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Abstract A dry bulk shipping company is operating its fleet on a number of trade

routes and is committed to sail a given number of voyages on these trade routes

during the planning period, while trying to derive additional revenue from chartering

out ships on short term contracts if possible. The shipping company has agreed with

the cargo owners that the voyages of a trade should be fairly evenly spread. This

leads to a maritime fleet deployment problem with voyage separation requirements.

Two formulations for this problem are presented, one arc flow formulation and one

path flow formulation. The voyage separation requirements are modeled either as

hard constraints or as soft constraints. Computational results show that the path flow

model can be solved for problems of realistic size, and that including voyage sep-

aration requirements gives solutions with much better spread of voyages. Solving a

real life problem and comparing the solution with a plan made manually by expe-

rienced fleet schedulers shows that using the proposed optimization method can both

generate increased profit and save the schedulers a lot of work.

keywords Maritime transportation � Liner shipping � Fleet deployment �
Scheduling

1 Introduction

Over the recent years the world economic situation has been rather unstable and

uncertain. Seaborne trade is highly dependent on macroeconomic factors and most
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operators in international maritime transportation have experienced decreased

demand for their services, high competition from other shipping companies and high

fuel prices. For example, from June 2008 to December 2008 the dry bulk freight

indices were down by approximately 80 percent (UNCTAD 2011). Under such

conditions, proper routing and scheduling of the fleet is crucial for obtaining a profit.

In this paper we study a real ship routing and scheduling problem for the

Norwegian shipping company Saga Forest Carriers, which are specializing in the

world wide transportation of forest products and break bulk cargoes. In the literature

of maritime transportation it is common to categorize the operation of commercial

ships into three basic modes: liner, tramp and industrial (Lawrence 1972). The

tactical planning problem of the company is difficult to categorize this way as it

contains aspects from both liner and tramp shipping. Like a liner shipping company,

Saga Forest Carriers operate on several trade routes on which the ships sail

regularly. In addition to operating their regular routes, they also act like a tramp

shipping operator in the spot market. Their fleet deployment problem includes

assigning the fleet both to regular routes and to available spot voyages to which their

ships can be chartered out to perform.

The purpose of this paper is to introduce a new extension to the fleet deployment

problem, namely the voyage separation requirement, to present new mathematical

models for this problem, and to evaluate these models by the means of a

computational study.

The remainder of this paper is outlined as follows. In Sect. 2 a presentation of the

fleet deployment problem with voyage separation requirements is given. Section 3

contains a description of relevant, existing literature. Mathematical formulations for

the fleet deployment problem with voyage separation requirements are presented in

Sect. 4. In Sect. 5 we present a computational study, while concluding remarks are

given in Sect. 6.

2 Problem description

We will now give a description of the fleet deployment problem with voyage

separation requirements as faced by Saga Forest Carriers. A general fleet deployment

problem is described by Christiansen et al. (2007). However, in this article we will

extend the model to reflect the world of this particular shipping company.

The company operates several intercontinental trades or trade routes, where cargo

is loaded in one geographical region and discharged in another region. Figure 1

depicts two examples of trade routes that Saga Forest Carriers operate. In the SAM-

FE trade cargo is picked up in South America and delivered at several ports in the Far

East. Similarly, the EUR-EC trade goes from ports in Europe to the US East Coast.

For each trade route there is a set of voyages that are to be sailed throughout the

planning period. Geographically, a voyage is similar to a trade route, and consists of

one or more port calls in the loading region where cargo is to be picked up and one

or more port calls in the discharge region where the cargo is to be delivered. The

voyages for a specific trade route have an estimated duration, which includes sailing

between all ports along the voyage as well as the time spent in the ports. Because
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the ships may have different service speeds, the duration of a voyage can be ship

dependent.

The voyages for a given trade route are defined based on expected cargo

availability and on long term contracts made with cargo owners (charterers). These

contracts of affreightment (COAs) typically specify, besides the economic

agreements, the total amount of goods that should be transported, the number of

voyages that should be performed per year, or both. It is up to the ship operator to

schedule when each voyage will start, but his degrees of freedom are not unlimited.

The ship operator does not control the inventories at the loading ports, hence

inventory costs are not relevant for the planning of his fleet deployment. For the

charterers, however, it is important to balance the inventory level as evenly as

possible to reduce the inventory costs. Therefore, a COA usually includes a clause

specifying that the starting days of voyages for the same trade should be, using

shipping terminology, fairly evenly spread in time. That is, the cargo owners expect

that the goods will be shipped out at regular intervals. Even though the COAs

usually do not specify exactly what fairly evenly spread means, the scheduler must

take this into account when deploying the fleet.

One way of forcing spread of the voyages on the same trade is to give each

voyage a time window. This time window defines the earliest and the latest start of

loading in the first port call of the voyage. For example, consider a trade route where

the ship operator has agreed to sail three voyages every month. One possible set of

time windows could be to say that the first voyage should start between day 1 and 10

in the month, the second should start between day 11 and 20, and the third should

start between day 21 and 30. However, in such a case the fleet operator is allowed to

start one voyage on day 10, one on day 11 and the last on day 30. This can hardly be

considered evenly spread, and will not be accepted by the charterer. To ensure a

better spread on voyages on this trade one could tighten the time windows.

However, this would restrict the ship operator’s flexibility and most often result in

poor fleet utilization.

Fig. 1 Example of two trade routes
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In order to cope with the the requirement of fairly evenly spread voyages, trade

specific time separation limits are defined. These limits define the minimum

acceptable time between two consecutive voyages on a given trade. Scheduling two

voyages on a trade very tightly will not cause any direct costs, but the shipping

company can lose goodwill and too little time between voyages can also make it

more difficult to find spot cargo to utilize spare ship capacity. Furthermore, the

cargo owner may face increased inventory costs when the voyages are not evenly

spread in time. It is therefore important to ensure that voyages on the same trade are

evenly spread in time when the fleet deployment plans are made.

Saga Forest Carriers have a heterogeneous fleet of ships, with individual load

capacities, cargo handling equipment, sailing speeds, draft restrictions, operating

costs and positions at the start of the planning period. This might put restrictions on

which ships that are allowed to carry out a given voyage. Some ships also have

maintenance requirements that have to be considered in the scheduling process. In

order to renew its certificates, a ship has to go through an extensive survey at regular

intervals. Each ship has a 4–6 months wide time window specifying when it has to

visit a ship yard in Korea or China to go in a dry dock. Typically, the duration of

such a survey is 25 days and must be carried out every second year.

The sailing speed of each ship can be considered fixed as it is determined at a

higher level prior to the fleet deployment. This fixed planning speed is determined

based on several factors, such as ship design, expected future fuel prices and freight

rate forecasts. Naturally, in a poor freight market this speed will be lower than in a

booming market. For a given ship this planning speed will typically be 13–14 knots,

and even though it is physically possible for the ship to sail at a higher speed, it

would be rather costly and the planners dealing with the fleet deployment are not

allowed to exceed this speed when scheduling the fleet. Psaraftis and Kontovas

(2013) give several examples of research done in the field of optimizing speed in

maritime transportation. In the case of Saga Forest Carriers, however, determining

the speed for each sailing leg of a ship’s route is done together with the detailed port

rotation planning after the fleet deployment problem has been solved, hence speed

optimization is not a part of the fleet deployment problem studied in this article.

In the shipping company’s portfolio of COAs there is an imbalance in the supply and

demand among the regions. For instance, in the fleet deployment problemofSaga Forest

Carriers there are more voyages starting in South America than ending up there. Hence,

it is not possible to find a fleet schedule that completely avoid any ballast sailing (sailing

with no cargo on board) by only sailing the contracted voyages. Therefore, the company

is constantly looking to the spotmarket to charter out their ships to voyages that can give

additional freight income while repositioning the ships. The fleet deployment problem

therefore has two sets of voyages, one that consists of the contracted voyages that the

shipping company is obliged to carry out, and one that consists of optional spot voyages

which can be taken if there is sufficient fleet capacity and it is profitable.

The fleet deployment problem is to assign and schedule ships in a fleet to a set of

voyages on predefined trade routes for the next planning period in order to

maximize the profit. If the shipping company’s fleet does not have sufficient

capacity, it is possible to charter in spot vessels on a short term contract to perform

some of the contracted voyages.
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3 Literature

The planning problem faced by Saga Forest Carriers can be classified as a fleet

deployment problem, which has received some attention in the research literature,

although mostly for container shipping. Gelareh and Meng (2010) present a

mathematical model for a container shipping fleet deployment problem that

incorporates speed decisions on sailing legs along each route. They also extend their

model to let the service frequency on each liner route be a decision variable, and to

handle the possibility of maximal travel time requirement between port pairs (e.g. in

case of perishable products). Wang et al (2011) later modified the model by Gelareh

and Meng (2010), while Meng and Wang (2011) extended it to consider uncertainty

in container shipment demand by imposing chance constraints for each liner service

route to guarantee that the ships assigned to that route can satisfy the demand with a

given probability. Liu et al (2011) present a joint model for container flow

management and fleet deployment, while Wang and Meng (2012) propose a model

that accommodates container transshipment operations in ports.

None of the studies referred to above include requirements for evenly spread

voyages. They also rely on a number of other assumptions typical for container

shipping that may be too restrictive in our problem. The most important limitations

of the models from these studies are (1) that each ship is assigned to only one single

trade route during the whole planning horizon, and (2) that ships are considered as

groups of ship types. The latter assumption can be a problem in short-term planning

problems as it may result in solutions that are practically infeasible as initial

positions or ongoing voyages may restrict some ships from performing the number

of voyages on the route calculated by the models. Fagerholt et al (2009) study the

fleet deployment problem for a Roll-on Roll-off shipping company. In their model,

each ship is modeled individually with a given initial open position and time for

when it is available for new assignments. Like in our problem, each voyage on a

trade route is modeled explicitly with a time window in which the voyage must start.

However, they do not consider evenly spread of voyages on the same route.

A few examples of time separation constraints can be found in the literature.

Bélanger et al (2006) study a periodic airline fleet deployment problem where the

goal is to assign aircraft types to each flight in order to generate a schedule that can

be repeated on a daily basis. A penalty cost is added to the objective function when

the departure of two flights with the same origin and destination airports are

scheduled too closely. An example from maritime transportation is Sigurd et al

(2005). They consider a general pickup and delivery problem with time separation

requirements on recurring visits to the same port, but in a different context than

ours.

4 Mathematical models

In this section two different mathematical formulations for the fleet deployment

problem will be given, one based on arc flows, and one based on path flows. The

problem’s objective is to maximize profit, while ensuring that all the contractual
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voyages are sailed. Two alternative formulations of the voyage separation

requirement, that apply for both models, will be presented.

4.1 An arc flow formulation

Let V be the set of ships. Even though some of the ships have almost identical

physical properties, they must be treated individually. This is because they have

individual starting positions and individual maintenance schedules, which could

lead to infeasible solutions if they were treated as groups of ships. Let R be the set

of trade routes. The problem is defined on a graph GðN ;AÞ. The setN contains four

types of nodes: Origin nodes, destination nodes, voyage nodes and maintenance

nodes. For each ship v 2 V; oðvÞ 2 N represents the starting position and d(v)

represents an artificial ending position, which geographically will correspond to the

ship’s ending position. The distance from any node to d(v) is zero. Each voyage i on

trade route r is represented by a node ðr; iÞ 2 N . The set I r ¼ 1; 2; . . .; nrf g is the

set of voyages on trade route r 2 R, where nr is the number of voyages on trade

route r that must be performed during the planning period. The two disjoint subsets

of N ;N C
and N O

represent the contracted (compulsory) voyages and the spot

(optional) voyages, respectively. Let NM
v be the set of nodes that correspond to

required ship yard maintenance visits for ship v. Like the voyage nodes, the

maintenance nodes have two indices (r, i). An arc ððr; iÞ; ðq; jÞÞ 2 A corresponds to

sailing voyage (or visiting maintenance node) (r, i) and then sailing empty from the

end of voyage (or maintenance node) (r, i) to the start of voyage (or maintenance

node) (q, j). Included in A are also the arcs (o(v), (r, i)) and ((r, i), d(v)). The arcs

(o(v), (r, i)) represent traveling directly from the starting position of ship v to the

start of voyage i on trade r or to the maintenance node (r, i), while ((r, i), d(v))

represent sailing directly from the end of voyage i on trade r (or maintenance node)

(r, i) to the artificial ending point of ship v. Finally, the arc (o(v), d(v)) represents

sailing directly from the starting position of ship v to the artificial ending point,

which means that the ship will not be used at all. The graph GvðN v;AvÞ is the

subgraph of G for ship v. The set N v consists of all the nodes in N which

correspond to voyages that ship v can service.

Figure 2 shows an example of a graph Gv representing a planning problem with

two trade routes R ¼ f1; 2g, each with two voyages, I 1 ¼ f1; 2g and I2 ¼ f1; 2g.
This example does not include any maintenance nodes. Note that not all nodes are

connected with arcs, due to time window constraints in the nodes.

The time it takes ship v to sail along arc ((r, i), (q, j)) is Tvriqj
B . This represents

sailing empty from the last discharge port of voyage (r, i) to the first loading port of

voyage (q, j). Let Cvriqj be the corresponding cost. Let To(v)ri
B and Co(v)ri be the time

and cost, respectively, of ship v sailing empty from its origin to the start of voyage

(r, i). The duration of sailing voyage (r, i) with ship v is Tvri
V , which corresponds to

sailing between all ports on a trade route and the service time of all the port calls.

Let Pvri be the corresponding profit, that is, the estimated freight income minus the

voyage costs, which mainly consists of fuel, port and canal costs. Let Cri
S be the cost

of chartering a spot vessel to service voyage i on trade r.
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Each voyage must start at its first port within a time window. Let Eri and Lri be

the earliest and the latest time for starting voyage i on trade r, respectively. Let Eo(v)

be the earliest time ship v can start from its initial position. Let Br be the minimum

accepted time between two consecutive voyages on trade r.

The binary flow variable xvriqj is 1 if ship v travels directly from node (r, i) to

node (q, j), and 0 otherwise. The binary variable xo(v)ri is 1 if ship v goes from its

origin to node (r, i), and 0 otherwise. Let xrid(v) equal 1 if node (r, i) is the last node

ship v visits before it goes to d(v). Similarly, let xo(v)d(v) be 1 if ship v does not

service any voyages at all, and 0 otherwise. Let sri equal 1 if voyage i on trade r is

serviced by a chartered spot vessel, and 0 otherwise. The variable tri is the time for

start of voyage i of trade r and to(v) is the time when ship v leaves its initial position.

This model, with one node for each voyage, resembles a multi-vehicle traveling

salesman problem with time windows (m-TSPTW), with some optional nodes and

asymmetric distances. The maritime fleet deployment problem with voyage

separation requirements can now be formulated as follows:

max
X

v2V

X

r2Rv

X

i2I r

ðPvri � CoðvÞriÞxoðvÞri þ
X

v2V

X

r2Rv

X

i2I r

X

q2Rv

X

j2Iq

ðPvri � CvriqjÞxvriqj

�
X

r2R

X

i2I r

CS
risri;

ð1Þ

subject to

X

v2Vr

X

q2Rv

X

j2I r

xvriqj þ xridðvÞ

" #
þ sri ¼ 1; ðr; iÞ 2 N C

; ð2Þ

X

v2Vr

X

q2Rv

X

j2I r

xvriqj þ xridðvÞ

" #
� 1; ðr; iÞ 2 N O

; ð3Þ

X

q2Rv

X

j2I r

xvriqj þ xridðvÞ ¼ 1; v 2 V; ðr; iÞ 2 NM
v ; ð4Þ

Fig. 2 A graph for a given ship with two trades, and two voyages on each trade

186 I. Norstad et al.

123



xoðvÞdðvÞ þ
X

r2Rv

X

i2I r

xoðvÞri ¼ 1; v 2 V; ð5Þ

xridðvÞ þ
X

q2Rv

X

j2Iq

xvriqj �
X

q2Rv

X

j2Iq

xvqjri � xoðvÞri ¼ 0; v 2 V; r 2 Rv; i 2 I r;

ð6Þ

xoðvÞdðvÞ þ
X

r2Rv

X

i2I r

xridðvÞ ¼ 1; v 2 V ð7Þ

toðvÞ þ TB
oðvÞri � tri �MoðvÞrð1� xoðvÞriÞ� 0; v 2 V; r 2 Rv; 2 I r; ð8Þ

tri þ TV
vri þ TB

vriqj � tqj �Mrqð1� xvriqjÞ� 0; v 2 V; ððr; iÞ; ðq; jÞÞ 2 Av; ð9Þ

toðvÞ �EoðvÞ; v 2 V; ð10Þ

Eri � tri � Lri; r 2 R; i 2 I r; ð11Þ
tr;iþ1 � tri �Br; r 2 R; i 2 I r n nrf g; ð12Þ

xoðvÞdðvÞ 2 f0; 1g; v 2 V; ð13Þ

xoðvÞri 2 f0; 1g; v 2 V; r 2 Rv; i 2 I r; ð14Þ

xridðvÞ 2 f0; 1g; v 2 V; r 2 Rv; i 2 I r; ð15Þ

xvriqj 2 f0; 1g; v 2 V; ððr; iÞ; ðq; jÞÞ 2 Av; ð16Þ

sri 2 f0; 1g; r 2 Rv; i 2 I r: ð17Þ

The objective function (1) sums up the profit from servicing the voyages minus the

costs of sailing from the ships’ starting positions to their first voyage and the costs of

chartering spot ships if needed.

Constraints (2) state that each contractual voyage must be serviced, either by a

ship in the fleet or by a spot ship, while constraints (3) say that each optional voyage

can be taken at most once by the fleet’s ships. Constraints (4) ensure that all required

ship maintenance operations are carried out. The network flow for each ship is

ensured by constraints (5), (6) and (7).

Constraints (8) ensure the time spent sailing from a ship v’s initial position o(v) to

a first voyage (r, i) does not exceed the latest start time for the voyage. These

constraints have been linearized by using the well known big-M method by

introducing a big number Mo(v)r. Constraints (9) state that the time spent servicing

voyage (r, i) plus the time spent ballast sailing from the end of voyage (r, i) to the

start of voyage (q, r) cannot exceed the start time for voyage (q, j). These

constraints also function as sub-tour elimination constraints that will make sure that

no closed cycles between a subset of voyages will appear in the solution. These

constraints have also been linearized by applying the big-M method. The big-M

parameters in constraints (8) and (9) have been calculated as follows:
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MoðvÞr ¼ EoðvÞ þ TB
oðvÞri; v 2 V; r 2 Rv; i 2 I r; ð18Þ

Mrq ¼ Lri þ TV
vri þ TB

vriqj � Eqj; v 2 V; ððr; iÞ; ðq; jÞÞ 2 Av: ð19Þ

Constraints (10) state that a ship v cannot start leaving its initial position before it is

available, while constraints (11) will ensure that the time window for each voyage is

not violated. The minimum accepted time between two consecutive voyages on a

trade will be taken care of by constraints (12). Constraints (13), (14), (15) and (16)

impose binary requirements on all the flow variables.

4.2 A path flow formulation

The arc flow formulation in Sect. 4.1 can be reformulated as a path flow model

where the flow variables are replaced by variables that describes paths through the

graph. The problem will be decomposed into a master problem where the allocation

of paths to the ships is done and one subproblem for each ship, where feasible paths

are generated. The ship specific subproblem contains the flow constraints and the

time constraints. Only paths that visit the required maintenance nodes for each ship

are generated. Due to the voyage spread requirement the schedules for the ships are

not independent of each other, and the time constraints in this formulation cannot be

handled solely in the subproblems.

In addition to the notation already presented for the arc flow model, a few more

symbols must be declared in order to formulate the path flow model. Let Pv be the

set of feasible paths for ship v. Let Pvriqj be a subset of Pv which contains all the

paths where ship v do voyage j of trade q directly after voyage i of trade r. Let zvp be

a binary decision variable that equals 1 if ship v is following path p, and 0 otherwise.

Let Avpri be a binary parameter that equals 1 if path p for ship v includes sailing

voyage i on trade r. Let Evpri be the earliest service start for voyage i on trade r if

performed by ship v on path p. Let Pvp be the profit from letting ship v sail path p,

i.e. the freight income minus sailing costs. Let Cri
S be the cost of chartering in a spot

vessel to service voyage (r, i). Further, let tvri be a decision variable that denotes the

start of voyage i on trade r for ship v. Let tri
S denote the start of voyage i on trade r if

it is assigned to a spot vessel, and 0 otherwise.

A path flow model describing the fleet deployment problem with voyage

separation constraints can now be stated as follows.

maximize
X

v2V

X

p2Pv

Pvpzvp �
X

r2R

X

i2I rÞ
CS
risri; ð20Þ

subject to
X

v2Vr

X

p2P
Avprizvp þ sri ¼ 1; ðr; iÞ 2 N C

; ð21Þ
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X

v2Vr

X

p2P
Avprizvp � 1; ðr; iÞ 2 N O

; ð22Þ

X

p2Pv

zvp ¼ 1; v 2 V ð23Þ

X

p2Pv

Evprizvp � tvri �
X

p2Pv

AvpriLrizvp; v 2 V; r 2 Rv; i 2 I r ð24Þ

Erisri � tSri � Lrisri; r 2 R; i 2 I r; ð25Þ

tBoðvÞ þ
X

p2Pv

ðToðvÞri þ LriÞzvp � Lri � tvri; v 2 V; r 2 Rv; i 2 I r; ð26Þ

tvri þ zvp
X

p2Pvriqj

ðTV
vri þ TB

vriqj þ LriÞ � Lri � tvqj � 0; v 2 V; r 2 Rv; i 2 I r;

q 2 Rv; j 2 Iq;

ð27Þ

Br þ
X

v2Vr

tvri þ tSri �
X

v2Vr

tvr;iþ1 � tSr;iþ1 � 0; r 2 R; i 2 I r n nrf g; ð28Þ

toðvÞ �EoðvÞ; v 2 V; ð29Þ

zvp 2 f0; 1g; v 2 V; p 2 Pv; ð30Þ

sri 2 f0; 1g; r 2 Rv; i 2 I r: ð31Þ

The objective function (20) maximizes the total profit by choosing the most prof-

itable combination of paths for the fleet and the most favorable spot ship options.

Constraints (21) state that each contractual voyage must be serviced, either by a ship

in the fleet or by a spot ship, while constraints (22) say that each optional voyage

can be taken at most once by the fleet’s ships. Constraints (23) state that each ship

must follow one and only one path. Constraints (24) ensure that the voyages start

within their time windows. To tighten the problem, the earliest start of a voyage, Eri,

has been replaced by the ship and path dependent parameter Evpri, since a ship on a

given path may not be able to reach (r, i) within Eri. Constraints (25) state that a

voyage must start within its time window if it is taken by a spot ship. Constraints

(26) ensure that a ship does not start serving its first voyage before it has sailed

empty from its starting position, while constraints (27) state that a ship cannot start

service of a voyage before it has finished the preceding one and then sailed empty to

the start port of the voyage. Minimum spread between two consecutive voyages on a

trade is ensured by constraints (28). Constraint (29) state that a ship cannot start on

its path before it is available in its starting position. Finally, constraints (30) and

(31) state that zvp and sri are binary variables.
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4.3 An alternative formulation of the voyage separation requirement

One disadvantage with the model formulations presented, is that it is very difficult

for the fleet planners to decide what value the minimum spread parameter Br

should have for each trade. The minimum separation time is normally not defined

in the contract. Giving these parameters too high value will certainly ensure that

the schedule will be accepted by the charterers, but also reduce the flexibility and

probably lead to a more costly solution for the shipping company than necessary.

On the other hand, if the value of Br is set too low, it might cause dissatisfied

charterers and not optimal cargo availability. Since it is difficult to specify an

absolute limit for the time between voyages of a trade, a soft constraint might

provide a better model of the real world. We will now extend the path flow

formulation to include a soft constraint for the voyage separation. There will still

be a hard bound for the separation variable, but in addition there is a tighter

preferred soft bound that can be violated. The penalty cost for violating the soft

constraint will be linearly dependent on the magnitude of the violation, as

illustrated in Fig. 3.

Let Dr be the preferred minimum time between two consecutive voyages on trade

r and Cr
P be the artificial penalty cost for violating Dr by one time unit. Let yri be a

variable that represents the number of time units the preferred separation limit Dr is

violated by voyage i on trade r.

The arc flow formulation in Sect. 4.1 can be extended to include soft time spread

restrictions by adding constraints (33) and (34). The objective function (1) should be

replaced by the revised one (32).

Fig. 3 Penalty cost function for time between consecutive voyages on a trade
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Dr þ tri � tr;iþ1 � yri � 0; r 2 R; i 2 I r n nrf g; ð33Þ
yri � 0; r 2 R; i 2 I r: ð34Þ

For the path flow formulation in Sect. 4.2 we can add the constraints (36) and

(37), while the revised objective function (35) replaces the original one (20).

max
X

v2V

X

p2Pv

Pvpzvp �
X

r2R

X

i2I r

CS
risri �

X

r2R

X

i2I r

CP
r yri; ð35Þ

Dr þ
X

v2V
tvri þ tSri �

X

v2V
tvr;iþ1 � tSr;iþ1 � yri; r 2 R; i 2 I r n nrf g; ð36Þ

yri � 0; r 2 R; i 2 I r: ð37Þ

5 Computational study

We have performed several computational experiments in order to evaluate the

proposed models. First, in Sect. 5.1 a description of how the models are

implemented is given. In Sect. 5.2 the test instances are presented. Then we

compare the performance of the arc flow and the path flow models in Sect. 5.3 In

Sect. 5.4 the effect of adding voyage separation constraints is studied, while in 5.5

we analyze the effect of adding the soft formulation of the time separation

constraints. Finally, in Sect. 5.6 we discuss the impact of using optimization based

solution methods by comparing the solution of a real life problem instance with a

schedule made manually by the schedulers at Saga Forest Carriers.

5.1 Implementation

The optimization models presented in Sect. 4 have been implemented in Xpress MP

7.0 64 bit. In order to generate the parameters for the path flow model a path

generator program has been implemented. All feasible paths for each ship are

generated a priori to the optimization. Since the required maintenance operations

and also some the voyages can have quite wide time windows, there may be several

feasible sequences or paths a ship can follow while performing the same set of

voyages. A simple dominance test is therefore performed to make sure that only the

most profitable one is passed on to the optimization model.

The path generation has been implemented in C#. Both the path generation and

the optimization is performed on a DELL Latitude Laptop with Intel Core i5 CPU

(4 9 2.40 GHz), 4 GB DDR2 RM running on Windows 7.
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5.2 Test problem instances

The real planning problem faced by Saga Forest Carriers includes 25 ships, 10

trades and approximately 50 voyages over a planning horizon of three to four

months. To provide a sufficiently large set of problem instances for testing the

models, a test instance generator has been developed. Based on parameters

describing the number of ships, the number of trades and the length of the planning

horizon, the generator randomly selects a subset of the fleet’s ships and trades, and

generates a set of voyages with corresponding time windows. The width of the time

windows are dependent on the frequencies of the voyages. For instance, a trade with

three voyages every month will have 10 days non-overlapping time windows, while

a trade with only one monthly voyage will have a 30 days window. Furthermore, the

instance generator calculates sailing times and costs based on distances, fuel costs,

freight rates and ship data from the shipping company’s fleet management system.

The output from the generator is flat text files that can be read by the path generator

program and by the Xpress MP optimization software. Table 1 provides a summary

of the generated test instances. The columns Ships and Trades display the number of

ships in the fleet and the number of different trade routes, respectively. The column

Voyages shows the total number of voyages, with the number of optional voyages in

parenthesis. The length of the planning horizon in days is given in the column

Horizon. Note that this horizon defines the period that covers the start of the time

Table 1 Summary of test instances

Instances Arc flow Path flow

No. Ships Trades Voyages Horizon Var. Constr. Var. Constr.

1 10 4 21 (5) 90 4,072 4,334 956 4,266

2 10 5 32 (9) 90 10,034 10,204 2,907 10,344

3 10 4 19 (0) 90 3,468 3,610 1,160 3,645

4 10 5 25 (0) 120 5,610 5,980 3,149 5,860

5 10 5 34 (9) 120 10,658 11,085 6,060 10,990

6 10 5 36 (5) 120 11,812 12,403 12,295 12,187

7 10 5 42 (11) 150 16,114 16,639 14,354 16,539

8 10 6 52 (13) 150 25,194 25,736 14,791 25,730

9 10 6 47 (8) 150 20,514 21,183 15,564 20,994

10 25 6 49 (10) 90 57,073 58,640 9,486 58,157

11 25 6 44 (11) 90 46,563 47,606 7,200 47,516

12 25 6 53 (11) 90 66,956 68,442 11,316 68,125

13 25 7 57 (10) 105 77,089 79,104 32,371 78,388

14 25 6 58 (4) 105 80,116 82,299 30,437 81,447

15 25 8 55 (5) 105 71,910 73,763 26,369 73,172

16 25 7 67 (15) 120 96,803 99,073 52,650 98,285

17 25 6 64 (12) 120 96,603 99,365 55,075 98,096

18 25 8 62 (6) 120 90,674 92,999 56,367 92,124
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windows for the generated voyages. This means that the actual planning period for

the scheduling problem is longer, as a voyage can have a latest starting time outside

the horizon. In addition, the voyages also have to be finished. The columns Var. and

Constr. shows the number of variables and constraints, respectively, for both the arc

flow and the path flow formulations.

5.3 Comparing arc flow and path flow formulations

The 18 test problem instances in Table 1 have been solved by both the arc flow and

the path flow based solution approaches. In this test both models contain only the

hard voyage separation constraints. The results of these comparisons are displayed

in Table 2. The columns Obj show the best solutions found by the two models. The

columns Gap show the gap in percent between the best integer solution and the best

bound found after the maximum solution time of 1 h (3,600 s). The columns

Seconds report the computational time in seconds, if optimum is reached before the

time limit. For the path flow formulation, the first number is the total solution time,

while the number in parentheses is the time spent generating the paths.

From the results in Table 2 we see that for the smallest problem instances (1 to

12) there are no significant difference between the models. They both find the

optimal solution to the problems and they both solve the problems quickly. For the

larger problem instances, however, there is a tendency that the path flow model is

faster than the arc flow model. For several of the instances, the arc flow model does

not prove optimality within the 1 h time limit. However, the gap is less than 1 , and

when we compare the solutions of the arc flow model to the optimal ones provided

by the path flow model, we see that for all but one of the instances the arc flow

model finds the optimal solutions, but is just not able to close the gap to the best

bound. The conclusion from this comparison is still that for larger instances, the

path flow model is faster.

5.4 Effect of voyage separation requirements

To provide an example of the effect of including voyage separation requirements in

the model, we have solved instance 17 from Table 1 without the voyage separation

constraints and compared the solution with the one obtained by using the path flow

model in Table 2. In this problem instance the SAM-EUR trade has 18 voyages, all

with 7 days wide time windows. For this trade, the minimum accepted time between

two voyages is 5 days. Figure 4 depicts how the voyages are spread out along the

time line. We see that without the voyage separation constraints some of the

consecutive voyages start very close in time to each other, which would probably

not be accepted by the charterer. In Table 3, which compares the two solutions, we

see that adding the separation constraint hardly reduces the objective value at all,

approximately only by 0.01 percent. The ideal separation, that is, perfectly evenly

spread, for this trade is 7 days, which is the time between the start of each time

window. The table also shows the standard deviation of the separation times. We see

that with separation constraints, the separation times deviates significantly less from

the ideal time. Even though we have only shown one trade in one instance, the
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conclusion from our experiments is that it seems that adding voyage separation

requirements significantly improves the spread of voyages without only marginal

reductions in profit. It therefore provides solutions that are much better in practice.

Table 2 Comparison of the arc flow and the path flow model

Instance Arc flow Path flow

Obj ($) Gap (%) Seconds Obj ($) Gap (%) Seconds

1 12,247,819 Opt 0.3 12,247,819 Opt 0.2 (0.0)

2 17,279,137 Opt 5.3 17,279,137 Opt 2.6 (0.1)

3 12,825,753 Opt 0.9 12,825,753 Opt 0.4 (0.0)

4 15,516,053 Opt 6.5 15,516,053 Opt 4.0 (0.2)

5 13,931,337 Opt 13 13,931,337 Opt 6.5 (0.4)

6 15,391,681 Opt 27 15,391,681 Opt 28.9 (0.9)

7 19,848,485 Opt 11 19,848,485 Opt 25.2 (1.2)

8 19,640,522 Opt 19 19,640,522 Opt 22 (2.1)

9 22,416,301 Opt 35 22,416,301 Opt 19 (6.7)

10 34,722,300 Opt 12 34,722,300 Opt 20 (1.0)

11 28,444,009 Opt 8.2 28,444,009 Opt 12 (0.6)

12 38,254,811 Opt 52 38,254,811 Opt 20 (1.1)

13 37,194,640 Opt 23 37,194,640 Opt 116 (4.0)

14 42,312,953 0.19 3,600 42,312,953 Opt 110 (4.1)

15 37,363,051 Opt 174 37,363,051 Opt 184 (3.5)

16 40,666,943 0.01 3,600 40,666,943 Opt 326 (7.2)

17 47,285,831 0.48 3,600 47,442,401 Opt 291 (8.1)

18 41,742,107 0.08 3,600 41,742,107 Opt 681 (8.2)

Fig. 4 Starting days for voyages on the SAM-EUR trade

Table 3 The effect of adding separation constraints

Without separation With separation

Objective value 47,447,551 47,442,400

St.dev. of separation (days) 2.15 1.14

St.dev. of separation (percent) 30.8 16.3
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5.5 Analysis of soft voyage separation requirements

Just adding the soft restrictions without relaxing the hard constraints will obviously

always provide solutions with objective values that are worse or equal compared to

the formulation with the hard constraint only. Furthermore, it adds complexity to the

model and will probably increase the computational time. When comparing the hard

and the soft formulations one must therefore choose different values for the

minimum time spread, Br.

In order to analyze the effect of adding the soft constraints we study a problem

instance with ten ships, three trades and a total of 35 voyages over a 120 day

planning horizon. The problem is first solved six times by the hard formulation, then

twelve times by the soft formulation, each time with different parameter settings,

providing different penalty cost functions. We recall from Sect. 4.3 that Dr is the

preferred minimum separation time between voyages of trade r. For this experiment

we fix Dr to the values that is specified by the shipping company. Table 4 shows the

parameter settings and the results of the optimization. The values of Br are obtained

by multiplying the values of Dr with the coefficient shown in column B.

For example, assume that Dr for a given trade in the test instance has the value of

10 days. For test 1 Br will have the same value, while in test 2 it will be set to 8 days

and so on. We also test for two different penalty costs. The penalty for violating the

preferred separation limit Dr by 1 day is given in column CP. The column Real obj.

reports the objective value without any penalty costs. The column Penalty contains

the artificial penalty costs associated with the solution. The number of chartered in

Table 4 Comparison of hard and soft voyage spread constraints

Test Model B CP ($) Real obj. ($) Penalty ($) Spot ships Seconds

1 Hard 1.0 – 15,055,350 – 1 67

2 Hard 0.8 – 15,055,350 – 1 65

3 Hard 0.6 – 15,095,215 – 1 65

4 Hard 0.4 – 15,105,441 – 1 52

5 Hard 0.2 – 15,270,038 – 0 48

6 Hard 0.0 – 15,270,038 – 0 43

7 Soft 1.0 10,000 15,055,350 0 1 85

8 Soft 0.8 10,000 15,055,350 0 1 88

9 Soft 0.6 10,000 15,055,350 0 1 75

10 Soft 0.4 10,000 15,105,441 29,910 1 52

11 Soft 0.2 10,000 15,270,038 49,865 0 50

12 Soft 0.0 10,000 15,270,038 49,865 0 46

13 Soft 1.0 40,000 15,055,350 0 1 91

14 Soft 0.8 40,000 15,055,350 0 1 88

15 Soft 0.6 40,000 15,055,350 0 1 79

16 Soft 0.4 40,000 15,055,350 0 1 66

17 Soft 0.2 40,000 15,055,350 0 1 61

18 Soft 0.0 40,000 15,055,350 0 1 50
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spot ships in the solution is given in column Spot ships. Finally, the computational

time is displayed in Seconds. The path flow based model has been used for all the

tests.

Figure 5 shows a graphical representation of the results in Table 4. There are

three functions, one for the hard model (test 1 to 6) one for the soft model with

penalty coefficient Cr
P = 10,000 (test 7–12), and one for the soft model with

Cr
P = 40,000 (test 13–18). The figure shows the real objective value, i.e. without the

artificial penalty costs. Due to the integral properties of the fleet deployment

problem, these functions take the shape of a step function. Both the results in the

table and the figure show that as the value of Br increases, the optimal objective

value decreases. We also see that the higher the penalty rate, the lower the objective

value.

For the quite small problem instance studied in this experiment, we cannot draw

any final conclusion about the relationship between the parameter settings and the

computational time. It seems, however, to be a trend that the smaller the value of the

parameters Br, the faster the optimal solution is found. It also seems like the model

with the soft constraints is slightly more time consuming to solve than the model

with only the hard constraints.

Even though only one problem instance has been analyzed in this computational

study, the conclusion is that the soft formulation is more flexible in finding good

solutions and does not increase the computational time very much. The user should

however be very careful in choosing the parameters, as slightly different penalty costs

or minimum voyage separation times might lead to significantly different solutions.

5.6 Analysis of a real life fleet deployment problem

In order to evaluate the effects of introducing optimization based tools for solving

the fleet deployment problem of Saga Forest Carriers, we have compared a real life

Fig. 5 Objective values (without penalty) as function of minimum allowed spread
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schedule made by their own schedulers with the results from our proposed path flow

model. In their planning process, the schedulers use advanced spreadsheet models.

These spreadsheets can download updated positions for all the ships, but do not

include any optimization features. The schedulers manually assign available ships to

the voyages and the spreadsheets automatically update open dates and positions for

the ships, helping the schedulers to visualize the plan.

In this experiment a three month schedule has been studied. The problem consists

of 24 ships and seven trades with 42 voyages in total. In addition, the chartering

department has identified 14 possible spot voyages in the market. Since Saga’s

schedulers do not use a model that contains soft constraints for the voyage

separation requirements, the path flow formulation with hard separation constraints

has been used in the comparison.

The results from the experiment can be found in Table 5. The column Manual

schedule refers to the schedule produced by Saga’s own schedulers, while

Optimized schedule refers to the schedule obtained from solving the path flow

based formulation of the problem. As expected, the optimization based method finds

the best schedule. The difference is 2.9 percent or approximately 1.2 million USD.

We see that the optimized schedule does not take all the spot cargoes, resulting in a

lower gross freight income. Instead the optimized solution has ship routes with less

ballast sailing and hence much lower fuel costs.

A perhaps more important advantage of the optimization based method is that it

solves the problem quite quickly. The optimal schedule was found after 16 s and

optimality was proven after 68 s. Generating the schedule manually takes roughly a

full working day. It is obvious that using optimization based decision support tools

can save a lot of time. This allows the schedulers to spend more time on other tasks,

for instance rescheduling when ships are delayed or searching the spot market for

profitable charter-out opportunities.

6 Concluding remarks

We have studies a real planning problem faced by the shipping company Saga

Forest Carriers. This problem can be considered as a fleet deployment problem

Table 5 Comparison of manual scheduling and optimization based scheduling

Manual schedule Optimized schedule

COA voyages 42 42

Spot voyages 14 13

Charter in vessels 0 0

Violations of preferred spread 11 6

Gross freight income 78,495,196 77,649,102

Voyage costs 38,809,538 36,766,985

Net fleet income (objective) 39,685,657 40,882,117
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similar to what can be found in the liner shipping literature, except that here we

have time separation requirements for voyages of the same trade. Two mathematical

formulations of the problem have been presented, one arc flow and one path flow

model.

The fleet deployment problem is an important tactical planning problem and its

purpose is to determine the fleet schedule for the next few months. Even though the

planning period is relatively long, rescheduling is needed quite often due to updated

information about the future. Hence the response time for the decision support

system is crucial. Computational studies of 18 test problem instances show that both

models work well on small problem instances. However, the path flow based model,

with all possible paths generated a priori, is in addition capable of solving real life

sized problem instances to optimality within an acceptable time.

The computational results show that introducing voyage separation requirements

provides solution that have much better spread of voyages, and this comes at only a

marginal reduction in profit. Good spread of voyages is important in this planning

problem, hence these solutions are much better in practice.

Since the contractual clause stating that voyages should be fairly evenly spread

does not specify exactly what is acceptable time between two voyages, we have also

presented an alternative formulation of the voyage separation requirement. This is a

soft constraint which adds an artificial penalty to the objective function. A

computational study shows that using the soft constraint formulation will improve

the solutions without increasing the computational time very much.

Compared with the spreadsheet based scheduling tool currently used by Saga

Forest Carriers, the optimization based methods proposed in this paper provides

solutions with better profit and better voyage separation. In addition, using these

methods is much faster than manual scheduling and could therefore free up time for

the schedulers.
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