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Abstract This paper studies the multi-depot heterogeneous fleet capacitated arc
routing problem (MDHCARP), a problem with rare research in the past, but with
many applications in real life. The MDHCARP extends the capacitated arc routing
problem (CARP) by considering both the multi-depot case and limited heteroge-
neous fleet constraints. We propose a genetic local search (GLS) algorithm for the
MDHCARP. The GLS is appraised on simplified MDHCARP cases and on general
MDHCARP instances from CARP files; and computational results show that the
GLS outperforms an extended memetic algorithm and meanwhile they both improve
best-known solutions of the simplified MDHCARP benchmark cases.

Keywords Multi-depot heterogeneous fleet capacitated arc routing problem -
Genetic algorithm - Local search - Memetic algorithm

1 Introduction

The capacitated arc routing problem (CARP) introduced by Golden and Wong
(1981) is an arc routing counterpart to the well-known vehicle routing problem. The
CARP is defined on an undirected connected graph with edge costs and non-
negative edge demands, where edges with positive-demands are called required
edges or tasks. A fleet of homogeneous vehicles are based at a single depot. Any
edge can be traversed any number of times by vehicles with each required edge
being serviced only once. The objective is to find a set of vehicle routes of the least
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total cost of traversed edges, such that each route starts and ends at the depot while
the total demand of each route does not exceed vehicle capacity.

The CARP is NP-hard in that it can be reduced to the NP-hard rural postman
problem (RPP) (Lenstra and Rinnooy Kan 1976). During the 1980s and early 1990s,
heuristics used to be the mainstream approach to solve the CARP and many
heuristics were introduced, such as augment-merge (Golden and Wong 1981), path-
scanning (Golden et al. 1983) and route-first, cluster-second (Ulusoy 1985), etc. In
the recent decade, some meta-heuristics have been proposed, such as tabu search
(Hertz et al. 2000; Brandao and Eglese 2008), variable neighborhood descent (Hertz
and Mittaz 2001), guided local search (Beullens et al. 2003), memetic algorithms
(Lacomme et al. 2001, 2004; Tang et al. 2009) and ant colony optimization (Santos
et al. 2010), etc. A recent review can be found in Liu et al. (2008) and Corberan and
Prins (2010).

Applications of the CARP include collection or delivery, street sweeping and
snow removal, etc. However, the CARP has its limitation in modeling most real-life
applications such as salt spreader routing problem and waste collection. Eglese
(1994) and Li and Eglese (1996) study the salt spreader routing problem and
propose that there can be multiple depot locations, different capacities of gritters
(vehicles) and other constraints in this real-life problem. In municipal solid waste
collection, large companies or public sectors usually have more than one depot and
they have a fleet of vehicles characterized by different capacities and operating costs
to collect or transport waste. Therefore, in this paper we consider two major
extensions of the basic CARP, namely heterogeneous vehicles and multiple depots.
The resulting new problem can be called the multi-depot heterogeneous fleet CARP
(MDHCARP).

The heterogeneous fleet CARP (HCARP) has two versions, one is the
heterogeneous fixed fleet CARP with a limited number of vehicles, and the other
is the fleet size and mix CARP (FSMCARP) with unlimited ones. The FSMCARP is
first introduced by Ulusoy (1985) who proposes the route-first, cluster-second
method. Therein, a RPP is solved to form a giant tour, and then the giant tour is
partitioned into feasible vehicle routes subject to the constraints by solving the
shortest path problem on a transformed new graph. This idea is embedded in our
genetic local search (GLS) algorithm. The multi-depot CARP (MDCARP) is studied
firstly by Amberg et al. (2000). In their research, this problem is defined on an
undirected graph with M depots. A fixed number of vehicles with heterogeneous
capacity, but without fixed costs and variable costs, are stationed in each depot.
Recently, Kansou and Yassine (2010) and Xing et al. (2010) have studied the
MDCARP by using different meta-heuristics.

In this paper, we systematically study the NP-hard MDHCARP for the first time,
and propose an effective genetic local search (GLS) algorithm for the problem. It
has been shown that metaheuristics combining genetic algorithm (GA) with local
search (LS) are powerful for the CARP and its variants (Lacomme et al. 2004; Mei
etal. 2011; Tang et al. 2009), because it has the potential to exploit the global search
advantage of GA and local search advantage of problem-specific LS. The remainder
of this paper is organized as follows: Sect. 2 gives a formal and detailed description
of the MDHCARP. The general framework and key components of the proposed
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GLS are introduced in Sect. 3. Computational experiments on real-life applications
and new generated data are presented in Sect. 4, and finally, Sect. 5 summarizes
some concluding remarks.

2 Problem definition and notations

The MDHCARP can be described as follows. Given a mixed graph G = (V,EUA)
with a set V of n nodes, an undirected edge set E, a directed arc set A. E U A is the
set of links (edges and arcs), ¢; = ¢;(>0) is the cost (Iength) of a link (i,j) € EUA,
and Er C E and Ag C A are the sets of trequired edges and arcs, respectively. Let
D C V be the set of Mdepots. A heterogeneous (different types) fleet of vehicles
indexed in a set K is stationed at multiple depots. The number of vehicles of each
type k in depot m is fixed (limited) and equals n,,;, and the total number of vehicles of
each type k is n;. A fixed cost 4, a variable cost per unit distance f,,; and capacity
O, 1s associated to each vehicle of type k in depot m. The MDHCARP is to
determine a set of routes in such a way that: (1) the number of vehicles used of each
type k is not more than ny, and even each type k from depot m is not more than n,,;
(2) each vehicle route starts and ends at the same depot; (3) each required link (task)
is served exactly once; (4) the total demand of each route served by vehicle k from
depot m does not exceed Q,, and its total duration does not exceed a preset value
L,.i; (5) the total routing cost is minimized.

To describe the tasks clearly, each required arc is identified by a task number
instead of one pair of nodes. Each arc u € A has a tail (start node) a(u), a head (end
node) b(u#) and a traversing (deadheading) cost tc(u). Each required link (task)
u € (Eg UAR) has a demand d(u), a serving cost sc(u); and if u is an edge task, it has
an inverse mark inv(u). Task inv(u) and u have the same traversing cost, demand and
serving cost. Note that each edge task u € Eg can be served in either direction, i.e.,
only one of task u and inv(u) is served. Table 1 summarizes the notations adopted
by the paper.

3 The genetic local search algorithm

The genetic local search (GLS) algorithm is a combination of a population-based
global search genetic algorithm (GA) and an individual-based local search. Our
GLS has several main characters: (a) in chromosome encoding for the CARP with
complex multi-depot and heterogeneous constraints, the GLS uses a simple
permutation (sequence) of ¢ tasks, without cluster and route delimiters (excluding
depots); (b) a multi-depot heterogeneous partition (MDH-Partition) procedure is
proposed to convert the indirect chromosomes encoding into solutions; (c) in
population replacement, one chromosome P, is selected in the parent population
using one new replacement method described in Sect. 3.5.

The proposed GLS includes two phases, i.e., a main phase and a restart phase.
Initially, each chromosome represents a potential MDHCARP solution through an
encoding mechanism. Next, an initial population is generated, and the chromosomes
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Table 1 List of notations about the MDHCARP

Notation Meaning

G=(V,EUA) Mixed graph

Ex Set of required edges in G

Agr Set of required arcs in G

Vv Set of nodes in G

a(u) Tail (start node) of arc u

b(u) Head (end node) of arc u

d(u) Demand of arc u

te(u) Traversing (deadheading) cost of arc u

sc(u) Serving cost of arc u

inv(u) Pointer to opposite arc of arc u

M Number of depots

m Depot node

K Set of fleet of vehicles

ny Total number of vehicle of type k across depots
Mok Number of vehicle of type k in depot m

Ok Capacity of vehicle of type k in depot m

L.« Maximum duration of vehicle of type k in depot m
Domic Fixed cost of vehicle of type k in depot m

Lok Variable cost of vehicle of type k in depot m per unit distance
t Number of tasks

of the population are evaluated by the MDH-Partition procedure of Sect. 3.1.1 and
sorted according to a fitness function.

Then, a typical iteration of the main phase proceeds as follows. Selection,
crossover and local search operators are implemented to generate an offspring. The
offspring is added into the parent population by applying a replacement operator.
The new population is then kept sorted again and these operators are repeated until
the stopping criterion of the main phase is reached. Finally, the restart phase keeps
some best chromosomes of the main phase and generates other new chromosomes to
form another initial population, and then the typical iteration is repeated until the
termination condition of the restart phase is met. Table 2 shows the basic steps of
the GLS. Several main components are described in detail in Sect. 3.1-3.5.

3.1 Chromosome structure and evaluation

As the MDHCARP belongs to the class of multi-depot routing problems, it is a
natural idea to use depots as cluster delimiters, and even as route delimiters for each
cluster in encoding corresponding to GAs proposed in the published multi-depot
routing problem literature (Ho et al. 2008; Lau et al. 2010; Ombuki-Berman and
Hanshar 2009; Kansou and Yassine 2010).
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Table 2 General framework of the GLS

Step 1 The initial population is constructed using two heuristics and random generation (Sect. 3.2).

Step 2 Each iteration selects two parents P1 and P2 randomly, then two children C1 and C2 are
obtained using one of order crossover (OX) and linear order crossover (LOX), and only one of C1
and C2 is randomly selected as child C (Sect. 3.3).

Step 3 The child C is converted into a MDHCARP solution by implementing the MDH-Partition
procedure (Sect. 3.1.1), and then the solution undergoes the local search (LS) in a given probability
Pm (Sect. 3.4).

Step 4 Two chromosomes are selected from the latter 2/3 subpopulation of the parent population, and
the worse one P, is replaced by the child C if C is not clone as the other chromosomes in the parent
population (Sect. 3.5).

Step 5 The main phase stops after a maximum number of iterations (ni). After that, the restart
procedure is implemented for nr times, where two best chromosomes are kept, and others are
replaced by new randomly generated chromosomes, and then the main phase is repeated but with a
higher local search probability p,. That is to say, the total number of iteration is (1 + nr) x ni
(Sect. 3.5).

Nevertheless, inspired by Lacomme et al. (2004) and Prins (2009), our
chromosome T is a simple permutation (sequence) of ¢ tasks, without cluster and
route delimiters (excluding depots). Implicit shortest paths (deadheading paths) are
between consecutive tasks. It can be viewed as a RPP or a giant tour traversed by
one vehicle without capacity constraints from one depot. This kind of chromosome
representation is adopted because: (1) the encoding is simple, and classical GA
operators for the travelling salesman problem can be reused; (2) a chromosome can
be converted into a feasible MDHCARP solution by the MDH-Partition procedure
described in Sect. 3.1.1; (3) the indirect encoding is so flexible that it is suitable for
extended problems including new constraints and objectives.

3.1.1 MDH-partition

Under the above chromosome structure, an MDHCARP solution can be obtained by
decoding the chromosome using the MDH-Partition procedure. The fitness of each
chromosome is evaluated based on the total cost of this corresponding solution.
Given a chromosome T = (cy, ¢z, .. .,¢;) where t corresponds to the number of
tasks, the MDH-Partition procedure works on an auxiliary directed acyclic graph
G, = (X, 7, Z), where X is a set of t + 1 vertex index from a dummy node O to 7. Y
is a set of arcs where one arc (i,j) € Y means that a trip serving tasks subsequence
(Cit1,Cita, - - -, ¢;) is feasible in terms of capacity and duration, i.e., load(i + 1, j) <
O, and length(i + 1, j, m) < L, where load(i 4+ 1, j) is the load of the trip,
length(i + 1, j, m) is the length of this trip served by the vehicle from depot m. Z is
the set of the weight of arcs where one weight zf}’k corresponds to the total cost of

vehicle type k from depot m to serve tasks subsequence (ciy1, Cit2,. - ., Cj).

In each depot m, vehicles have &, different types, with a number n,,; of vehicles
for each type k. Vehicles (even the same size) from different depots will generate
different costs, leading to z{;’k instead of z;; in the CARP. The optimal partitioning of
chromosome T corresponds to a shortest path from node 0 to node ¢ in G, with no
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more than n,,, arcs for vehicle type k from depot m. Thus, this problem is a resource-
constrained shortest path problem (RCSPP), which is an NP-hard problem but can
be solved in pseudo-polynomial time based on dynamic programming.

In our dynamic programming approach, a set of labels is associated with each
node i of the auxiliary graph G,, and each label L(vi1, ..., Vig, - s VML - « s VMkys 2)
represents different paths from the origin O to node i with specific consumption of
vehicle resources and cost. To be specific, v : (Vi1, ..., Viks -« Vils - - - Vi, ) 18 the
consumption combination of all types of vehicles, where v, indicates the number
of vehicle type k used from depot m (1 <m <M, 1 <k <k,, 1 <vu <nuw;
and z the corresponding cost of the path associated with the label. The number of

My

possible vehicle consumption combinations is w = [ (nu + 1), where null
m=1,k=1

consumptions are considered.

To use a simpler notation, let k; + k> + ... + kj; equal ¢ which is the total
number of vehicle types across all depots. Note that when we define label
L(Vity ey Vikyy e oy VMls - - -y VMky,2) and compute &, even if vehicle types from
different depots are the same, they are still regarded as different because vehicles of
the same type and from different depots generate different costs when used; and the
number of them may also be different. Then, each kind of possible vehicle
consumption combination v : (Viy,. .., Vig,, -, VM1, - - -, Vuk,, ) With two-dimensional
suffixes corresponds to a vector % : (%, Az, . . ., fiz) with one-dimensional suffix and
can be further converted into a scalar g € [0, @ — 1]. Thus, we can represent L as
the gth label in node i for the path ending at node i, i.e., tasks subsequence
(c1,¢2,...,¢i), and then, L!.v as the partial fleet used, L!.v,x as vehicle
consumptions of type k from depot m, and L.z as the corresponding cost. Given
the label L? and the arc (i,j) € Y (a trip ¢;y; to ¢;), then

J
load(i+1,j) = Y _ d(c)) (1)
I=it1
J
length(i + 1,j,m) = tc(m,¢;) + Z [sc(cx) + te(cx—1,¢x)] +tc(cjm)  (2)
x=i+1

In Eq. (1), d(c)) is the demand of task c;, and in Eq. (2), the length includes the
traversing cost tc¢ from depot m to task c;, from c; to ¢;;; until ¢; and from c; to the
depot m, and the serving cost sc of any task from c;; to ¢;. If the vehicle of type &
from depot m is available and load(i + 1, j) < Q. and length(i + 1, j, m) < Ly,
one label L; for node j is generated by using recursive equations:

Livpe = L vp +1,0<i<j<t, 1<m<M (3)

Lz=Llz+7"0<i<j<t,1<m<M (4)

In Eq. (4), zl’.}”‘ = Ak + Wi - length(i + 1,j,m). The time complexity of the MDH-

Partition procedure is O(f>w¢). Since a large number of labels increase the com-
puting time, a dominance rule can be adopted.

@ Springer



546 T. Liu et al.

In addition, largest capacity check is also useful, which means that if the vehicle
with the largest capacity cannot satisfy the condition load(i + 1, j) < Q,u, all of
other size of vehicles cannot have enough capacity to serve tasks subsequence
(Cit1,Cit2s - - ¢;). Note that since the number of vehicles of each type is fixed,
when the total capacity of vehicles is slightly larger than the total demand, a
chromosome may not be able to be converted into a solution by MDH-Partition
procedure. In that case, we can add additional vehicles in the process of MDH-
Partition without affecting the final solution.

3.1.2 An illustrative example

Consider one example of 4 edge tasks with their respective demands being 8, 14, 8,
9, and two types of vehicles and two depots. A single vehicle with a capacity of 30
(type 1) is stationed in depot 1, and a single vehicle with a capacity of 25 (type 2) is
in depot 2. The detailed vehicle information is shown in Table 3. Figure la shows
the chromosome tour 7' = (c;, ¢, ¢3, ¢4) with demands in brackets. Thin dotted lines
represent shortest paths between any two nodes, and the numbers under ¢ = 4 tasks
are the serving costs.

The MDH-Partition procedure builds an auxiliary graph G, with t 4+ 1 nodes
indexed from O to 7, as shown in Fig. 1b. The initial label of node 0 is L) with
L8.v = (0,0) and Lg.z =0, i.e., no vehicles are used and no costs are generated.
Arcs from node 0 to node 1 represent the trips that serve task c;. To be specific, if
task c; is served by the vehicle of type 1 from depot 1, it leads to the label L] with
cost Ll.z =50 4+ 1.5 x 36 = 104, and if served by the vehicle of type 2 from
depot 2, it leads to the label L2with cost L3.z =40 + 1 x 26 = 66. But actually in
our MDH-Partition procedure, neither of these two labels is generated. The reason
is that if task c; is served by the vehicle of type 1 (type 2), the remaining capacity is
only 25 (30) which is not enough to serve the remaining three tasks with a total
demand of 31. Therefore, subsequent labels that arise from L{ and L? are not all
generated. In addition, the vehicle of type 1 cannot cover the total demands of four
tasks. According to the largest capacity check technique of Sect. 3.1.1, neither can
the small size vehicle of type 2, so neither of labels L} and L7 is generated.

A shortest path from node 0 to node 7 in G, (bold) indicates the optimal partitioning
of T: two trips and a label L} obtained from label L}, with vehicles consump-
tionL3.v = (1, 1) and total cost 3.z = 193. The resulting MDHCARP solution is trip
(0, ¢;, ¢c2, 0) with a cost of 113 served by vehicle 1 from depot 1 and trip (0, c¢3, ¢4, 0)
with a cost of 80 served by vehicle 2 from depot 2, as shown in Fig. 1c.

Table 3 Vehicle information

Vehicle type 1 2
Vehicle position Depot 1 Depot 2
Ny 1 1

Omi 30 25

Ak 50 40

Lonk 1.5 1
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Fig. 1 Example of MDH-Partition.a Chromosome tour with 4 edge tasks. b Auxiliary graph G,, labels
and shortest path. ¢ Resulting trips

3.2 Initial population
The population P is composed of ps chromosomes. The initial population consists of

two good (low-cost) chromosomes and ps-2 random chromosomes. To be specific,
two good chromosomes P; and P, are constructed by using matching-based
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algorithm (MBA) and modified path-scanning (MPS), both with local search. Note
that when chromosomes are randomly generated, identical chromosomes (clones)
may result in a premature convergence, and should therefore be avoided. Since
exact detection for identical chromosomes is time consuming, we adopt a simpler
and faster diversity condition, i.e., two chromosomes do not have the same cost. To
meet this condition, we try try_max times to generate each random chromosome and
decrease the number of chromosomes in the population if try_max times all fail.

All the above methods generate ps permutations of tasks (giant RPP tours) which
are then converted into ps solutions by MDH-Partition procedure. Then each
solution is concatenated into one chromosome, and all chromosomes are stored
using an array in increasing cost order.

3.2.1 Matching-based algorithm

We recommend matching-based algorithm (MBA) to generate a very good
chromosome, because this algorithm proposed by Frederickson (1979) for RPP
has a worst-case bound of 3/2, which is similar to the travelling salesman problem
heuristic of Christofides (1976).

The MBA works on the original undirected graph, and can be described as
follows.

1. Construct a minimum cost spanning tree to connect several components of the
original graph, and denote the new graph as GI.

2. Determine a minimum cost perfect matching (Edmonds and Johnson 1973) of
the odd degree vertices of G1, denote the new graph as G2.

3. Find an Euler tour of G2 using the end-pairing algorithm (Edmonds and
Johnson 1973), and the Euler tour is exactly the RPP tour.

4. Transform the representation of the RPP tour from nodes sequence into tasks
sequence with an implicit shortest path between any two consecutive tasks,
using pre-marked task numbers for each task.

3.2.2 Modified path-scanning

The original path-scanning algorithm is introduced by Golden et al. (1983) for the
capacitated Chinese postman problem. This heuristic builds trip routes based on a
greedy idea subject to vehicle capacity Q. In constructing each route, the sequence
of tasks is extended by joining the task that looks most promising until Q or
maximum trip length L or maximum time duration is exhausted. For a sequence
ending at task f, the task closest to f is chosen as the next task. If multiple tasks
satisfy this condition, five rules are employed to determine the next task g, not yet
served: (1) maximize the distance from g to depot; (2) minimize the distance from g
to depot; (3) maximize the ratio of demand/service cost of g, i.e., d(g)/sc(g); (4)
minimize the ratio of demand/service cost of g, i.e., d(g)/sc(g); (5) use rule 1 if the
vehicle is no more than half-full, or else use rule 2.

In our version, due to the coexistence of multi-depot and heterogeneous fleet with
different capacities, a giant RPP tour is constructed by using modified path-scanning
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(MPS), in which there is only one depot (the first depot) and only one vehicle where
Q equals the total demand of overall tasks. Note that, MPS starts from the first
depot, and chooses different next tasks to serve by implementing five different rules,
until all tasks are chosen. Therefore, MPS will generate five different tours. Each of
them is followed by the MDH-Partition procedure of Sect. 3.1.1, respectively. Then,
five MDHCARP solutions are extracted, and only the best solution is kept.

3.3 Selection and crossover

The proposed GLS selects two parents P1 and P2 randomly from the sorted
population. When the two parents are selected, order crossover (OX) (Davis 1985)
and linear order crossover (LOX) (Falkenauer and Bouffouix 1991) are randomly
selected to implement. Note that the OX and LOX generate two child chromosomes
which are both kept in the original OX and LOX, but only one child randomly
chosen is preserved in our OX and LOX. Fig. 2 gives one sample of OX with two
parents P1 and P2 and two crossover points i = 4, j = 7, where ten tasks are
undirected, i.e., inv(1) = 11, inv(2) = 12, and so on. Therefore, when child C1 is
filled using P2(j + 1) to P2(i — 1), task 2 in P2 should be excluded because its
opposite arc 12 is the same task that has been included in C1.

3.4 Local search

A local search (LS) is adopted with a fixed probability p,, in our GLS to produce a
better offspring after each crossover. The LS works on a MDHCARP solution
obtained by implementing the MDH-Partition procedure on the child C, because if
it operates directly on the chromosome C without route delimiters, a large amount of
time will be spent to evaluate each move of it. Let tasks i and j be served after tasks
fand g in their respective routes and all move types are described below.

MI1: move task f after task g.

M2: move two consecutive tasks (f, i) after task g.
M3: swap task f and g.

M4: swap task f and (g, j).

MS: swap task (f, i) and (g, j).

M6: 2-opt moves.

The LS scans each pair of tasks (f, g) in o(¢?), and each iteration of the LS
implements M1-M6 and stops when it finds the first improving move, and then the
solution is updated and the next iteration is continued until all pairs of tasks are

i= J=
P1: 1 4 5 7 9 10 12 3 6 8
P2: 13 2 10 8 6 15 7 9 1 4
Cl: 8 6 15 7 9 10 12 1 4 13
C2: 9 10 12 8 6 15 7 3 1 4

Fig. 2 Example of OX crossover
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scanned; however, the whole M1-M6 process for each pair of tasks is repeated as
long as the solutions can be further improved.

There are several points to be noted in the LS. First, each type of move is
implemented in the same route or in two different routes which may or may not be
from the same depot. Second, in M1-M3, if a task fis moved to another position, it
can appear in either as f or inv (f). Third, in M1 and M2, g can be the start depot of
its route. Fourth, in 2-opt, if the move operates on two routes from different depots,
we must reconnect the first or last task of the two routes to the two depots after
2-opt, to guarantee that a route starts and ends at the same depot (as shown in
Fig. 3).

At last, some routes are removed if they become empty. The final solution of LS
is converted into a chromosome by concatenating these routes and excluding route
delimiters (depots). Then, the chromosome is converted into a solution by the
optimal MDH-Partition which sometimes can bring a better solution for the same
chromosome.

3.5 Replacement and termination

We propose a new replacement method, i.e., two chromosomes are selected from a
subpopulation and the worse one P, is replaced by the child C if C is not identical to
any other chromosomes of the parent population. We test several kinds of
subpopulation choices, such as the latter 1/2, the latter 2/3 and the whole of the
parent population where chromosomes are stored in increasing cost order, and
preliminary experiments show that the latter 2/3 is superior. After replacement, the
ps chromosomes are stored in increasing cost order again.

As mentioned before, the proposed GLS includes two phases, i.e., a main phase
and a restart phase. The main phase stops after a maximum number of iterations
(ni). After that, the restart procedure is implemented for nr times, where two best
chromosomes are kept, and others are replaced by new randomly generated
chromosomes. Then, the main phase is repeated but with a higher local search
probability p,. That is to say, the total number of iterations is (1 4+ nr) x ni.

ml f i ml ml

Rl O »0 >0
m2 g J m2 m2
R2 o- >0 >0
(@)
ml f i ml ml
Rl O—— - el
m2 N RN ) m2/ N & N m2
R2 o “ . 0 R2 \ % 0
(©) (d)

Fig. 3 Example of 2-opt move: a original two routes R1 and R2 from depot m/ and m2, respectively;
b the shortest paths linking fto i and g to j are replaced by the shortest paths from fto j and from g to i;
¢ and d new routes are reconnected to depot m/ and m2 in two ways
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4 Computational experiments
4.1 Test problems

The MDHCARP is a new problem and there are no benchmark instances. In this
paper, we first test the real-life instances dealing with problems of route planning for
winter gritting in the areas of Konigstein and Wennigsen, Germany, which are from
Amberg et al. (2000) and can be viewed as simplified MDHCARPs since no fixed
costs and variable costs of vehicles are considered, and then generate new general
MDHCARP data from CARP instances. To evaluate our GLS, especially for
generated instances, we extend the memetic algorithm (Lacomme et al. 2004) to
solve the MDHCARP for comparison. In the extended memetic algorithm (EMA),
depots are used as cluster delimiters but not as route delimiters in chromosome
encoding, as in Kansou and Yassine (2010). To be specific, a chromosome
S consists of M sub-chromosome S,,, where M corresponds to the number of depots.
Each S, is a sequence of tasks associated to depot m, without route delimiters. Then
a chromosome is converted into a feasible MDHCARP solution by a heterogeneous
partition (H-Partition) to each S,,, of S. The H-Partition for the single depot HCARP
is a special case of the MDH-Partition.

4.1.1 Simplified MDHCARP cases

The data of three real-life instances are shown in Table 4 and the corresponding
sketch maps of the first two instances are shown in Fig. 4a and b. In Table 4, the
first column stands for the instance name; VI, |El and ¢ indicate the number of
nodes, the number of edges, and the number of tasks, respectively; Tp, represents the
total demand; M is the number of depots; m is the depot node; Q,, is vehicle
capacity of each type k in depot m; n,,; and CT,, are the corresponding number of
vehicle and time capacity, and fixed cost4,,; and variable cost u,, of each vehicle
are not given. In Fig. 4, dashed lines are non-required edges which can be traversed
but do not have to be served, solid lines represent required edges, and blue solid
lines are parallel tasks.

The first instance is a relatively large size problem in the area of Konigstein. Six
vehicles are stationed in the same depot (node 8) but have different time and vehicle
capacities. In this sense, it is a single-depot HCARP. The graph has 65 nodes and 93
required edges with total demand 202 (Amberg et al. (2000) state 94 required edges
by mistake). The time capacity CT,, is the maximum time duration of vehicle of
type k from depot m and can be converted into the maximum trip length L,,, since
the average speed of vehicles is given as 30 km/h. Special conditions are that the
vehicle with capacity Q = 650 must pass a load station node 65 and one edge (15,
16) is a narrow street and must be served by a small vehicle with Q = 150 or
0 = 250.

The second instance concerns the area of Wennigsen. Six vehicles are stationed
in two depot nodes 1 and 15. They have different vehicle capacities but no time
capacities. The graph has 48 nodes and 55 required edges with a total demand of
229.4.
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Table 4 Three simplified MDHCARP cases

Instance 4 |E| t Tp M m Ok Mk Ak Mk CTo
Konigstein 65 101 93 202 1 8 65 1 - - 35
50 2 - - 35
25 2 - - 3.0
15 1 - - 2.5
Wennigsen 48 56 55 2294 2 1 45 5 - - -
15 30 1 - - -
Wennigsen-modified 48 56 51 2145 2 1 45 5 - - -
15 30 1 - - -

(a) Konigstein (b) Wennigsen

Fig. 4 Graphs about Konigstein problem (a) and Wennigsen problem (b)

The third instance (Wennigsen-modified) arises from the Wennigsen problem,
and the only difference between them is that the third instance eliminates four of the
required edges, i.e., (17, 13), (13, 18), (15, 17) and (18, 19), and thus has 51 required
edges. Therefore, the total demand is decreased to 214.5.

4.1.2 New MDHCARP instances
Some general MDHCARP data are generated by adding depots and vehicle types in
three sets of standard CARP instances (gdb, val and egl files) which can be

downloaded from http://www.uv.es/ ~belengue/carp.html. The gdb set is 23 small
size instances with 7-27 nodes and 11-55 edges; the val set includes 34 medium
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Table 5 An example of general MDHCARP instances

Problem VI IEl Total capacity M m Ok Ny Dok Lonk
mdh-egl-s1-C 140 75 103 x 14 5 1 63 3 63 1.0
29 83 3 83 1.2
57 103 2 103 1.4
85 123 3 123 1.6
113 143 3 143 1.8

size instances with 24-50 nodes and 34-97 edges and the egl set contains 24 large
size instances with 77-140 nodes and 98-190 edges. In the gdb and val sets, all the
edges are required edges (tasks), and the egl set has 51-190 required edges and
some non-required edges.

The general MDHCARP instances are generated from three benchmark sets of
CARP problems: gdb, val and egl, so named mdh-gdb, mdh-val and mdh-egl,
respectively, which are available upon request from the authors. For each instance,
we change the original depot number from one depot into 2-5 depots, and replace
the original homogeneous fleet with a heterogeneous fleet of 3-5 different vehicle
types stationed at depots, according to the problem size. For the vehicles of each
instance, their respective capacities Q,,, are in arithmetic progression, and their
respective number n,,, is set to guarantee that the total capacity equals the original
capacity; their fixed costs 4,,; are equivalent to their respective capacities; their unit
variable cost ,,; is 1.0, 1.2, ..., 1.8. Table 5 gives the example of mdh-egl-s1-C
generated from egl-s1-C.

4.2 Parameter settings

The GLS and EMA are implemented in C and executed on an Intel (R) Pentium
(R) Dual 1.8 GHz PC under Windows XP.

Preliminary experiments were required to determine the best parameter settings.
In these experiments, the following combinations of factors are tested: (1)
population size ps tested at two levels, 30 and 50; (2) maximum value of try_max to
generate each random non-clone chromosome tested at two levels, 10 and 20; (3)
local search probability p,, in the main phase tested at four levels, 0, 0.15, 0.3 and
0.5; (4) local search probability p, in the restart phase tested at three levels, 0.25, 0.5
and 0.75; (5) maximum iteration number of the main phase ni tested at two levels,
5,000 and 10,000; (6) maximum value of restarts nr tested at two levels, 10 and 20.
Preliminary tests were done on the 34 instances of mdh-val generated problems.

The parameters based on the experimental results are set as follows: the
population size ps is 30, the maximum value of try_max to generate each
random non-clone chromosome is 10, the local search probability p,, and p, in
the main phase and restart phase are 0.5 and 0.75, respectively, the maximum
iteration number of the main phase ni is 5,000, and the maximum number of
restarts nr is 10.
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4.3 Results on the simplified MDHCARP

For the Konigstein problem, the comparison between the GLS and EMA and four
strategies of Amberg et al. (2000) is shown in Table 6 (Boldface indicates the new
best solution). Note that, in Amberg et al. (2000), each solution corresponds to the
total length of additional edges (deadheading length); therefore, the total travelling
length equals the solution plus the total length of required edges. Take the
Konigstein problem for instance, the best solution is 79.5, and the total travelling
length should be 79.5 plus 202. Amberg et al. (2000) gives four strategies using
Simulated Annealing and Tabu Search, i.e., SA t, STS s, CSM c;coc3 and REM
r where SA, STS, CSM and REM are names of strategies, and ¢, s, c¢jcpc; and r are
their respective parameters. In Table 6, we only show the best result of each strategy
instead of giving all of them. Note that in Amberg et al. (2000), the CPU time is the
average time of the last improvement instead of the total computing time.

In Table 6, the third and fourth columns are the best and average solutions of the
EMA and GLS over 10 runs, respectively, the fifth column is the average computing
time in seconds. From Table 6, we can find that even the average solutions of the
GLS and EMA outperform all meta-strategies of Amberg et al. (2000), and the GLS
is the best algorithm which has a better average solution and gets the new best
solution in less time than EMA. The new best solution is 273.5 with an
improvement of 2.84 % and the computing time is acceptable. The corresponding
routes are given in detail in Konigstein of Appendix.

For the Wennigsen problem, the comparison between the GLS and EMA and four
strategies of Amberg et al. (2000) is shown in Table 7 (Boldface indicates the new
best solution). From Table 7, we can find that the new best solution with cost 325.8 is
obtained easily with an improvement of 1.81 % and likewise the GLS converges
faster than the EMA. The corresponding routes are given in Wennigsen of Appendix.

For the Wennigsen-modified problem, the computing time and the number of
iterations are not given in Amberg et al. (2000) whose best solution is 329.2 (104.7
plus 214.5). The GLS and EMA both can improve the result by 3.34 % after 0.70
and 0.92 s, respectively, and the corresponding routes of the new best solutions with
cost 318.2, are shown in Wennigsen-modified of Appendix.

GLS and EMA outperform the metaheuristics of Amberg et al. (2000) in that
GLS and EMA combine genetic algorithm (GA) with local search (LS), and they

Table 6 Comparison between the GLS and EMA and four published metastrateties for Konigstein
problem

Meta-strategy Total length of additional edges Best solution Average solution Sec.
SA 10 79.5 281.5 - -

STS 10 79.5 281.5 - -
CSM 1400 10 2 79.5 281.5 - -
REM 1500 79.5 281.5 - -
EMA - 273.5 275.5 155.43
GLS - 273.5 274 88.38

Boldface indicates the new best solution
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Table 7 Comparison between the GLS and EMA and four published metastrateties for Wennigsen
problem

Total length of additional edges Best solution Average solution Sec.
SA 120 102.4 331.8 - -
STS 10 102.4 331.8 - -
CSM 4700 10 2 102.4 331.8 - -
REM 2700 102.4 331.8 - -
EMA - 325.8 325.8 6.44
GLS - 325.8 325.8 3.22

Boldface indicates the new best solution

have the potential to exploit the global search advantage of GA and local search
advantage of problem-specific LS.

4.4 Results on the general MDHCARP

The results of the general MDHCARP instances (mdh-gdb, mdh-val and mdh-egl)
are presented in Tables 8, 9, 10. For each instance, two good initial solutions
generated by heuristics MBA and MPS, and improved by LS, respectively, are given
in columns 2-5, and the average solutions, the best solutions, and the average
computing times in seconds over 10 runs for EMA and GLS are shown in columns
6-8 and columns 9-11, respectively. In Tables 8, 9, 10, if the best solution of the
GLS (GLSyy) is superior to that of the EMA (EMA,,) then it is shown in bold.

The average solution quality of the algorithms is summarized in Table 11. For
each file, the first row shows the average results and the second row reports the
average deviations (in %) above the best-known solutions (BKS) which are our best
solutions obtained from the GLS. Main conclusions can be drawn from the results
as follows.

1. The solutions of the GLS and the EMA are much better than two good initial
solutions of the simple heuristics. For example, the average deviations of the
initial solutions obtained from MBA + LS from the best solution GLS, are
1.26, 5.30 and 9.12 % on mdh-gab, mdh-val and mdh-egl files, respectively.

2. The local search is effective. To be specific, MBA + LS improves MBA by
11.3, 4.5 and 7.9 % on three files, respectively. MPS + LS improves MPS by
3.6, 4.6 and 8.8 % on three files, respectively.

3. The GLS outperforms the EMA both in the results and in the computing time.
To be specific, the average solutions of the GLS (GLS,;) over all instances are
better than those of the EMA (EMA,); for small size instances of the mdh-gdb
set, the EMA, obtains the same best solutions as the GLS,,, but requires
additional computing time; while for medium and large size instances, the
average deviations of the EMA;, from the GLSys are 0.17 and 0.42 %,
respectively. It can be found that the GLS obtains new best solutions on 20 out
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Table 8 Results of the mdh-gdb set

Problem  MBA MPS MBA +LS MPS +LS EMA, EMA, Sec GLS, GLSy Sec.

mdh-gdbl 4182 391.8 393.6 380.4 365.6  365.6 2.08 365.6 365.6 0.91

mdh-gdb2  449.8 426.8 409 407.6 3972 3972 1.75 3972 3972 0.89

mdh-gdb3 3858 384.8 367.8 384.6 326.8 3268 029 3268 3268 0.2

mdh-gdb4  386.8 393 361 357.6 353.8  353.8 1.6 3538 3538 0.52

mdh-gdb5  505.8 4944 4644 461.6 446.8  446.8 1552 446.8 446.8 1039

mdh-gdb6 394 3844 376.0 3844 353 353 1.75 353 353 1.08

mdh-gdb7 4494 4314 39438 426.4 380.6  380.6 2.38 380.6 380.6 1.56

mdh-gdb8  733.8 721.8 674 695 639 636.6  30.51 6382 636.6 194

mdh-gdb9 7124 680.2 680.4 643.8 594.6  592.6 4473 593.6 592.6 228

mdh- 4246 4224 3722 386.8 358.6  357.6 2.78 358 357.6 1.79
2dbl0

mdh- 785.8 790.2 762.4 767.0 687.6 6856  29.28 687 685.6  21.16
gdbll

mdh- 892.6 879 836.8 826.4 7544 7544 1.12 7544 7544 0.58
gdbl12

mdh- 965 958.4 925 955.6 846.6 8358 10.68 842 835.8 9.4
gdbl3

mdh- 244.6 243.8 2334 222.4 2174 2174 344 2174 2174 2.96
gdbl4

mdh- 1982 195.8 194.8 195.8 190.8  190.8 326 190.8 190.8 2.62
gdbl5

mdh- 3064 289 282.8 273.8 2632 262.8 139 2628 2628 10.86
gdbl6

mdh- 3024 298.8 289.8 291.6 284.6 2842 1394 2844 2842 10.6
gdbl7

mdh- 3782 3704 3718 360.4 346.2 3448 28 346 344.8 15.54
gdbl8

mdh- 1548 159.6 1532 158.8 1472 1472 0.01 1472 1472 0
gdb19

mdh- 318.6 290.8 252.8 283.4 2498  249.8 748 2498 2498 5.64
2db20

mdh- 3814 377 360 368.8 340.2 3386 212 3398 338.6 17.88
gdb21

mdh- 4724 471 460 455.2 4446 4426 5124 4436 4426 31.07
gdb22

mdh- 578.6 573.8 555.6 560.4 5348 531.6 8534 5334 531.6 66.36
gdb23

Average 4713 462.1 418.1 445.6 4141 4129 16.19 413.6 4129 11.05

of 34 mdh-val instances, and 17 out of 24 mdh-egl instances, which is better
than the EMA. Compared with EMA,; and EMA,, GLS,, and GLS,,; save on
average 0.2 and 0.4 % on two files. GLS outperforms EMA in that in GLS, the
chromosome 7 is a permutation (sequence) of ¢ tasks, without cluster and route
delimiters (excluding depots) and an optimal possible MDHCARP solution can
be extracted from a chromosome by the MDH-Partition procedure, while in
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EMA, a chromosome is a sequence S of M (the number of depots) sub-
chromosome S,, where each S, is a sequence of tasks associated to depot m. A
feasible MDHCARP solution by a heterogeneous partition (H-Partition) to
each §,, of S is a local optimal solution, and therefore worse than an optimal
MDHCARP solution extracted from a chromosome 7T by the MDH-Partition
procedure.

4. The computing times of the GLS and the EMA are both reasonable, even for
large size problems.

5 Conclusions

This paper introduces the MDHCARP, a problem that despite its many real-life
applications, has not received much attention in previous research on the CARP.
The MDHCARP is to determine the least cost routes for a given heterogeneous
fleet of vehicles to serve a set of required edges and arcs (tasks). The vehicles
located at multi-depot are with different capacities, fixed costs and variable
COSts.

Due to its theoretical complexity, we propose the GLS and EMA for the
MDHCARP, which extend the classic memetic algorithm (hybrid genetic algorithm)
to both multi-depot and heterogeneous fleet constraints. The simplified MDH-
CARPs from real-world cases are tested and new better solutions are found by the
GLS and EMA in reasonable computation times. A large number of general
MDHCARP instances generated from CARP instances are also tested and the results
show that the GLS outperforms the EMA.

Note that our GLS is also effective for the multi-depot fleet size and
mix CARP, where the number of available vehicles of each type is unlimited.
The main modification is that the chromosome evaluation corresponds to
the shortest path problem instead of the resource-constrained shortest path
problem.

Our work is a foundation for future research on complicated constraints on the
CARP. We plan to extend in several ways. First, an efficient lower bound can be
provided to evaluate our GLS. Second, more complex and practical constraints can
be involved, such as time windows and periodic demands for tasks. Due to the
flexibility of the GLS, we intend to extend it to tackle these additional attributes.
Finally, we also plan to propose some new operators to improve the performance of
the GLS, as well as other more efficient hybrid metaheuristics combining population
search and local search.
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Appendix: New best solutions for three simplified MDHCARP instances

Konigstein

See Tables 12, 13.

Table 12 Total cost = 273.5, 5 trip routes

Route Vehicle capacity Total demand Total cost Number of
per route per route per route tasks per route

1 50 46 55 28

2 25 24 325 7

3 50 48.5 60.5 23

4 65 64.5 98 24

5 25 19 275 11

Table 13 Sequence of tasks per route

Route Depot

Sequence of tasks per routes (Each task is represented by one pair of nodes, and

node implicit shortest paths are between consecutive tasks)

1 8 12-24 24-23 23-22 22-20 21-22 22-29 29-30 31-30 30-31 31-33 35-33 33-34
34-33 33-31 31-32 32-31 33-35 35-36 36-30 30-29 29-28 28-27 27-39 39-38
38-27 27-25 25-26 2612

2 12-7 7-5 5-2 2-1 3-4 5-6 6-8

3 64 4-109-10 10-11 11-41 41-58 58-59 58-60 60-61 61-57 57-42 42-43 43-45
4645 45-47 45-44 43-44 44-36 36-37 37-38 39-40 40-25 25-12

4 8 16-23 24-28 28-37 37-41 42-57 57-61 61-62 62-55 54-55 55-56 55-53 53-49
49-48 48-51 51-50 51-53 53-52 53-54 54-62 62-64 64-65 64-63 58-57 41-40

5 8 12-13 12-16 17-20 20-19 19-18 19-17 17-16 16-15 14-15 15-12 12-8

Wennigsen

See Tables 14, 15.

Table 14 Total cost = 325.8, 6 trip routes

Route Vehicle capacity Total demand Total cost Number of tasks
per route per route per route per route
1 45 354 48.2 7
2 45 444 74.9 11
3 45 37.6 39.5 10
4 30 26.1 34.3 8
5 45 41.7 70.7 11
6 45 442 58.2 8
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Table 15 Sequence of tasks per route

Route  Depot Sequence of tasks per routes (Each task is represented by one pair of nodes, and
node implicit shortest paths are between consecutive tasks)

1 1 29-28 28-27 27-26 25-26 26-27 27-28 29-1

2 1 24-2 4-6 6-8 17-13 13-18 18-19 18-20 20-22 20-21 18-23 23-24

3 1 1-7 7-24 24-25 25-23 23-6 6-5 54 4-2 2-3 2-7

4 15 15-12 12-14 12-10 10-8 8-17 13-17 17-15 15-16

5 1 1-32 32-33 33-34 34-45 45-47 45-44 44-42 43-42 42-39 41-39 39-35

6 1 29-30 30-31 34-35 35-38 38-35 35-34 33-30 30-32

Wennigsen-modified

See Tables 16, 17.

Table 16 Total cost = 318.2, 6 trip routes

Route Vehicle capacity per Total demand per Total cost per Number of tasks per
route route route route
1 45 33.9 35.8 9
2 45 27 33.1 6
3 30 234 31.1 6
4 45 443 89.3 11
5 45 44.1 50.6 8
6 45 41.8 78.3 11

Table 17 Sequence of tasks per route

Route  Depot Sequence of tasks per routes (Each task is represented by one pair of nodes, and
node implicit shortest paths are between consecutive tasks)

1 1 1-7 7-2 3-2 2-4 4-5 5-6 6-23 23-24 24-7

2 1 1-29 29-28 28-27 27-26 26-25 25-24

3 15 15-16 15-12 12-14 12-10 10-8 8-17

4 1 28-27 27-26 25-23 23-18 21-20 22-20 20-18 13-17 8-6 6-4 2-24

5 1 32-30 30-33 34-35 35-38 38-35 35-34 34-33 32-1

6 1 29-30 31-30 3445 45-47 45-44 44-42 42-43 42-39 3941 39-35 33-32
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