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Abstract This paper studies the multi-depot heterogeneous fleet capacitated arc

routing problem (MDHCARP), a problem with rare research in the past, but with

many applications in real life. The MDHCARP extends the capacitated arc routing

problem (CARP) by considering both the multi-depot case and limited heteroge-

neous fleet constraints. We propose a genetic local search (GLS) algorithm for the

MDHCARP. The GLS is appraised on simplified MDHCARP cases and on general

MDHCARP instances from CARP files; and computational results show that the

GLS outperforms an extended memetic algorithm and meanwhile they both improve

best-known solutions of the simplified MDHCARP benchmark cases.

Keywords Multi-depot heterogeneous fleet capacitated arc routing problem �
Genetic algorithm � Local search � Memetic algorithm

1 Introduction

The capacitated arc routing problem (CARP) introduced by Golden and Wong

(1981) is an arc routing counterpart to the well-known vehicle routing problem. The

CARP is defined on an undirected connected graph with edge costs and non-

negative edge demands, where edges with positive-demands are called required

edges or tasks. A fleet of homogeneous vehicles are based at a single depot. Any

edge can be traversed any number of times by vehicles with each required edge

being serviced only once. The objective is to find a set of vehicle routes of the least
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total cost of traversed edges, such that each route starts and ends at the depot while

the total demand of each route does not exceed vehicle capacity.

The CARP is NP-hard in that it can be reduced to the NP-hard rural postman

problem (RPP) (Lenstra and Rinnooy Kan 1976). During the 1980s and early 1990s,

heuristics used to be the mainstream approach to solve the CARP and many

heuristics were introduced, such as augment-merge (Golden and Wong 1981), path-

scanning (Golden et al. 1983) and route-first, cluster-second (Ulusoy 1985), etc. In

the recent decade, some meta-heuristics have been proposed, such as tabu search

(Hertz et al. 2000; Brandão and Eglese 2008), variable neighborhood descent (Hertz

and Mittaz 2001), guided local search (Beullens et al. 2003), memetic algorithms

(Lacomme et al. 2001, 2004; Tang et al. 2009) and ant colony optimization (Santos

et al. 2010), etc. A recent review can be found in Liu et al. (2008) and Corberán and

Prins (2010).

Applications of the CARP include collection or delivery, street sweeping and

snow removal, etc. However, the CARP has its limitation in modeling most real-life

applications such as salt spreader routing problem and waste collection. Eglese

(1994) and Li and Eglese (1996) study the salt spreader routing problem and

propose that there can be multiple depot locations, different capacities of gritters

(vehicles) and other constraints in this real-life problem. In municipal solid waste

collection, large companies or public sectors usually have more than one depot and

they have a fleet of vehicles characterized by different capacities and operating costs

to collect or transport waste. Therefore, in this paper we consider two major

extensions of the basic CARP, namely heterogeneous vehicles and multiple depots.

The resulting new problem can be called the multi-depot heterogeneous fleet CARP

(MDHCARP).

The heterogeneous fleet CARP (HCARP) has two versions, one is the

heterogeneous fixed fleet CARP with a limited number of vehicles, and the other

is the fleet size and mix CARP (FSMCARP) with unlimited ones. The FSMCARP is

first introduced by Ulusoy (1985) who proposes the route-first, cluster-second

method. Therein, a RPP is solved to form a giant tour, and then the giant tour is

partitioned into feasible vehicle routes subject to the constraints by solving the

shortest path problem on a transformed new graph. This idea is embedded in our

genetic local search (GLS) algorithm. The multi-depot CARP (MDCARP) is studied

firstly by Amberg et al. (2000). In their research, this problem is defined on an

undirected graph with M depots. A fixed number of vehicles with heterogeneous

capacity, but without fixed costs and variable costs, are stationed in each depot.

Recently, Kansou and Yassine (2010) and Xing et al. (2010) have studied the

MDCARP by using different meta-heuristics.

In this paper, we systematically study the NP-hard MDHCARP for the first time,

and propose an effective genetic local search (GLS) algorithm for the problem. It

has been shown that metaheuristics combining genetic algorithm (GA) with local

search (LS) are powerful for the CARP and its variants (Lacomme et al. 2004; Mei

et al. 2011; Tang et al. 2009), because it has the potential to exploit the global search

advantage of GA and local search advantage of problem-specific LS. The remainder

of this paper is organized as follows: Sect. 2 gives a formal and detailed description

of the MDHCARP. The general framework and key components of the proposed
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GLS are introduced in Sect. 3. Computational experiments on real-life applications

and new generated data are presented in Sect. 4, and finally, Sect. 5 summarizes

some concluding remarks.

2 Problem definition and notations

The MDHCARP can be described as follows. Given a mixed graph G ¼ ðV ;E [ AÞ
with a set V of n nodes, an undirected edge set E, a directed arc set A. E [ A is the

set of links (edges and arcs), cij = cji(C0) is the cost (length) of a link ði; jÞ 2 E [ A,

and ER � E and AR � A are the sets of trequired edges and arcs, respectively. Let

D � V be the set of Mdepots. A heterogeneous (different types) fleet of vehicles

indexed in a set K is stationed at multiple depots. The number of vehicles of each

type k in depot m is fixed (limited) and equals nmk and the total number of vehicles of

each type k is nk. A fixed cost kmk, a variable cost per unit distance lmk and capacity

Qmk is associated to each vehicle of type k in depot m. The MDHCARP is to

determine a set of routes in such a way that: (1) the number of vehicles used of each

type k is not more than nk, and even each type k from depot m is not more than nmk;

(2) each vehicle route starts and ends at the same depot; (3) each required link (task)

is served exactly once; (4) the total demand of each route served by vehicle k from

depot m does not exceed Qmk, and its total duration does not exceed a preset value

Lmk; (5) the total routing cost is minimized.

To describe the tasks clearly, each required arc is identified by a task number

instead of one pair of nodes. Each arc u 2 A has a tail (start node) a(u), a head (end

node) b(u) and a traversing (deadheading) cost tc(u). Each required link (task)

u 2 ðER [ ARÞ has a demand d(u), a serving cost sc(u); and if u is an edge task, it has

an inverse mark inv(u). Task inv(u) and u have the same traversing cost, demand and

serving cost. Note that each edge task u 2 ER can be served in either direction, i.e.,

only one of task u and inv(u) is served. Table 1 summarizes the notations adopted

by the paper.

3 The genetic local search algorithm

The genetic local search (GLS) algorithm is a combination of a population-based

global search genetic algorithm (GA) and an individual-based local search. Our

GLS has several main characters: (a) in chromosome encoding for the CARP with

complex multi-depot and heterogeneous constraints, the GLS uses a simple

permutation (sequence) of t tasks, without cluster and route delimiters (excluding

depots); (b) a multi-depot heterogeneous partition (MDH-Partition) procedure is

proposed to convert the indirect chromosomes encoding into solutions; (c) in

population replacement, one chromosome Pr is selected in the parent population

using one new replacement method described in Sect. 3.5.

The proposed GLS includes two phases, i.e., a main phase and a restart phase.

Initially, each chromosome represents a potential MDHCARP solution through an

encoding mechanism. Next, an initial population is generated, and the chromosomes
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of the population are evaluated by the MDH-Partition procedure of Sect. 3.1.1 and

sorted according to a fitness function.

Then, a typical iteration of the main phase proceeds as follows. Selection,

crossover and local search operators are implemented to generate an offspring. The

offspring is added into the parent population by applying a replacement operator.

The new population is then kept sorted again and these operators are repeated until

the stopping criterion of the main phase is reached. Finally, the restart phase keeps

some best chromosomes of the main phase and generates other new chromosomes to

form another initial population, and then the typical iteration is repeated until the

termination condition of the restart phase is met. Table 2 shows the basic steps of

the GLS. Several main components are described in detail in Sect. 3.1–3.5.

3.1 Chromosome structure and evaluation

As the MDHCARP belongs to the class of multi-depot routing problems, it is a

natural idea to use depots as cluster delimiters, and even as route delimiters for each

cluster in encoding corresponding to GAs proposed in the published multi-depot

routing problem literature (Ho et al. 2008; Lau et al. 2010; Ombuki-Berman and

Hanshar 2009; Kansou and Yassine 2010).

Table 1 List of notations about the MDHCARP

Notation Meaning

G = (V, E [ A) Mixed graph

ER Set of required edges in G

AR Set of required arcs in G

V Set of nodes in G

a(u) Tail (start node) of arc u

b(u) Head (end node) of arc u

d(u) Demand of arc u

tc(u) Traversing (deadheading) cost of arc u

sc(u) Serving cost of arc u

inv(u) Pointer to opposite arc of arc u

M Number of depots

m Depot node

K Set of fleet of vehicles

nk Total number of vehicle of type k across depots

nmk Number of vehicle of type k in depot m

Qmk Capacity of vehicle of type k in depot m

Lmk Maximum duration of vehicle of type k in depot m

kmk Fixed cost of vehicle of type k in depot m

lmk Variable cost of vehicle of type k in depot m per unit distance

t Number of tasks
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Nevertheless, inspired by Lacomme et al. (2004) and Prins (2009), our

chromosome T is a simple permutation (sequence) of t tasks, without cluster and

route delimiters (excluding depots). Implicit shortest paths (deadheading paths) are

between consecutive tasks. It can be viewed as a RPP or a giant tour traversed by

one vehicle without capacity constraints from one depot. This kind of chromosome

representation is adopted because: (1) the encoding is simple, and classical GA

operators for the travelling salesman problem can be reused; (2) a chromosome can

be converted into a feasible MDHCARP solution by the MDH-Partition procedure

described in Sect. 3.1.1; (3) the indirect encoding is so flexible that it is suitable for

extended problems including new constraints and objectives.

3.1.1 MDH-partition

Under the above chromosome structure, an MDHCARP solution can be obtained by

decoding the chromosome using the MDH-Partition procedure. The fitness of each

chromosome is evaluated based on the total cost of this corresponding solution.

Given a chromosome T ¼ ðc1; c2; . . .; ctÞ where t corresponds to the number of

tasks, the MDH-Partition procedure works on an auxiliary directed acyclic graph

Ga = (X, Y, Z), where X is a set of t ? 1 vertex index from a dummy node 0 to t. Y

is a set of arcs where one arc ði; jÞ 2 Y means that a trip serving tasks subsequence

ðciþ1; ciþ2; . . .; cjÞ is feasible in terms of capacity and duration, i.e., load(i ? 1, j) B

Qmk and length(i ? 1, j, m) B Lmk where load(i ? 1, j) is the load of the trip,

length(i ? 1, j, m) is the length of this trip served by the vehicle from depot m. Z is

the set of the weight of arcs where one weight zmk
ij corresponds to the total cost of

vehicle type k from depot m to serve tasks subsequence ðciþ1; ciþ2; . . .; cjÞ.
In each depot m, vehicles have km different types, with a number nmk of vehicles

for each type k. Vehicles (even the same size) from different depots will generate

different costs, leading to zmk
ij instead of zij in the CARP. The optimal partitioning of

chromosome T corresponds to a shortest path from node 0 to node t in Ga, with no

Table 2 General framework of the GLS

Step 1 The initial population is constructed using two heuristics and random generation (Sect. 3.2).

Step 2 Each iteration selects two parents P1 and P2 randomly, then two children C1 and C2 are

obtained using one of order crossover (OX) and linear order crossover (LOX), and only one of C1

and C2 is randomly selected as child C (Sect. 3.3).

Step 3 The child C is converted into a MDHCARP solution by implementing the MDH-Partition

procedure (Sect. 3.1.1), and then the solution undergoes the local search (LS) in a given probability

pm (Sect. 3.4).

Step 4 Two chromosomes are selected from the latter 2/3 subpopulation of the parent population, and

the worse one Pr is replaced by the child C if C is not clone as the other chromosomes in the parent

population (Sect. 3.5).

Step 5 The main phase stops after a maximum number of iterations (ni). After that, the restart

procedure is implemented for nr times, where two best chromosomes are kept, and others are

replaced by new randomly generated chromosomes, and then the main phase is repeated but with a

higher local search probability pr. That is to say, the total number of iteration is (1 ? nr) 9 ni

(Sect. 3.5).
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more than nmk arcs for vehicle type k from depot m. Thus, this problem is a resource-

constrained shortest path problem (RCSPP), which is an NP-hard problem but can

be solved in pseudo-polynomial time based on dynamic programming.

In our dynamic programming approach, a set of labels is associated with each

node i of the auxiliary graph Ga, and each label Lðv11; . . .; v1k1
; . . .; vM1; . . .; vMkM

; zÞ
represents different paths from the origin 0 to node i with specific consumption of

vehicle resources and cost. To be specific, v : ðv11; . . .; v1k1
; . . .; vM1; . . .; vMkM

Þ is the

consumption combination of all types of vehicles, where vmk indicates the number

of vehicle type k used from depot m (1 B m B M, 1 B k B km, 1 B vmk B nmk);

and z the corresponding cost of the path associated with the label. The number of

possible vehicle consumption combinations is x ¼
QM;kM

m¼1;k¼1

ðnmk þ 1Þ, where null

consumptions are considered.

To use a simpler notation, let k1 ? k2 ? … ? kM equal n which is the total

number of vehicle types across all depots. Note that when we define label

Lðv11; . . .; v1k1
; . . .; vM1; . . .; vMkM

; zÞ and compute n, even if vehicle types from

different depots are the same, they are still regarded as different because vehicles of

the same type and from different depots generate different costs when used; and the

number of them may also be different. Then, each kind of possible vehicle

consumption combination v : ðv11; . . .; v1k1
; . . .; vM1; . . .; vMkM

Þ with two-dimensional

suffixes corresponds to a vector �h : ð�h1; �h2; . . .; �hnÞ with one-dimensional suffix and

can be further converted into a scalar q [ [0, x - 1]. Thus, we can represent Li
q as

the qth label in node i for the path ending at node i, i.e., tasks subsequence

ðc1; c2; . . .; ciÞ, and then, L
q
i :v as the partial fleet used, L

q
i :vmk as vehicle

consumptions of type k from depot m, and L
q
i :z as the corresponding cost. Given

the label L
q
i and the arc ði; jÞ 2 Y (a trip ci?1 to cj), then

loadðiþ 1; jÞ ¼
Xj

l¼iþ1

dðclÞ ð1Þ

lengthðiþ 1; j;mÞ ¼ tcðm; ciÞ þ
Xj

x¼iþ1

½scðcxÞ þ tcðcx�1; cxÞ� þ tcðcj;mÞ ð2Þ

In Eq. (1), d(cl) is the demand of task cl, and in Eq. (2), the length includes the

traversing cost tc from depot m to task ci, from ci to ci?1 until cj and from cj to the

depot m, and the serving cost sc of any task from ci?1 to cj. If the vehicle of type k

from depot m is available and load(i ? 1, j) B Qmk and length(i ? 1, j, m) B Lmk,

one label Lr
j for node j is generated by using recursive equations:

Lr
j :vmk ¼ L

q
i :vmk þ 1; 0� i\j� t; 1�m�M ð3Þ

Lr
j :z ¼ L

q
i :zþ zmk

ij ; 0� i\j� t; 1�m�M ð4Þ

In Eq. (4), zmk
ij ¼ kmk þ lmk � lengthðiþ 1; j;mÞ. The time complexity of the MDH-

Partition procedure is Oðt2xnÞ. Since a large number of labels increase the com-

puting time, a dominance rule can be adopted.

A genetic local search algorithm 545

123



In addition, largest capacity check is also useful, which means that if the vehicle

with the largest capacity cannot satisfy the condition load(i ? 1, j) B Qmk, all of

other size of vehicles cannot have enough capacity to serve tasks subsequence

ðciþ1; ciþ2; . . .; cjÞ. Note that since the number of vehicles of each type is fixed,

when the total capacity of vehicles is slightly larger than the total demand, a

chromosome may not be able to be converted into a solution by MDH-Partition

procedure. In that case, we can add additional vehicles in the process of MDH-

Partition without affecting the final solution.

3.1.2 An illustrative example

Consider one example of 4 edge tasks with their respective demands being 8, 14, 8,

9, and two types of vehicles and two depots. A single vehicle with a capacity of 30

(type 1) is stationed in depot 1, and a single vehicle with a capacity of 25 (type 2) is

in depot 2. The detailed vehicle information is shown in Table 3. Figure 1a shows

the chromosome tour T = (c1, c2, c3, c4) with demands in brackets. Thin dotted lines

represent shortest paths between any two nodes, and the numbers under t = 4 tasks

are the serving costs.

The MDH-Partition procedure builds an auxiliary graph Ga with t ? 1 nodes

indexed from 0 to t, as shown in Fig. 1b. The initial label of node 0 is L0
0 with

L0
0:v ¼ 0; 0ð Þ and L0

0:z ¼ 0, i.e., no vehicles are used and no costs are generated.

Arcs from node 0 to node 1 represent the trips that serve task c1. To be specific, if

task c1 is served by the vehicle of type 1 from depot 1, it leads to the label L1
1 with

cost L1
1:z = 50 ? 1.5 9 36 = 104, and if served by the vehicle of type 2 from

depot 2, it leads to the label L2
1with cost L2

1:z =40 ? 1 9 26 = 66. But actually in

our MDH-Partition procedure, neither of these two labels is generated. The reason

is that if task c1 is served by the vehicle of type 1 (type 2), the remaining capacity is

only 25 (30) which is not enough to serve the remaining three tasks with a total

demand of 31. Therefore, subsequent labels that arise from L1
1 and L2

1 are not all

generated. In addition, the vehicle of type 1 cannot cover the total demands of four

tasks. According to the largest capacity check technique of Sect. 3.1.1, neither can

the small size vehicle of type 2, so neither of labels L1
4 and L2

4 is generated.

A shortest path from node 0 to node t in Ga (bold) indicates the optimal partitioning

of T: two trips and a label L3
4 obtained from label L1

2, with vehicles consump-

tionL3
4:v ¼ 1; 1ð Þ and total cost L3

4:z ¼ 193. The resulting MDHCARP solution is trip

(0, c1, c2, 0) with a cost of 113 served by vehicle 1 from depot 1 and trip (0, c3, c4, 0)

with a cost of 80 served by vehicle 2 from depot 2, as shown in Fig. 1c.

Table 3 Vehicle information
Vehicle type 1 2

Vehicle position Depot 1 Depot 2

nmk 1 1

Qmk 30 25

kmk 50 40

lmk 1.5 1
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3.2 Initial population

The population P is composed of ps chromosomes. The initial population consists of

two good (low-cost) chromosomes and ps-2 random chromosomes. To be specific,

two good chromosomes P1 and P2 are constructed by using matching-based

18
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Fig. 1 Example of MDH-Partition.a Chromosome tour with 4 edge tasks. b Auxiliary graph Ga, labels
and shortest path. c Resulting trips

A genetic local search algorithm 547

123



algorithm (MBA) and modified path-scanning (MPS), both with local search. Note

that when chromosomes are randomly generated, identical chromosomes (clones)

may result in a premature convergence, and should therefore be avoided. Since

exact detection for identical chromosomes is time consuming, we adopt a simpler

and faster diversity condition, i.e., two chromosomes do not have the same cost. To

meet this condition, we try try_max times to generate each random chromosome and

decrease the number of chromosomes in the population if try_max times all fail.

All the above methods generate ps permutations of tasks (giant RPP tours) which

are then converted into ps solutions by MDH-Partition procedure. Then each

solution is concatenated into one chromosome, and all chromosomes are stored

using an array in increasing cost order.

3.2.1 Matching-based algorithm

We recommend matching-based algorithm (MBA) to generate a very good

chromosome, because this algorithm proposed by Frederickson (1979) for RPP

has a worst-case bound of 3/2, which is similar to the travelling salesman problem

heuristic of Christofides (1976).

The MBA works on the original undirected graph, and can be described as

follows.

1. Construct a minimum cost spanning tree to connect several components of the

original graph, and denote the new graph as G1.

2. Determine a minimum cost perfect matching (Edmonds and Johnson 1973) of

the odd degree vertices of G1, denote the new graph as G2.

3. Find an Euler tour of G2 using the end-pairing algorithm (Edmonds and

Johnson 1973), and the Euler tour is exactly the RPP tour.

4. Transform the representation of the RPP tour from nodes sequence into tasks

sequence with an implicit shortest path between any two consecutive tasks,

using pre-marked task numbers for each task.

3.2.2 Modified path-scanning

The original path-scanning algorithm is introduced by Golden et al. (1983) for the

capacitated Chinese postman problem. This heuristic builds trip routes based on a

greedy idea subject to vehicle capacity Q. In constructing each route, the sequence

of tasks is extended by joining the task that looks most promising until Q or

maximum trip length L or maximum time duration is exhausted. For a sequence

ending at task f, the task closest to f is chosen as the next task. If multiple tasks

satisfy this condition, five rules are employed to determine the next task g, not yet

served: (1) maximize the distance from g to depot; (2) minimize the distance from g

to depot; (3) maximize the ratio of demand/service cost of g, i.e., dðgÞ=scðgÞ; (4)

minimize the ratio of demand/service cost of g, i.e., dðgÞ=scðgÞ; (5) use rule 1 if the

vehicle is no more than half-full, or else use rule 2.

In our version, due to the coexistence of multi-depot and heterogeneous fleet with

different capacities, a giant RPP tour is constructed by using modified path-scanning
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(MPS), in which there is only one depot (the first depot) and only one vehicle where

Q equals the total demand of overall tasks. Note that, MPS starts from the first

depot, and chooses different next tasks to serve by implementing five different rules,

until all tasks are chosen. Therefore, MPS will generate five different tours. Each of

them is followed by the MDH-Partition procedure of Sect. 3.1.1, respectively. Then,

five MDHCARP solutions are extracted, and only the best solution is kept.

3.3 Selection and crossover

The proposed GLS selects two parents P1 and P2 randomly from the sorted

population. When the two parents are selected, order crossover (OX) (Davis 1985)

and linear order crossover (LOX) (Falkenauer and Bouffouix 1991) are randomly

selected to implement. Note that the OX and LOX generate two child chromosomes

which are both kept in the original OX and LOX, but only one child randomly

chosen is preserved in our OX and LOX. Fig. 2 gives one sample of OX with two

parents P1 and P2 and two crossover points i = 4, j = 7, where ten tasks are

undirected, i.e., inv(1) = 11, inv(2) = 12, and so on. Therefore, when child C1 is

filled using P2(j ? 1) to P2(i - 1), task 2 in P2 should be excluded because its

opposite arc 12 is the same task that has been included in C1.

3.4 Local search

A local search (LS) is adopted with a fixed probability pm in our GLS to produce a

better offspring after each crossover. The LS works on a MDHCARP solution

obtained by implementing the MDH-Partition procedure on the child C, because if

it operates directly on the chromosome C without route delimiters, a large amount of

time will be spent to evaluate each move of it. Let tasks i and j be served after tasks

f and g in their respective routes and all move types are described below.

• M1: move task f after task g.

• M2: move two consecutive tasks (f, i) after task g.

• M3: swap task f and g.

• M4: swap task f and (g, j).

• M5: swap task (f, i) and (g, j).

• M6: 2-opt moves.

The LS scans each pair of tasks (f, g) in oðt2Þ, and each iteration of the LS

implements M1–M6 and stops when it finds the first improving move, and then the

solution is updated and the next iteration is continued until all pairs of tasks are

i=4 j=7
P1: 1 4 5 7 9 10 12 3 6 8
P2: 13 2 10 8 6 15 7 9 1 4
C1: 8 6 15 7 9 10 12 1 4 13
C2: 9 10 12 8 6 15 7 3 1 4

Fig. 2 Example of OX crossover

A genetic local search algorithm 549

123



scanned; however, the whole M1–M6 process for each pair of tasks is repeated as

long as the solutions can be further improved.

There are several points to be noted in the LS. First, each type of move is

implemented in the same route or in two different routes which may or may not be

from the same depot. Second, in M1–M5, if a task f is moved to another position, it

can appear in either as f or inv (f). Third, in M1 and M2, g can be the start depot of

its route. Fourth, in 2-opt, if the move operates on two routes from different depots,

we must reconnect the first or last task of the two routes to the two depots after

2-opt, to guarantee that a route starts and ends at the same depot (as shown in

Fig. 3).

At last, some routes are removed if they become empty. The final solution of LS

is converted into a chromosome by concatenating these routes and excluding route

delimiters (depots). Then, the chromosome is converted into a solution by the

optimal MDH-Partition which sometimes can bring a better solution for the same

chromosome.

3.5 Replacement and termination

We propose a new replacement method, i.e., two chromosomes are selected from a

subpopulation and the worse one Pr is replaced by the child C if C is not identical to

any other chromosomes of the parent population. We test several kinds of

subpopulation choices, such as the latter 1/2, the latter 2/3 and the whole of the

parent population where chromosomes are stored in increasing cost order, and

preliminary experiments show that the latter 2/3 is superior. After replacement, the

ps chromosomes are stored in increasing cost order again.

As mentioned before, the proposed GLS includes two phases, i.e., a main phase

and a restart phase. The main phase stops after a maximum number of iterations

(ni). After that, the restart procedure is implemented for nr times, where two best

chromosomes are kept, and others are replaced by new randomly generated

chromosomes. Then, the main phase is repeated but with a higher local search

probability pr. That is to say, the total number of iterations is (1 ? nr) 9 ni.
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Fig. 3 Example of 2-opt move: a original two routes R1 and R2 from depot m1 and m2, respectively;
b the shortest paths linking f to i and g to j are replaced by the shortest paths from f to j and from g to i;
c and d new routes are reconnected to depot m1 and m2 in two ways
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4 Computational experiments

4.1 Test problems

The MDHCARP is a new problem and there are no benchmark instances. In this

paper, we first test the real-life instances dealing with problems of route planning for

winter gritting in the areas of Königstein and Wennigsen, Germany, which are from

Amberg et al. (2000) and can be viewed as simplified MDHCARPs since no fixed

costs and variable costs of vehicles are considered, and then generate new general

MDHCARP data from CARP instances. To evaluate our GLS, especially for

generated instances, we extend the memetic algorithm (Lacomme et al. 2004) to

solve the MDHCARP for comparison. In the extended memetic algorithm (EMA),

depots are used as cluster delimiters but not as route delimiters in chromosome

encoding, as in Kansou and Yassine (2010). To be specific, a chromosome

S consists of M sub-chromosome Sm where M corresponds to the number of depots.

Each Sm is a sequence of tasks associated to depot m, without route delimiters. Then

a chromosome is converted into a feasible MDHCARP solution by a heterogeneous

partition (H-Partition) to each Sm of S. The H-Partition for the single depot HCARP

is a special case of the MDH-Partition.

4.1.1 Simplified MDHCARP cases

The data of three real-life instances are shown in Table 4 and the corresponding

sketch maps of the first two instances are shown in Fig. 4a and b. In Table 4, the

first column stands for the instance name; |V|, |E| and t indicate the number of

nodes, the number of edges, and the number of tasks, respectively; TD represents the

total demand; M is the number of depots; m is the depot node; Qmk is vehicle

capacity of each type k in depot m; nmk and CTmk are the corresponding number of

vehicle and time capacity, and fixed costkmk and variable cost lmk of each vehicle

are not given. In Fig. 4, dashed lines are non-required edges which can be traversed

but do not have to be served, solid lines represent required edges, and blue solid

lines are parallel tasks.

The first instance is a relatively large size problem in the area of Königstein. Six

vehicles are stationed in the same depot (node 8) but have different time and vehicle

capacities. In this sense, it is a single-depot HCARP. The graph has 65 nodes and 93

required edges with total demand 202 (Amberg et al. (2000) state 94 required edges

by mistake). The time capacity CTmk is the maximum time duration of vehicle of

type k from depot m and can be converted into the maximum trip length Lmk, since

the average speed of vehicles is given as 30 km/h. Special conditions are that the

vehicle with capacity Q = 650 must pass a load station node 65 and one edge (15,

16) is a narrow street and must be served by a small vehicle with Q = 150 or

Q = 250.

The second instance concerns the area of Wennigsen. Six vehicles are stationed

in two depot nodes 1 and 15. They have different vehicle capacities but no time

capacities. The graph has 48 nodes and 55 required edges with a total demand of

229.4.
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The third instance (Wennigsen-modified) arises from the Wennigsen problem,

and the only difference between them is that the third instance eliminates four of the

required edges, i.e., (17, 13), (13, 18), (15, 17) and (18, 19), and thus has 51 required

edges. Therefore, the total demand is decreased to 214.5.

4.1.2 New MDHCARP instances

Some general MDHCARP data are generated by adding depots and vehicle types in

three sets of standard CARP instances (gdb, val and egl files) which can be

downloaded from http://www.uv.es/*belengue/carp.html. The gdb set is 23 small

size instances with 7–27 nodes and 11–55 edges; the val set includes 34 medium

Table 4 Three simplified MDHCARP cases

Instance jV j jEj t TD M m Qmk nmk kmk lmk CTmk

Königstein 65 101 93 202 1 8 65 1 – – 3.5

50 2 – – 3.5

25 2 – – 3.0

15 1 – – 2.5

Wennigsen 48 56 55 229.4 2 1 45 5 – – –

15 30 1 – – –

Wennigsen-modified 48 56 51 214.5 2 1 45 5 – – –

15 30 1 – – –
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size instances with 24–50 nodes and 34–97 edges and the egl set contains 24 large

size instances with 77–140 nodes and 98–190 edges. In the gdb and val sets, all the

edges are required edges (tasks), and the egl set has 51–190 required edges and

some non-required edges.

The general MDHCARP instances are generated from three benchmark sets of

CARP problems: gdb, val and egl, so named mdh-gdb, mdh-val and mdh-egl,

respectively, which are available upon request from the authors. For each instance,

we change the original depot number from one depot into 2–5 depots, and replace

the original homogeneous fleet with a heterogeneous fleet of 3–5 different vehicle

types stationed at depots, according to the problem size. For the vehicles of each

instance, their respective capacities Qmk are in arithmetic progression, and their

respective number nmk is set to guarantee that the total capacity equals the original

capacity; their fixed costs kmk are equivalent to their respective capacities; their unit

variable cost lmk is 1.0, 1.2, …, 1.8. Table 5 gives the example of mdh-egl-s1-C

generated from egl-s1-C.

4.2 Parameter settings

The GLS and EMA are implemented in C and executed on an Intel (R) Pentium

(R) Dual 1.8 GHz PC under Windows XP.

Preliminary experiments were required to determine the best parameter settings.

In these experiments, the following combinations of factors are tested: (1)

population size ps tested at two levels, 30 and 50; (2) maximum value of try_max to

generate each random non-clone chromosome tested at two levels, 10 and 20; (3)

local search probability pm in the main phase tested at four levels, 0, 0.15, 0.3 and

0.5; (4) local search probability pr in the restart phase tested at three levels, 0.25, 0.5

and 0.75; (5) maximum iteration number of the main phase ni tested at two levels,

5,000 and 10,000; (6) maximum value of restarts nr tested at two levels, 10 and 20.

Preliminary tests were done on the 34 instances of mdh-val generated problems.

The parameters based on the experimental results are set as follows: the

population size ps is 30, the maximum value of try_max to generate each

random non-clone chromosome is 10, the local search probability pm and pr in

the main phase and restart phase are 0.5 and 0.75, respectively, the maximum

iteration number of the main phase ni is 5,000, and the maximum number of

restarts nr is 10.

Table 5 An example of general MDHCARP instances

Problem |V| |E| Total capacity M m Qmk nmk kmk lmk

mdh-egl-s1-C 140 75 103 9 14 5 1 63 3 63 1.0

29 83 3 83 1.2

57 103 2 103 1.4

85 123 3 123 1.6

113 143 3 143 1.8
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4.3 Results on the simplified MDHCARP

For the Königstein problem, the comparison between the GLS and EMA and four

strategies of Amberg et al. (2000) is shown in Table 6 (Boldface indicates the new

best solution). Note that, in Amberg et al. (2000), each solution corresponds to the

total length of additional edges (deadheading length); therefore, the total travelling

length equals the solution plus the total length of required edges. Take the

Königstein problem for instance, the best solution is 79.5, and the total travelling

length should be 79.5 plus 202. Amberg et al. (2000) gives four strategies using

Simulated Annealing and Tabu Search, i.e., SA t, STS s, CSM c1c2c3 and REM

r where SA, STS, CSM and REM are names of strategies, and t, s, c1c2c3 and r are

their respective parameters. In Table 6, we only show the best result of each strategy

instead of giving all of them. Note that in Amberg et al. (2000), the CPU time is the

average time of the last improvement instead of the total computing time.

In Table 6, the third and fourth columns are the best and average solutions of the

EMA and GLS over 10 runs, respectively, the fifth column is the average computing

time in seconds. From Table 6, we can find that even the average solutions of the

GLS and EMA outperform all meta-strategies of Amberg et al. (2000), and the GLS

is the best algorithm which has a better average solution and gets the new best

solution in less time than EMA. The new best solution is 273.5 with an

improvement of 2.84 % and the computing time is acceptable. The corresponding

routes are given in detail in Königstein of Appendix.

For the Wennigsen problem, the comparison between the GLS and EMA and four

strategies of Amberg et al. (2000) is shown in Table 7 (Boldface indicates the new

best solution). From Table 7, we can find that the new best solution with cost 325.8 is

obtained easily with an improvement of 1.81 % and likewise the GLS converges

faster than the EMA. The corresponding routes are given in Wennigsen of Appendix.

For the Wennigsen-modified problem, the computing time and the number of

iterations are not given in Amberg et al. (2000) whose best solution is 329.2 (104.7

plus 214.5). The GLS and EMA both can improve the result by 3.34 % after 0.70

and 0.92 s, respectively, and the corresponding routes of the new best solutions with

cost 318.2, are shown in Wennigsen-modified of Appendix.

GLS and EMA outperform the metaheuristics of Amberg et al. (2000) in that

GLS and EMA combine genetic algorithm (GA) with local search (LS), and they

Table 6 Comparison between the GLS and EMA and four published metastrateties for Königstein

problem

Meta-strategy Total length of additional edges Best solution Average solution Sec.

SA 10 79.5 281.5 – –

STS 10 79.5 281.5 – –

CSM 1400 10 2 79.5 281.5 – –

REM 1500 79.5 281.5 – –

EMA – 273.5 275.5 155.43

GLS – 273.5 274 88.38

Boldface indicates the new best solution

554 T. Liu et al.

123



have the potential to exploit the global search advantage of GA and local search

advantage of problem-specific LS.

4.4 Results on the general MDHCARP

The results of the general MDHCARP instances (mdh-gdb, mdh-val and mdh-egl)

are presented in Tables 8, 9, 10. For each instance, two good initial solutions

generated by heuristics MBA and MPS, and improved by LS, respectively, are given

in columns 2–5, and the average solutions, the best solutions, and the average

computing times in seconds over 10 runs for EMA and GLS are shown in columns

6–8 and columns 9–11, respectively. In Tables 8, 9, 10, if the best solution of the

GLS (GLSbs) is superior to that of the EMA (EMAbs) then it is shown in bold.

The average solution quality of the algorithms is summarized in Table 11. For

each file, the first row shows the average results and the second row reports the

average deviations (in %) above the best-known solutions (BKS) which are our best

solutions obtained from the GLSbs. Main conclusions can be drawn from the results

as follows.

1. The solutions of the GLS and the EMA are much better than two good initial

solutions of the simple heuristics. For example, the average deviations of the

initial solutions obtained from MBA ? LS from the best solution GLSbs are

1.26, 5.30 and 9.12 % on mdh-gab, mdh-val and mdh-egl files, respectively.

2. The local search is effective. To be specific, MBA ? LS improves MBA by

11.3, 4.5 and 7.9 % on three files, respectively. MPS ? LS improves MPS by

3.6, 4.6 and 8.8 % on three files, respectively.

3. The GLS outperforms the EMA both in the results and in the computing time.

To be specific, the average solutions of the GLS (GLSas) over all instances are

better than those of the EMA (EMAas); for small size instances of the mdh-gdb

set, the EMAbs obtains the same best solutions as the GLSbs, but requires

additional computing time; while for medium and large size instances, the

average deviations of the EMAbs from the GLSbs are 0.17 and 0.42 %,

respectively. It can be found that the GLS obtains new best solutions on 20 out

Table 7 Comparison between the GLS and EMA and four published metastrateties for Wennigsen

problem

Total length of additional edges Best solution Average solution Sec.

SA 120 102.4 331.8 – –

STS 10 102.4 331.8 – –

CSM 4700 10 2 102.4 331.8 – –

REM 2700 102.4 331.8 – –

EMA – 325.8 325.8 6.44

GLS – 325.8 325.8 3.22

Boldface indicates the new best solution
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of 34 mdh-val instances, and 17 out of 24 mdh-egl instances, which is better

than the EMA. Compared with EMAas and EMAbs, GLSas and GLSbs save on

average 0.2 and 0.4 % on two files. GLS outperforms EMA in that in GLS, the

chromosome T is a permutation (sequence) of t tasks, without cluster and route

delimiters (excluding depots) and an optimal possible MDHCARP solution can

be extracted from a chromosome by the MDH-Partition procedure, while in

Table 8 Results of the mdh-gdb set

Problem MBA MPS MBA ? LS MPS ? LS EMAas EMAbs Sec GLSas GLSbs Sec.

mdh-gdb1 418.2 391.8 393.6 380.4 365.6 365.6 2.08 365.6 365.6 0.91

mdh-gdb2 449.8 426.8 409 407.6 397.2 397.2 1.75 397.2 397.2 0.89

mdh-gdb3 385.8 384.8 367.8 384.6 326.8 326.8 0.29 326.8 326.8 0.2

mdh-gdb4 386.8 393 361 357.6 353.8 353.8 1.6 353.8 353.8 0.52

mdh-gdb5 505.8 494.4 464.4 461.6 446.8 446.8 15.52 446.8 446.8 10.39

mdh-gdb6 394 384.4 376.0 384.4 353 353 1.75 353 353 1.08

mdh-gdb7 449.4 431.4 394.8 426.4 380.6 380.6 2.38 380.6 380.6 1.56

mdh-gdb8 733.8 721.8 674 695 639 636.6 30.51 638.2 636.6 19.4

mdh-gdb9 712.4 680.2 680.4 643.8 594.6 592.6 44.73 593.6 592.6 22.8

mdh-

gdb10

424.6 422.4 372.2 386.8 358.6 357.6 2.78 358 357.6 1.79

mdh-

gdb11

785.8 790.2 762.4 767.0 687.6 685.6 29.28 687 685.6 21.16

mdh-

gdb12

892.6 879 836.8 826.4 754.4 754.4 1.12 754.4 754.4 0.58

mdh-

gdb13

965 958.4 925 955.6 846.6 835.8 10.68 842 835.8 9.4

mdh-

gdb14

244.6 243.8 233.4 222.4 217.4 217.4 3.44 217.4 217.4 2.96

mdh-

gdb15

198.2 195.8 194.8 195.8 190.8 190.8 3.26 190.8 190.8 2.62

mdh-

gdb16

306.4 289 282.8 273.8 263.2 262.8 13.9 262.8 262.8 10.86

mdh-

gdb17

302.4 298.8 289.8 291.6 284.6 284.2 13.94 284.4 284.2 10.6

mdh-

gdb18

378.2 370.4 371.8 360.4 346.2 344.8 28 346 344.8 15.54

mdh-

gdb19

154.8 159.6 153.2 158.8 147.2 147.2 0.01 147.2 147.2 0

mdh-

gdb20

318.6 290.8 252.8 283.4 249.8 249.8 7.48 249.8 249.8 5.64

mdh-

gdb21

381.4 377 360 368.8 340.2 338.6 21.2 339.8 338.6 17.88

mdh-

gdb22

472.4 471 460 455.2 444.6 442.6 51.24 443.6 442.6 31.07

mdh-

gdb23

578.6 573.8 555.6 560.4 534.8 531.6 85.34 533.4 531.6 66.36

Average 471.3 462.1 418.1 445.6 414.1 412.9 16.19 413.6 412.9 11.05
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EMA, a chromosome is a sequence S of M (the number of depots) sub-

chromosome Sm where each Sm is a sequence of tasks associated to depot m. A

feasible MDHCARP solution by a heterogeneous partition (H-Partition) to

each Sm of S is a local optimal solution, and therefore worse than an optimal

MDHCARP solution extracted from a chromosome T by the MDH-Partition

procedure.

4. The computing times of the GLS and the EMA are both reasonable, even for

large size problems.

5 Conclusions

This paper introduces the MDHCARP, a problem that despite its many real-life

applications, has not received much attention in previous research on the CARP.

The MDHCARP is to determine the least cost routes for a given heterogeneous

fleet of vehicles to serve a set of required edges and arcs (tasks). The vehicles

located at multi-depot are with different capacities, fixed costs and variable

costs.

Due to its theoretical complexity, we propose the GLS and EMA for the

MDHCARP, which extend the classic memetic algorithm (hybrid genetic algorithm)

to both multi-depot and heterogeneous fleet constraints. The simplified MDH-

CARPs from real-world cases are tested and new better solutions are found by the

GLS and EMA in reasonable computation times. A large number of general

MDHCARP instances generated from CARP instances are also tested and the results

show that the GLS outperforms the EMA.

Note that our GLS is also effective for the multi-depot fleet size and

mix CARP, where the number of available vehicles of each type is unlimited.

The main modification is that the chromosome evaluation corresponds to

the shortest path problem instead of the resource-constrained shortest path

problem.

Our work is a foundation for future research on complicated constraints on the

CARP. We plan to extend in several ways. First, an efficient lower bound can be

provided to evaluate our GLS. Second, more complex and practical constraints can

be involved, such as time windows and periodic demands for tasks. Due to the

flexibility of the GLS, we intend to extend it to tackle these additional attributes.

Finally, we also plan to propose some new operators to improve the performance of

the GLS, as well as other more efficient hybrid metaheuristics combining population

search and local search.
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Appendix: New best solutions for three simplified MDHCARP instances

Königstein

See Tables 12, 13.

Wennigsen

See Tables 14, 15.

Table 12 Total cost = 273.5, 5 trip routes

Route Vehicle capacity

per route

Total demand

per route

Total cost

per route

Number of

tasks per route

1 50 46 55 28

2 25 24 32.5 7

3 50 48.5 60.5 23

4 65 64.5 98 24

5 25 19 27.5 11

Table 13 Sequence of tasks per route

Route Depot

node

Sequence of tasks per routes (Each task is represented by one pair of nodes, and

implicit shortest paths are between consecutive tasks)

1 8 12–24 24–23 23–22 22–20 21–22 22–29 29–30 31–30 30–31 31–33 35–33 33–34

34–33 33–31 31–32 32–31 33–35 35–36 36–30 30–29 29–28 28–27 27–39 39–38

38–27 27–25 25–26 26–12

2 8 12–7 7–5 5–2 2–1 3–4 5–6 6–8

3 8 6–4 4–10 9–10 10–11 11–41 41–58 58–59 58–60 60–61 61–57 57–42 42–43 43–45

46–45 45–47 45–44 43–44 44–36 36–37 37–38 39–40 40–25 25–12

4 8 16–23 24–28 28–37 37–41 42–57 57–61 61–62 62–55 54–55 55–56 55–53 53–49

49–48 48–51 51–50 51–53 53–52 53–54 54–62 62–64 64–65 64–63 58–57 41–40

5 8 12–13 12–16 17–20 20–19 19–18 19–17 17–16 16–15 14–15 15–12 12–8

Table 14 Total cost = 325.8, 6 trip routes

Route Vehicle capacity

per route

Total demand

per route

Total cost

per route

Number of tasks

per route

1 45 35.4 48.2 7

2 45 44.4 74.9 11

3 45 37.6 39.5 10

4 30 26.1 34.3 8

5 45 41.7 70.7 11

6 45 44.2 58.2 8
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Wennigsen-modified

See Tables 16, 17.
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