c 6¼ e

Absolute difference between the number of unloading and loading operations

executed by cranes c and e at port p;

tpc 2 R 8p 2 P; c 2 Yp

Total number of loading and unloading operations of crane c at port p;

Dmax 2 R

Maximum difference of the number of handling operations between each pair of

cranes over all the considered ports.

The objective function components previously described can be then expressed

as:

• UðvÞ ¼
P

ptgd

vptgd number of unloaded containers (unsatisfied transportation

demand);

• NPðrÞ ¼
P

phtgd

rphtgd number of non-productive movements (re-handles).

• MTVðDÞ ¼ Dmax maximum absolute variation between the number of opera-

tions performed by each pair of cranes at the ports (crane imbalance).

3.1 First model: model M1

The proposed formulation M1 for MP-MBPP is the following:

min PW1 � UðvÞ þ PW2 � NPðrÞ þ PW3 �MTVðDÞ ð1Þ

subject to
X

h

ðl hphtgd þ l dphtgdÞ ¼ Nptgd þ
X

h

rphtgd � vptgd 8p; t; g; d ð2Þ

x hphtgd ¼ x hp�1htgd þ l hphtgd 8p; h; t; g; d ð3Þ
x dphtgd ¼ x dp�1htgd � rphtgd þ l dphtgd 8p; h; t; g; d ð4Þ

X

tgd

l hphtgd �CAPHh � 1�
X

d[ p

y dp�1hd

 !

81\p\P; h ð5Þ

X

d

y hphd � 1 8p; h ð6Þ

X

d

y dphd � 1 8p; h ð7Þ

X

g

x hphtgd �CAPHht � y hphd 8p; h; t; d ð8Þ
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X

g

x dphtgd �CAPDht � y dphd 8p; h; t; d ð9Þ

y hphd � y hp�1;hd 8p; h; d d[ pð Þ ð10Þ
y dphd � y dp�1;hd � fph 8p; h; d d[ pð Þ ð11Þ

y hph;pþ1 þ y dphd � 1þ fpþ1;h 8h; 8p; d[ pþ 1 ð12Þ
rphtgd �CAPDht � fph 8p; h; t; g; d ð13Þ

rphtgd � x dp�1;htgd � CAPDht � ð1� fphÞ 8p; h; t; g; d ð14Þ
X

g

x hph20gd þ 2 �
X

g

x hph40gd � TEUHh � y hphd 8p; h; d[ p ð15Þ

X

g

x dph20gd þ 2 �
X

g

x dph40gd � TEUDh � y dphd 8p; h; d[ p ð16Þ

u dpij þ u dpiþ1j ¼ 1 8p; i 2 E; j 2 J ð17Þ
u dpij þ u dpi�1j ¼ 1 8p; i 2 E; j 2 J ð18Þ
u hpij þ u hpiþ1j ¼ 1 8p; i 2 E; j 2 J ð19Þ
u hpij þ u hpi�1j ¼ 1 8p; i 2 E; j 2 J ð20Þ

X

gd

x hphtgd �
X

i2Ih

X

j2Rh

CHtij � u hpij 8p; h; t ð21Þ

X

gd

x dphtgd �
X

i2Ih

X

j2Rh

CDtij � u dpij 8p; h; t ð22Þ

j
X

h2HL;tgd

Wgðx hphtgd þ x dphtgdÞ �
X

h2HR;tgd

Wgðx hphtgd þ x dphtgdÞj�Q1 8p 2 P

ð23Þ

j
X

h2HA;tgd

Wgðx hphtgd þ x dphtgdÞ �
X

h2HP;tgd

Wgðx hphtgd þ x dphtgdÞj �Q2 8p 2 P

ð24Þ

tpc ¼
X

h2Hpc

X

tgd

ðl hphtgd þ l dphtgd þ rphtgdÞþ
X

h2Hpc

X

tgd

ðx hp�1;htgp þ x dp�1;htgpÞ 8p; c

2 Yc

ð25Þ
jtpc � tpej �Dpce 8p 2 P; 8c; e 2 Yp; c 6¼ e ð26Þ
Dmax�Dpce 8p 2 P; 8c; e 2 Yp; c 6¼ e ð27Þ

X

gd

x hph20gd �
X

i2Ih\E
CH20ij � u hpij 8p; h : 9CH20ij [ 0; i 2 Ih \ E ð28Þ
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x hphtgd 2 Zþ; x dphtgd 2 Zþ 8p; h; t; g; d; d[ p

l hphtgd 2 Rþ; l dphtgd 2 Rþ 8p; h; t; g; d; d[ p

rphtgd 2 Rþ 8p; h; t; g; d; d[ p

y hphd 2 0; 1f g; y dphd 2 0; 1f g 8p; h; d; d[ p

fph 2 0; 1f g 8p; h
vpgd 2 Rþ 8p; g; d; d[ p

u hpij 2 0; 1f g; u dpij 2 0; 1f g 8p; i; j
tpc 2 Rþ 8p; c 2 Yp
Dpce 2 Rþ 8p; 8c; e 2 Yp; c 6¼ e

Dmax 2 Rþ

ð29Þ

Equation (1) is the objective function. Equations (2) are the demand constraints,

defining, for each port and subset of containers, the number of loaded and unloaded

containers. Note that, at each port, the number of containers to be loaded also

includes the unloaded containers due to re-handles. Constraints (3) and (4) represent

the state continuity conditions; such constraints force the number of homogeneous

containers, located into a hatch at port p, to be updated, taking into account both the

containers already located there at port p-1 and those loaded at p. Note that

containers are considered homogeneous if they have the same value of t, g and

d (i.e. type, class of weight and destination). Note that, for the deck slots in (4), the

containers possibly removed due to re-handles are considered too. Constraints (5)

are related to the hold accessibility; in particular, such constraints enable stowing

containers in the hold slots of hatch h (according to the destination assigned to the

hatch), only if the deck above h is free.

Constraints (6) and (7) impose that the hold and the deck slots corresponding to a

hatch are assigned only to one destination; constraints (8) and (9) link the variables

y_hphd and y_dphd, respectively, to hold and deck state variables. These latter

capacity constraints, combined with (6) and (7), force at each port p some x_hphtgd
and x_dphtgd variables to be equal to zero.

Constraints (10) impose that the hold slots of hatch h assigned to d remain

assigned to such destination until port d is reached. Differently, constraints (11)

allow freeing the slots on the deck before the assigned destination by executing re-

handles.

Constraints (12) fix fph = 1 if the containers on the deck over hatch h must be

removed at port p to unload other containers from the hold below h. Constraints (13)

guarantee that the containers are removed from the deck slots in hatch h only if

hatch h must be freed at p (i.e., if fph = 1), and in this case, constraints (14) impose

that all the containers located in the deck slots are re-handled.

Constraints (15) and (16) are the TEU capacity conditions and impose that the

sum of the TEUs located in a hold/deck hatch slots for the assigned destination must

not exceed the maximum available TEU capacity for that hold/deck hatch. In

particular, note that TEUHh = CAPH20h. Constraints (17)–(20) are related to the

usage of the slots of each stack in a bay. More precisely, a stack in an even bay

(i) can be used for 400 containers, otherwise the corresponding two stacks in the odd

bays (i - 1, i ? 1) can be used for 200 containers. These usage decisions are

separated for the hold and the deck stacks. Note that, if a stack in an even bay and
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the two stacks in the corresponding odd bays are not used, the assignment imposed

by (17)–(20) is not relevant. Constraints (21) and (22) are the capacity constraints,

taking into account the bay usage decisions fixed by constraints (17)–(20). Since 400

containers cannot be stored in odd bays, C20ij is equal to 0 for index i corresponding

to even bays.

Constraints (23) and (24) represent the stability conditions, which are related to

the horizontal and cross equilibrium. Constraints (25)–(27) refer to the crane

utilization. In particular, constraints (25) define variable tpc; constraints (26) define

the absolute difference between the number of unloading and loading operations at

port p executed by cranes c and e; constraints (27) give the maximum difference of

loading and unloading operations between any pair of cranes over all the considered

ports.

Constraints (28) take into account the presence of an irregular keel, since they

force the loading of the required number of 200 containers to avoid that 400

containers are positioned over empty 200 slots (see Fig. 3).

Finally, (29) define the decision variables.

3.2 The second model: model M2

This section briefly describes model M2. It is a different formulation for MP-MBPP,

derived from M1 considering a TEU relaxation. In particular, in this new simplified

formulation the transportation demand, assignments, loading operations and re-

handles are expressed in terms of TEUs, instead of number of containers. As a first

consequence, in M2 variables u_hpij and u_dpij are not necessary. Further, all

variables in M1 related to the number of containers of a given type are replaced in

M2 by similar variables, which specify the number of TEUs. The new variables are

listed in the following.

Variables different from model M1

x hphgd 2 Zþ; x dphgd 2 Zþ 8p 2 P; h 2 H; g 2 G; d 2 P; d[ p

Hatch hold/deck state variables giving the number of TEUs of weight class g

with destination port d located in hold and on deck corresponding to hatch h after

the completion of loading operations at port p;

l hphgd 2 Zþ; l dphgd 2 Zþ 8p 2 P; h 2 H; g 2 G; d 2 P; d[ p

Hatch loading variables giving the number of TEUs of weight class g with

destination port d loaded in hold and on deck corresponding to hatch h at port p;

rphgd 2 Zþ 8p 2 P; h 2 H; g 2 G; d 2 P; d[ p

Non-productive movement variables giving the number of TEUs re-handled at

port p;

vpgd 2 Zþ 8p 2 P; t 2 T; g 2 G; d 2 P; d[ p

Number of not served TEUs demand at port p;

Variables as in model M1
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y hphd 2 0; 1f g; y dphd 2 0; 1f g 8p 2 P; h 2 H; d 2 P; d[ p

fph 2 0; 1f g 8p 2 P; h 2 H

Dpce 2 R 8p; 8c; e 2 Yp; c 6¼ e

tpc 2 R 8p 2 P; c 2 Yp

Dmax 2 R

Note that, in M2 Dpce, tpc and Dmax refer to numbers of operations in term of

TEUs instead of containers. As a consequence, in M2 two out of three objective

function components of M1 have to be redefined as follows:

• UðvÞ ¼
P

pgd

vpgd number of not served TEUs;

• NPðrÞ ¼
P

phgd

rphgd number of re-handles.

Constraints (6), (7), (10) (11) (12), (26) and (27) from M1 are used in M2

together with the following constraints on demand satisfaction (30), state continuity

conditions (31) and (32), hold accessibility (33), capacity (34) and (35), re-handling

(36) and (37), ship stability (38) and (39), and number of quay crane operations (40),

that are redefined in term of TEU instead of containers.
X

h

ðl hphgd þ l dphgdÞ ¼ Npgd þ
X

h

rphgd � vpgd 8p; g; d ð30Þ

x hphgd ¼ x hp�1hgd þ l hphgd 8p; h; g; d ð31Þ
x dphgd ¼ x dp�1hgd � rphgd þ l dphgd 8p; h; g; d ð32Þ

X

gd

l hphgd � TEUHh � 1�
X

d[ p

y dp�1hd

 !

81\p\P; h ð33Þ

X

g

x hphgd � TEUHh � y hphd 8p; h; d[ p ð34Þ

X

g

x dphgd � TEUDh � y dphd 8p; h; d[ p ð35Þ

rphgd � TEUDh � fph 8p; h; g; d ð36Þ
rphgd � x dp�1;hgd � TEUDh � ð1� fphÞ 8p; h; g; d ð37Þ

j
X

h2HL;gd

Wgðx hphgd þ x dphgdÞ �
X

h2HR;gd

Wgðx hphgd þ x dphgdÞj�Q1 8p 2 P

ð38Þ

j
X

h2HA;gd

Wgðx hphgd þ x dphgdÞ �
X

h2HP;gd

Wgðx hphgd þ x dphgdÞj �Q2 8p 2 P

ð39Þ
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tpc ¼
X

h2Hpc

X

gd

ðl hphgd þ l dphgd þ rphgdÞþ
X

h2Hpc

X

gd

ðx hp�1;hgp þ x dp�1;hgpÞ 8p; c

2 Yc

ð40Þ

Note that the objective function of M2 is not directly comparable to the one of M1,

since M2 considers TEUs, while M1 focuses on the number of containers. However,

formulation M2 has been developed in order to simplify the resolution process (as

described in the following section).

4 Solution approaches derived from M1 and M2

Since model M1 can be solved up to optimality only for small instances, two

different heuristic approaches denoted, respectively, HM1 and HM2M1 are

proposed. These approaches are based on the solution of relaxations of models

M1 and M2. In both cases, the idea is to handle MP-MBPP in two steps,

decomposing the original complex planning problem into two simpler ones, which

are sequentially solved.

Heuristic HM1 is based on model M1. In the first step, a continuous relaxation of

M1 is solved; all general integer variables are relaxed to assume real values,

whereas the binary variables, in particular the ones determining the assignment of

destinations to hatch slots and the usage of the bays, remain constrained to be 0/1. In

the second step, model M1 is then solved by fixing the binary variables to the

optimal values of its relaxation, obtained in the first step. Note that the solution

obtained in the second step is a feasible solution for MP-MBPP. Heuristic HM1 is

summarized in Fig. 4a.

As it will be shown in more details in the next section, the computational tests

performed with heuristic HM1 provide appreciable results. However, the first step of

HM1 may require a high computational effort. Thus, heuristic HM2M1, based on

both models M1 and M2 is devised. In the first step of HM2M1 all general integer

variables of model M2 are relaxed and the resulting model is solved (i.e. with only

continuous and binary variables). In the second step, as in HM1, model M1 is solved

by fixing binary variables to the optimal values obtained in the first step. Heuristic

HM2M1 is summarized in Fig. 4b.

As already said in the previous section, solutions of models M1 and M2 cannot

be compared. As a matter of facts, model M2 is only used in the first step of solution

approach HM2M1 to determine suitable values for the y_hphd and y_dphd variables

(which are in common with M1) and not to find a feasible solution for MP-MBPP.

5 Experimental results

This section reports the main results obtained through an extensive computational.

These tests were performed on both real size instances and randomly generated ones
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of MP-MBPP. More precisely, two sets of 18 instances were defined considering

two containerships:

• the ‘‘European Senator’’ (ES), that is a medium sized ship client of the terminal

SECH, located in Genoa, Italy; ES has a capacity of 2,028 TEUs, including 17

odd bays, 10 rows and 6 tiers in the hold and 21 odd bays, 12 rows and 5 tiers in

the upper deck, 33 hatches;

• a fictitious ‘‘Large Ship’’ (LS), having capacity of 5,280 TEUs, including 40 odd

bays, 12 rows and 6 tiers in the hold and 40 odd bays, 12 rows and 5 tiers in the

upper deck, 60 hatches.

Just to give an idea of the different dimension of the containerships under

investigation, the reader can refer to the sketches in Fig. 5.

Each instance has a route of 7 ports, in which loading operations are executed at

ports 1–5, starting with the ship empty at port 1, whilst unloading operations are

executed at ports 2–7. At each port either 2 or 4 cranes are used for ES and LS,

respectively.

The tested instances reflect the real cases occurring at the Terminal SECH in the

port of Genoa (Italy). The main characteristics of instances, related both to the ES

and the LS ship, are detailed in Table 1. In particular, instances are partitioned into

three subsets, corresponding, respectively, to low, medium and high load level

(instances 1–6, 7–12 and 13–18). Each subset considers two different percentages of

200 containers: 50 and 70 %. An equal distribution of containers (33 %) for the three

classes of weight is considered.

The occupancy level (Occupancy), that is the average percentage of loading with

respect to the ship capacity, is on average 50, 70 and 85 %, respectively for low,

medium and high load level instances. The average transportation demand (Avg

TEU) to load at each port is on average 1,000, 1,400 and 1,750 for ES and 2,600,

3,700 and 4,500 for LS, respectively for low, medium and high level load instances.

Models M1 and M2 were implemented in Ilog OplStudio 5.2, with MIP solver

Cplex 11.0.1, and executed on a 2.4 GHz Intel Core 2 Duo E6600 computer with

4 GB RAM. Tests on model M1 were performed by setting a CPU time limit bound

of 1,800 s, for ES instances, and 3,600 s for LS ones. Model M1 requires 30,829

variables (including 7,104 binaries and 11,088 integers) and 36,096 constraints for

Heuristic approach based on formulation M1 – HM1
Step 1 Solve a Partially Relaxed M1 (PR_M1)

use the continuous relaxation of the following 
variables and solve 

hatch state (x_hphtgd, x_dphtgd)
load (l_hphtgd, l_dphtgd) 
re-handles (rphtgd)
not loaded containers (vptgd)

Step 2 Solve a Partially Fixed M1 (PF_M1)
fix the following binary variables as in the 
solution of PR_M1 and solve 

hatch assignment (y_hphd, y_dphd )
bay/row usage (u_hpij, u_dpij )

Heuristic approach based on formulations M2 and M1 –
HM2M1
Step 1 Solve a Partially Relaxed M2 (PR_M2)

use the continuous relaxation of the following 
variables and solve 

hatch state (x_hphgd, x_dphgd)
load (l_hphgd, l_dphgd),
re-handles (rphgd)
not loaded containers (vpgd)

Step 2 Solve a Partially Fixed M1 (PF_M1)
fix the following binary variables as in the 
solution of PR_M2 and solve 

hatch assignment (y_hphd , y_dphd ) 

Fig. 4 a Steps of heuristic HM1, b Steps of heuristic HM2M1
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ES instances; 56,732 variables (including 13,680 binaries and 20,160 integers) and

66,071 constraints are required for LS instances.

The MIP solver was unable to solve model M1 for any instance of the large ship

(LS) within the chosen CPU time limit, whereas, as showed in Table 2, some

instances of the medium ship (ES) were solved up to optimality within 1,800 s.

Column Obj of Table 2 reports the objective function value (note that ‘‘no’’ denotes

no solution found in the available CPU time), while the last three columns report the

components of (1), i.e., the number of unloaded containers (unsatisfied transpor-

tation demand), the re-handled and the imbalance of cranes. The decision makers

(shipping line operators) usually consider the minimization of the unsatisfied

transportation demand the main purpose of the stowage planning, since they aim to

serve the demand as much as possible. Therefore, they do not accept to compensate

a worsening in this first objective component with any improvement in the other two

objective components. A similar argument hold between the number of re-handles

and the crane imbalance: in fact, both these objective components affect the

berthing time, but re-handles usually have a greater negative impact on the handling

operations than the crane workload has. For these reasons, the multi-objective

problem was faced by a lexicographic approach, giving a higher weight to the first

objective component, then penalising unproductive movements. In particular, the

weights of the objective function were fixed to PW1 = 100, PW2 = 10, PW3 = 1,

respectively.

Finally, it is important to note that in all instances the lower bound determined by

the MIP solver for model M1 is always equal to zero.

Tables 3 and 4 show the results for ES and LS, respectively, obtained by HM1.

Readers can observe that, within the given CPU time limit, quite good results were

obtained for ES instances, whereas the results for LS ones are not so good. In

particular, Table 4 shows that many containers are not served in those instances

having high ship load (13–18) when a 1,800 s is imposed as CPU time limit; more

precisely, the number of not served containers ranges from 113 (instance 17) to 204

(instance 15).

Furthermore, in instances 10 and 13–18, the relaxed version of model M1,

used in step 1, cannot be solved up to optimality within 1,800 s and it is needed

Fig. 5 A comparison among ships ES and LS
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Table 1 The main characteristics of the tested instances for ES and LS

Inst Load

level

200 cont.
(%)

Ship Avg

TEU

Occupancy

(%)

Ship Avg

TEU

Occupancy

(%)

1 Low 50 ES 1,132.2 55.83 LS 2,450 46.40

2 Low 50 ES 997.8 49.20 LS 2,926.2 55.42

3 Low 50 ES 973 47.98 LS 2,703.6 51.20

4 Low 70 ES 1,091.4 53.82 LS 2,714.4 51.41

5 Low 70 ES 1,088.2 53.66 LS 2,387.6 45.22

6 Low 70 ES 1,018 50.20 LS 2,819.4 53.40

7 Medium 50 ES 1,406 69.33 LS 3,770.2 71.41

8 Medium 50 ES 1,451.2 71.56 LS 3,674.8 69.60

9 Medium 50 ES 1,439 70.96 LS 3,738.4 70.80

10 Medium 70 ES 1,411.8 69.62 LS 3,991.6 75.60

11 Medium 70 ES 1,422.6 70.15 LS 3,643.4 69.00

12 Medium 70 ES 1,406.4 69.35 LS 3,495.4 66.20

13 High 50 ES 1,737.2 85.66 LS 4,509 85.40

14 High 50 ES 1,749.8 86.28 LS 4,540.8 86.00

15 High 50 ES 1,725.2 85.07 LS 4,562 86.40

16 High 70 ES 1,737.4 85.67 LS 4,530.2 85.80

17 High 70 ES 1,696.6 83.66 LS 4,530.2 85.80

18 High 70 ES 1,749.8 86.28 LS 4,488 85.00

Table 2 Computational results of ES instances obtained by solving model M1

Inst Ship–load Obj CPU (limit = 1,800 s) Not served Re-handles Crane imbalance

1 ES–low: 50 1 952 0 0 1

2 ES–low: 50 0 530 0 0 0

3 ES–low: 50 1 1,109 0 0 1

4 ES–low: 70 1 677 0 0 1

5 ES–low: 70 1 449 0 0 1

6 ES–low: 70 1 594 0 0 1

7 ES–medium: 50 No 1,800 – – –

8 ES–medium: 50 6,245 1,800 52 101 35

9 ES–medium: 50 No 1,800 – – –

10 ES–medium: 70 1 1,539 0 0 1

11 ES–medium: 70 1 1,800 0 0 1

12 ES–medium: 70 11 1,800 0 1 1

13 ES–high: 50 No 1,800 – – –

14 ES–high: 50 No 1,800 – – –

15 ES–high: 50 No 1,800 – – –

16 ES–high: 70 No 1,800 – – –

17 ES–high: 70 No 1,800 – – –

18 ES–high: 70 No 1,800 – – –
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a large number of re-handles (164 on the average). For this reason, the last

seven rows of Table 4, corresponding to the most difficult LS instances, report

the results obtained by extending the CPU time limit to 3,600 s. Note that in this

way an acceptable solution was found for four more instances (10, 13, 15 and

18).

Tables 5 and 6 show the results for ES and LS, respectively, obtained by

HM2M1. Observing such tables, HM2M1 is very fast in both phases; in fact, final

solutions were obtained on the average in 162 s for ES instances and in 393 s for LS

ones. In addition, results obtained by HM2M1 appear outstanding in terms of

objective function (1). In particular, note that values in PF-M1 obj column are

always very close to zero.

In particular, it is worth observing that: (1) such results clearly dominate the

ones obtained by HM1; (2) the absolute gaps from the lower bound of M1,

which is zero in all instances, are very small and correspond to the values given

in column PF-M1 obj of Tables 5 and 6. Note that, apart from instance 6

(Table 5), for which 3 re-handles are required, always all handling operations are

performed without any re-handles and having at most 2 operations of the crane

imbalance.

In order to compare better the performances of the proposed heuristics, Table 7

summarizes the obtained results. In particular, column CPU time saving shows the

percentage of CPU time savings when applying HM2M1 versus HM1; columns

Table 3 Computational results of ES instances obtained by heuristic HM1

Inst PR-M1

obj

CPU Not

served

Re-

handles

Crane

imbalance

PF-M1

obj

CPU Not

served

Re-

handles

Crane

imbalance

1 0 308 0 0 0 11 7 0 0 11

2 0 342 0 0 0 0 5 0 0 0

3 0 300 0 0 0 1 7 0 0 1

4 0 393 0 0 0 1 5 0 0 1

5 0 293 0 0 0 1 7 0 0 1

6 0 244 0 0 0 1 6 0 0 1

7 0 981 0 0 0 65 6 0 0 65

8 0 605 0 0 0 40 6 0 0 40

9 0 825 0 0 0 2 5 0 0 2

10 0 511 0 0 0 1 6 0 0 1

11 0 547 0 0 0 97 6 0 0 97

12 0 523 0 0 0 14 5 0 0 14

13 810 1,800 8 1 0 1,020 7 8 1 210

14 30 1,800 0 3 0 52 7 0 3 22

15 60 1,800 0 6 0 116 6 0 0 116

16 807.83 1,800 2 58 27.83 872 7 0 75 122

17 0 1,263 0 0 0 77 7 0 0 77

18 500 1,800 5 0 0 819 6 5 0 319
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Table 5 Computational results of ES instances obtained by heuristic HM2M1

Inst PR-

M2 obj

CPU Not

served

Re-

handles

Crane

imbalance

PF-M1

obj

CPU Not

served

Re-

handles

Crane

imbalance

1 0 17 0 0 0 1 36 0 0 1

2 0 19 0 0 0 0 20 0 0 0

3 0 8 0 0 0 1 18 0 0 1

4 0 7 0 0 0 1 578 0 0 1

5 0 15 0 0 0 2 14 0 0 2

6 0 13 0 0 0 32 11 0 3 2

7 0 24 0 0 0 1 557 0 0 1

8 0 59 0 0 0 1 94 0 0 1

9 0 12 0 0 0 2 88 0 0 2

10 0 27 0 0 0 1 28 0 0 1

11 0 44 0 0 0 1 70 0 0 1

12 0 32 0 0 0 1 27 0 0 1

13 0 84 0 0 0 1 119 0 0 1

14 0 66 0 0 0 1 251 0 0 1

15 0 81 0 0 0 1 45 0 0 1

16 0 132 0 0 0 2 43 0 0 2

17 0 69 0 0 0 1 83 0 0 1

18 0 78 0 0 0 1 57 0 0 1

Table 6 Computational results of LS instances obtained by heuristic HM2M1

Inst PR-

M2 obj

CPU Not

served

Re-

handles

Crane

imbalance

PF-M1

obj

CPU Not

served

Re-

handles

Crane

imbalance

1 0 33 0 0 0 1 65 0 0 1

2 0 51 0 0 0 2 149 0 0 2

3 0 70 0 0 0 2 32 0 0 2

4 0 39 0 0 0 2 105 0 0 2

5 0 41 0 0 0 2 161 0 0 2

6 0 54 0 0 0 1 114 0 0 1

7 0 136 0 0 0 1 238 0 0 1

8 0 137 0 0 0 1 192 0 0 1

9 0 117 0 0 0 1 188 0 0 1

10 0 163 0 0 0 1 108 0 0 1

11 0 120 0 0 0 1 174 0 0 1

12 0 94 0 0 0 1 95 0 0 1

13 0 258 0 0 0 1 163 0 0 1

14 0 220 0 0 0 2 653 0 0 2

15 0 238 0 0 0 1 671 0 0 1

16 0 241 0 0 0 1 277 0 0 1

17 0 244 0 0 0 1 845 0 0 1

18 0 270 0 0 0 1 291 0 0 1
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Deviations report the values of the differences between the unloaded containers, the

re-handles and the crane imbalance obtained by HM1 and HM2M1 (i.e.,

deviation = HM1 value - HM2M1 value); in particular, the positive numbers

denote that HM2M1 outperforms HM1. From Table 7 it can also be observed that

HM2M1 is less computational time consuming than HM1. Moreover, HM2M1 can

allocate all the demand for both sets of instances without re-handles, apart from

instance 6 of ES, and can operate the ships with a negligible workload imbalance of

the cranes.

Finally, HM2M1 obtains the optimal solution in 5 over 7 instances,

corresponding to instances 1–4 and 7, that were solved up to optimality by M1

(see Table 2).

To give an idea of how the proposed approaches can be really applied as a

supporting tool for the liner shipper, Fig. 6 reports an example of a graphical

visualization of a feasible solution of MP-MBPP obtained by the presented

methods. This graphic tool can visualize how containers are assigned to the slots

of the hold and the deck and how many containers of each type (i.e. weight, size

and destination) are stowed in a single portion of the ship for each port of the ship

route.

Table 7 Performance’s comparison of the proposed solution approaches

Inst ES LS

CPU time

saving (%)

Deviations CPU time

saving (%)

Deviations

Not-

served

Re-

handles

Crane

imbalance

Not-

served

Re-

handles

Crane

imbalance

1 83.17 0 0 10 74.87 0 0 0

2 88.76 0 0 0 75.28 0 0 -1

3 91.53 0 0 0 72.65 0 0 -1

4 -46.98 0 0 0 70.25 0 0 0

5 90.33 0 0 -1 53.35 0 0 -1

6 90.40 0 -3 -1 68.77 0 0 0

7 41.13 0 0 64 71.71 0 0 0

8 74.96 0 0 39 67.07 0 0 0

9 87.95 0 0 0 71.97 0 0 1

10 89.36 0 0 0 86.72 0 0 0

11 79.39 0 0 96 58.77 0 0 0

12 88.83 0 0 13 78.52 0 0 0

13 88.77 8 1 209 88.37 1 0 2

14 82.46 0 3 21 51.95 161 402 163

15 93.02 0 0 115 74.88 0 52 22

16 90.32 0 75 120 85.69 20 92 2

17 88.03 0 0 76 69.98 115 343 0

18 92.52 5 0 318 84.51 4 146 22
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6 Conclusions

The MP-MBPP analysed in this paper is a complex planning problem whose

solution can support line operators in defining aggregate stowage plans in order to

satisfy the customer transportation demand at the ports of a ship route. The MP-

MBPP takes into account the available ship slots and the operational constraints

regarding the slot usage as well as the ship stability.

An exact MIP formulation and a relaxed one, based on TEU capacity constraints,

have been proposed. Moreover, two solution methods, able to solve the problem

using a two-step decomposition approach, have also been developed.

The proposed heuristics have been tested on both real life instances and fictitious

ones. The obtained results show that the second method, HM2M1, is able to find

nearly optimal stowage plans for a 5,600 TEU containership on a 7 port route in a

quite reduced computation time also when realistic load capacity requirements have

been considered.

Future extensions of this research are to improve the proposed approach for

dealing with larger instances and to develop a rolling horizon procedure in order to

solve the planning problems including circular routes.
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