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Abstract Process monitoring and profile analysis are crucial in detecting various

abnormal events in semiconductor manufacturing, which consists of highly com-

plex, interrelated, and lengthy wafer fabrication processes for yield enhancement

and quality control. To address real requirements, this study aims to develop a

framework for semiconductor fault detection and classification (FDC) to monitor

and analyze wafer fabrication profile data from a large number of correlated process

variables to eliminate the cause of the faults and thus reduce abnormal yield loss.

Multi-way principal component analysis and data mining are used to construct the

model to detect faults and to derive the rules for fault classification. An empirical

study was conducted in a leading semiconductor company in Taiwan to validate the

model. Use of the proposed framework can effectively detect abnormal wafers

based on a controlled limit and the derived simple rules. The extracted information

can be used to aid fault diagnosis and process recovery. The proposed solution has

been implemented in the semiconductor company. This has simplified the moni-

toring process in the FDC system through the fewer key variables. The results

demonstrate the practical viability of the proposed approach.
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1 Introduction

Semiconductor manufacturing involves highly complex and lengthy wafer fabrica-

tion processes with 300–500 process steps and a large number of interrelated

variables. As the feature size and critical dimension of integrated circuits (IC)

continuously shrink to accommodate nano-generation, maintaining process speci-

fications and controlling quality is increasingly difficult in semiconductor manu-

facturing (Chien and Hsu 2011). Thus, process monitoring and profile analysis are

critical in detecting various abnormal events in wafer fabrication to enhance yield

and control quality. Process monitoring and fault detection involve detecting

abnormal processes and equipment including mean and variance shifts in one or

more process variables, spikes, and drifts to quickly remove the assignable causes.

However, process measurements are often insufficient, incomplete, or unreliable

because of data quality or various other causes (Venkatasubramanian et al. 2003).

Therefore, there is a critical need in the semiconductor industry to effectively and

efficiently monitor processes in real time and extract useful profile information to

support process monitoring and fault detection. The extracted information assists

engineers in understanding the process status and also in quickly removing

abnormal behaviors and assignable causes. Good process monitoring leads to less

downtime, improvement of production quality and reduction of manufacturing

costs. With advanced information technology and metrology sensors, massive

amounts of data are routinely collected during wafer processes such as data on

temperature, pressure, flow rate, and power. The temporal patterns in these

equipment parameters or process variables are signals of equipment behavior. Early

detection and quick diagnosis of process faults are important to ensure tool

effectiveness while process operation is controllable and to reduce yield loss.

With increasing demand for high-quality products and reliable processes,

multivariate statistical process control (MSPC) is widely used in the manufacturing

industry to ensure that equipment is ‘‘statistically controlled’’ by monitoring two or

more related quality characteristics simultaneously (Montgomery 2005). Conven-

tional univariate charts such as the Shewhart control chart, cumulative sum (CUSUM)

control chart, and exponentially weighted moving average (EWMA) control chart

have been used to monitor the deviation of key variables or parameter performance on

the final product. However, univariate control charts have weaknesses. First, an

engineer must monitor a large amount of charts with increasing complexity and

manufacturing processes. Second, correlation variations between variables are

difficult to be detected by univariate control charts. Third, the type I error increases

with the number of charts. MSPC is used to monitor correlated variables with few

control charts. The Hotelling T2 control chart is a popular MSPC method to detect the

out-of-control signals. Although a T2 control chart is useful and powerful, it assumes

that variables are normally distributed and independent, which does not occur in

practice.

Projection methods are alternatives to MSPC, which reduce the dimensionality of

process variables. Projection methods include principal component analysis (PCA)

and partial least square (PLS) (Skagerberg et al. 1992; MacGregor et al. 1994;

Kourti and MacGregor 1996; Ralson et al. 2001). Multi-way PCA (MPCA)
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integrates a time dimension into the PCA model. It was developed for fault

detection in batch process monitoring (Wold et al. 1987b; Nomikos and MacGregor

1994). Although MSPC methods are used to detect process deviation real-time

equipment monitoring is difficult because diagnosis procedures in real settings often

rely on many manual actions by human operators.

To address the requirements of real settings, this study aims to develop a

manufacturing intelligence approach for semiconductor fault detection and classi-

fication (FDC). It uses MPCA and data mining approaches to monitor and diagnose

the semiconductor fabrication process. With advanced information technology, data

mining approaches have been used to explore large databases automatically or semi-

automatically and extract useful rules and patterns to improve decision quality

(Chien et al. 2007). Manufacturing intelligence approaches have also been

developed to derive decision rules to enhance operation efficiency and effectiveness

(Chen and Chien 2011; Chien et al. 2010, 2011; Kuo et al. 2010). MSPC methods

and data mining approaches can be used to discover and extract information from

historical process data and can assist fault diagnosis and recovery. MPCA is used to

unfold three-dimensional (3D) process data and reduce batch process data

dimensions by rotating the original axis in the process data. A few principal

components (PCs) are extracted to explain the maximal amount of variation. The

D statistic and Q statistic control limits from the score space and residual space,

respectively, are then constructed to detect the abnormal wafers. The set of process

variables relevant to the detected abnormal events are then identified. Finally,

decision trees are used to derive fault classification rules. To validate the proposed

framework, an empirical study was conducted on the Chemical Vapor Deposition

(CVD) process in a leading semiconductor company in Taiwan. The proposed

approach and derived rules allowed the results of routine monitoring processes and

information extracted from process data to be used to identify critical process

variables and remove fault causes.

The study is organized as follows. Section 2 introduces a literature review of the

relevant research on fault detection and classification and MSPC approaches.

Section 3 presents a description of the proposed approach for semiconductor fault

detection and classification. An empirical study in a leading semiconductor

company is conducted to validate the proposed approach in Sect. 4. Section 5 offers

a conclusion to the paper with a discussion of findings and future research

directions.

2 Literature review

The notations and terminologies used in this paper are as follows:

i Wafer index

j Process measurement variable index

k Sample of a time interval index

n Number of observations

I Number of wafers
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J Number of process variables

K Number of total samples recorded by time

X Three-dimensional historical process data array

X Unfolded two-dimensional data matrix

E Three-dimensional residual array

E Unfolded two-dimensional residual data matrix

2.1 Fault detection and classification

For real semiconductor fabrication facilities (fabs), process control and monitoring

are necessary to ensure yield, and thus, profitability of large investments. There are

four process monitoring procedures: fault detection, fault identification, fault

diagnosis, and process recovery (Raich and Cinar 1996). Fault detection determines

whether a fault has occurred in the process. Early detection gives engineers more

time to perform appropriately to avoid serious equipment abnormality. Fault

identification identifies the main effects on observation variables and concentrates

on the process variables most relevant to diagnosing abnormalities. Fault diagnosis

determines which fault has occurred, that is, the cause of the observed out-of-control

status. Fault diagnosis determines the type, location, magnitude, and time of a fault

(Isermann 1995). Process recovery removes the cause of the fault to reduce yield

loss.

MSPC is widely used for chemical, biotechnical, polymer, and pharmaceutical

applications. MSPC methods such as PCA and PLS have been used for many

applications. Skagerberg et al. (1992) used PLS to predict polymer properties from

measured temperature profiles in a tabular low-density polyethylene reactor and to

interpret process behavior. MacGregor et al. (1994) developed a multiblock PLS

method to detect and diagnose process faults. Wikströma et al. (1998) applied the

multivariate process monitoring charts including a multivariate Shewart control

chart, multivariate CUSUM control chart, and multivariate EWMA control chart in

an electrolysis process. Ralson et al. (2001) developed a PCA model for process

monitoring and fault diagnosis in chemical processes.

Several studies have examined fault detection and diagnosis applications in batch

process monitoring. Nomikos and MacGregor (1994) proposed the MPCA method

to monitor the batch process in a chemistry process. The MPCA method unfolds a

3D data matrix into a two-dimensional (2D) matrix and then performs PCA to

explain variability among batches, process variables, and time. Wise et al. (1999)

compared conventional PCA, MPCA, trilinear decomposition, and parallel factor

analysis for fault detection in the semiconductor etching process. Yue et al. (2000)

introduced batch process monitoring to semiconductor fabrication for plasma

etchers by using emission spectra and the MPCA method to analyze multiple scan

sensitivity within a wafer for several typical faults. Wise and Gallagher (1996) also

used the MPCA and MSPC methods in process monitoring and fault detection for a

chemistry process. Spitzlsperger et al. (2005) presented an adaptive Hotelling T2

control chart for the semiconductor etching process. In addition to statistical

methods, the k-nearest neighbor (kNN) method based on distance has also been used
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to classify faults in semiconductor manufacturing (He and Wang 2007; Verdier and

Ferreira 2011).

2.2 Principal component analysis

PCA is a multivariate method that explains the covariance structure of multivariate

data using a few linear combinations of the original variables (Wold et al. 1987a;

Wise and Gallagher 1996). PCA decomposes original data matrix X, including i
measurements and j process variables, into uncorrelated t scores matrix T by an

orthogonal loading matrix, P, and the unexplained variation of X, that is, residual

matrix E.

X ¼ TPT þ E: ð1Þ
Most variations can be explained by the first r PC matrix TPT. Given new

measurement X, and then PC score t, prediction of measurement X̂, and residual

matrix Ê are defined as follows:

t ¼ PT X ð2Þ

X̂ ¼ PPT X ð3Þ

Ê ¼ ðI� PPTÞX: ð4Þ
After building the PCA model, original data variation can be detected by score

space and residual space. The Hotelling T2 statistic and squared prediction error

(SPE) are used to measure the divergence of a new measurement. The Hotelling T2

statistic is first used to estimate the explained variation of a new measurement by the

PCA model in the score space. This is shown in (5).

T2 ¼ tT S�1t: ð5Þ
The matrix S-1 is the diagonal matrix containing the inverse eigenvalues

associated with the r eigenvectors (PCs). The T2 statistic assumes an F distribution.

SPE is also used to estimate the unexplained variation of a new measurement in

residual space and is defined as

SPE ¼ Ê
T
Ê ¼ XTðI� PPTÞX ð6Þ

where SPE represents the square error of residual. Therefore, PCA performs process

monitoring by constructing a control chart for these two statistics.

3 Proposed approach

With advanced information technology and sensors for data collection, real-time

tool data can be recorded for tool or process monitoring in advanced 300 mm

fabrication. All identification information and equipment parameters are collected

as wafers pass through the process. All process data should be considered

multivariable and not mutually independent because they may be correlated with
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each other. This study proposes a manufacturing intelligence approach for fault

detection, diagnosis, and classification based on MPCA and data mining

approaches, as shown in Fig. 1. After problem definition and data preparation,

MPCA unfolds the 3D process data and reduces the batch process data dimensions

into a few PCs. In fault detection, the D and Q statistics are calculated to detect

abnormal events from the score space and residual space, respectively. Different

types of process faults can be detected based on the constructed control limits of

both statistics. All data points are then clustered using a self-organizing map

network. The set of most relevant process variables to the detection of abnormal

events are also identified. Decision trees are then used to extract rules from the

generated groups to describe the various faults in the process. The generated simple

rules are used to predict the wafer class defined by performance.

3.1 Problem definition

Advanced sensors and information technologies enable process data and tool parameters

to be recorded for fault detection and diagnosis. Process data can be recorded

immediately during operation in a semiconductor fab. Historical data including nominal

process information and quantitative measurements are continuously recorded at

Computing the contribution of 
each variable for fault observation

Clustering observation into 
subgroups in the score space 

Monitoring the process by  
D Control chart  

Monitoring the process by  
Q control chart  

Extracting rules from faults 
by decision tree 

Collecting historical data 
for specific process

Data preprocessing and 
transformation

Building  the MPCA model 
from normal wafers

Identifying fault 
violations from all wafers

Faults are diagnosed and process 
can be adjusted and removed 

Real-time monitor by FDC 
system 

Problem 
definition

Data 
preparation

Model 
building

Fault 
detection

Fault 
clustering & 
identification

Fault 
classification 
& diagnosis

Fig. 1 Research framework for semiconductor FDC
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nine sites per wafer. To reduce yield loss during the manufacturing process, tool

abnormalities should be detected early during process monitoring. The MPCA unfolds

the data and extracts a few PCs for process monitoring by considering the 3D data array

in semiconductor manufacturing, wafers, process measurement variables, and

samples recorded by time. If an abnormal wafer is detected, the fault type must be

identified by classifying several subgroups for quick diagnosis and process recovery.

This study also uses data mining to extract valuable process information and

manufacturing intelligence to support fault detection and classification.

3.2 Data preparation

The FDC system collects a large amount of historical data including missing, noisy,

and redundant data. Therefore, the data must be prepared to improve data quality for

effective model construction (Chien et al. 2007). Because the FDC system records

historical data every second, this increases the quantity of data and noise, which

both influence the effectiveness of the constructed model. Domain knowledge is

used to select the key process step in the temporal window. Historical data features

are then extracted to detect faults and generate fault classes. Equipment parameters

with constant values are removed. Before performing the MPCA method, data

should be transformed to zero mean and unit variance. For each process variable,

subtract its sample mean and divide it by its standard deviation. The purpose of

standardization is to avoid particular variables dominating the model results due to

the bias of data scale.

3.3 MPCA model construction

MPCA unfolds the 3D data matrix into a 2D matrix and then performs PCA (Wold

et al. 1987b; Nomikos and MacGregor 1994). For batch process monitoring in a

semiconductor fab, a set of process variables is measured with time intervals and

wafers. All historical data are arranged into 3D array X (I 9 J 9 K), where I is the

number of wafers, J is the number of variables, and K is the number of times for

each wafer measurement. After unfolding 3D matrix X into 2D matrix X (I 9 JK),

ordinary PCA is performed on matrix X. The objective of MPCA is to decompose

3D matrix X into fewer PCs. As shown in Fig. 2, X is decomposed into the score

space (
PR

r¼1 trp
T
r ) with first R PCs and residual space (E). tr and pr. represent a

score vector and the rth row vector of the loading matrix, respectively.

X ¼ TPT þ E ¼
XR

r¼1

trp
T
r þ E

¼ X̂þ E

ð7Þ

P is the loading matrix, which includes loading vector pr, and T is the score matrix

containing the projection location on the PC subspace. E is the variation that the

MPCA model cannot explain.
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3.4 Fault detection

MPCA decomposes normal wafer variation into model space and residual space by

using the D and Q statistics to monitor the multivariate batch process. The D
statistic is similar to the Hotelling T2, that is, the Mahalanobis distance between the

new wafer data and the normal condition in a score space that is formed by fewer

PCs. The D statistic monitors systematic variation in the score space. The Q statistic

monitors variation that is not explained by the PCs retained by the MPCA model.

The D and Q statistics are calculated using the following equations:

Di ¼ tT
i S�1

R ti �
IðI � RÞ

RðI2 � 1Þ � FðR;I�RÞ ð8Þ

Qi ¼ ei eT
i ; ð9Þ

where R is the number of PCs retained by MPCA; ti is the R score vector corre-

sponding to wafer I; SR is the covariance matrix (R 9 R) of the t scores calculated

by the MPCA model; the diagonal units in the matrix are the variance of first R PCs;

and ei is residual vector i of residual matrix E. Therefore, original data variability

can be detected in the model space and residual space.

The reference wafers determine the control limits for the D and Q statistics under

normal conditions. Based on significance level a determined by the user, the D and

Q statistic control limits are determined as follows (Jackson and Mudholkar 1979;

Nomikos 1996):

Da; limit ¼ FR; I�R ð10Þ

Qa; limit ¼ h1 1� h2h0 1� h0ð Þ
h2

1

þ
za 2h2h2

0

� �1=2

h1

" #1=h0

; ð11Þ

where h0 = 1 - 2h1h3/3h2
2, h1 = trace(V), h2 = trace(V2), h3 = trace(V3), and V is

the covariance matrix of E, V = EE0/(I - 1), and za is a critical value of standard

normal distribution at significance level a.

X

...

E
= rP⊗ +

...P

∑
=

R

r 1
rt

X

Fig. 2 Decomposed parts of the three-dimensional array
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3.5 Faults clustering and identification

Once the out-of control signal has been detected by the D or Q control charts, the

cause of the out-of-control events must be identified. An out-of-control signal

indicates abnormal behavior in equipment or processes. Violations in the D and

Q control charts are from two types of process faults. The first is because of the

systematic variation on t-score, and the other is because of residual space variation

that cannot be explained by the MPCA model. Clustering analysis groups the

observed wafers to investigate them under normal and abnormal process conditions

with possible faults. Clustering analysis segments a diverse group with similar

observation characteristics. For fault clustering, self-organizing map (SOM) neural

network is used to cluster observations based on PC similarity. The SOM is better

than other classical clustering analysis methods because it produces graphic

visualizations and parallels the architecture of a neural network. The 2D topological

map shows group results based on the relationships among observations.

Fault identification is difficult for process engineers or operators because many

process variables and equipment parameters must be monitored. Additionally,

abnormal faults could lead to a difference in several process variables. The aim of

fault identification is to identify process variables that are most important for

judging the out-of-control signal. A contribution plot can be used to show the

contribution of the jth variable to the D and Q statistics. To compare the quantity

contribution of the process variables, process variables with relatively large

contributions should be diagnosed further.

3.6 Fault classification and diagnosis

Fault classification classifies normal and abnormal clusters by considering process

variables that are most relevant to the faults. The decision tree method is used to

extract rules to explain the relationship between the wafer groups and process

variables. Because of the nature of the problem and the data characteristics, a Chi-

squared Automatic Interaction Detector (CHAID) is used (Kass 1980). The tree is

grown iteratively until all attributes in the decision tree model are not significantly

different or the number of instances in the node is less than a determined threshold.

Decision trees are better at exploring data for classification and extracting

understandable decision rules for process engineers than other classification

techniques. All extracted information can assist with fault diagnosis, and the

process deviation can be corrected quickly.

4 Empirical study

4.1 Problem definition

To validate the proposed approach, an empirical study was conducted for the CVD

Ti/TiN process in a leading semiconductor company in Taiwan. CVD is a chemical

process used to develop thin films in ICs. The abnormal event is peeling caused by
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an imbalanced link between the film and substrate. In practice, the peeling is related

to uniformity of thickness, which is inspected by scanning electron microscope

analysis after several process steps. Therefore, equipment sensors record equipment

parameters to determine whether the tool condition is normal.

4.2 Data preparation

Total 100 wafers with 21 process variables were collected during CVD process. It

was possible to collect 23 records from the main CVD process step for each

wafer. There were 68 normal wafers and 32 abnormal wafers. A normal wafer

has no peeling faults. Additionally, four variables were excluded because of

constant values that did not provide process information. Therefore, 17 process

variables were selected to build the monitoring model. Table 1 lists these

variables. All data were standardized with zero mean and unit variance for further

MPCA modeling.

The trend charts of each process variable are shown in Fig. 3. Identifying the

process variable that is the main cause of the peeling fault is difficult. The variation

among the 17 process variables is different, and some variables are correlated with

each other. The variability among wafers, process variables, and recorded time

cannot be explained by conventional PCA.

4.3 MPCA model construction

To characterize equipment behavior under normal conditions, 68 normal wafers

were used to construct a reference model for equipment monitoring. First, MPCA

unfolded original 3D array X (68 9 17 9 23) into 2D data set X (68 9 391), where

the row represents wafer i and the column represents process variable j at time

k. MPCA was then used to transform the original data space into score space and

residual space. The score space accumulates the variation under first r PCs, and

residual space is the variation that the model cannot explain. The maximal number

of PCs is 68, and the explained variance percentages for each PC are listed in Fig. 4.

Table 1 Process variable description

Process variable Description Process variable Description

V1 Chamber pressure V10 RF load position

V2 Gas1 flow V11 RF tune position

V3 Gas3 flow V12 RF Vpp

V4 Gas4 flow V13 RF Vdc

V5 Stage heater temperature V14 Shower head temperature

V6 Stage heater power_in V15 Shower head power

V7 Stage heater power_out V16 Stage heater resistance in

V8 APC angle V17 Stage heater resistance out

V9 RF power
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The explained variation for each PC decreases as the number of PCs increases. The

number of PCs is selected if the proportion of explained variation is larger than 5 %.

The first three PCs explain 50.87 % of the process variation.

Fig. 3 Trend charts for process variables
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4.4 Fault detection

To evaluate the effectiveness of peeling fault detection, unfolded data matrix

X (100 9 391), including abnormal wafers (32 9 391), was decomposed into score

Fig. 3 continued
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space and residual space multiplying by loading matrix Lr=3 (391 9 3). The D statistic

is the overall wafer performance to compare with normal wafer performance in the

MPCA model. The Q statistic represents equipment behavior in the residual space and

Fig. 3 continued
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monitors each wafer. The D and Q statistic control charts identify out-of-control

signals to monitor processes. They are shown in Figs. 5 and 6. The dashed line is the

95 % control limit, and the solid line is the 99 % control limit. In total, 98 % of the

wafers are under the control limit of the D statistic. This shows that most wafers are

similar in the score space. The normal and abnormal wafer detection results can be

compared by the t-score scatter plot, as shown in Fig. 7, where a circle represents a

wafer without the peeling fault and a solid dot represents a wafer with the peeling fault.

Normal and abnormal wafers with prior knowledge of peeling faults do not separate

significantly in the score space. This implies that the equipment behavior of abnormal

wafers cannot be identified in the score space.

In the D statistic control chart, the 64th and 71st wafers are identified as abnormal

wafers at the 99 % and 95 % control limits, respectively. Figure 7 shows that the

64th and 71st wafers are different to other wafers, especially in the second and third

PCs. The result of the D control chart implies that differentiating between a peeling

and a non-peeling wafer is difficult to use only score space. In the Q statistic control

chart, several wafers exceed the control limit of the Q statistic. In total, 47 wafers

were abnormal beyond the 99 % control limit, and 85 wafers were abnormal beyond

the 95 % control limit. The MPCA model explains only 50.87 % of the variation in

the process data, which led to the misclassification of 25 % of normal wafers by the

Q statistic.

4.5 Fault clustering and identification

Once a deviation is detected in the D or Q statistic control charts, the wafer should

be diagnosed to identify the cause of the abnormal event. The fault identification

process locates the process variables most responsible for the abnormal event. In the

D statistic control chart, the 64th and 71st wafers exceed the out-of-control limit.

Figure 8 shows the contribution of each process variable to the D statistic. For the

Fig. 4 Explained variation for each principal component
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64th wafer, process variables V6, V7, V15, V16, and V17 contribute more than the

other variables. Process variables V10, V16, and V17 contribute the most to the 71st

wafer.

The wafers are grouped by SOM into three clusters based on the D and

Q statistics. Table 2 lists the basic statistics for each cluster. The percentage of

peeling wafers in Clusters (i) and (ii) is lower than 15 %, which is normal. Cluster

(iii) is in the peeling wafer class because 91.67 % of wafers have a peeling problem.

Fig. 5 D statistic control chart

Fig. 6 Q statistic control chart
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The peeling wafers in Cluster (iii) are selected to identify process variables

associated with the abnormality. In the residual space, the Q statistic chart is used to

monitor and investigate the MPCA model residuals. By averaging the process

variable contributions of these selected abnormal events, process variables V13,

V11, V5, V9, and V12 are first identified for fault diagnosis, as shown in Fig. 9.

4.6 Fault classification and diagnosis

After building the MPCA model for variation decomposition into score space and

residual space, three groups of wafers were clustered using SOM method. A

decision tree was then used to extract the relationship between peeling wafers and

process variables. The target variable is a cluster result called ‘‘1’’ if the wafer is

peeling, and ‘‘0’’ if it is not. Figure 9 shows the five variables identified from the

contributing process variables set, V5, V9, V11, V12, and V13, based on the results

from Cluster (iii). The average values for each process variable (100 9 17) were

used as independent variables. Figure 10 shows the peeling fault rules extracted by

the decision tree. The overall model fit is 97 % for V12 and V11, and three rules

were extracted for classifying the peeling fault. The first rule is, ‘‘If the value of

variable V12 is less than 0.8, then the wafer has the peeling issue.’’ The second rule

is, ‘‘If the value of variable V12 is greater than 0.6 and the value of variable V11 is

less than 1, then the wafer does not have the peeling issue.’’ The third rule is, ‘‘If the

(c)(a) (b)

Fig. 7 T score scatter plots, a first PC and second PC, b first PC and third PC, c second PC and third PC

(a) (b)

Fig. 8 D statistic contribution plot, a 64th wafer, b 71st wafer
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value of variable V12 is greater than 0.6 and the value of variable V11 is between 1

and 1.5, then the wafer has the peeling issue.’’ Based on the classification results, 29

peeling wafers were detected, and variables ‘‘RF Vpp’’ and ‘‘RF tune position’’ were

extracted for a process engineer to diagnose the cause of the peeling issue.

4.7 Results and discussion

The peeling and non-peeling wafers can be identified using three rules. After

detecting abnormal wafers, a set of process variables with large contributions to the

D or Q statistics were identified by the fault identification procedure. Process

variables V5 (Stage Heater Temperature), V9 (RF Power), V11 (RF Tune Position),

V12 (RF Vpp), and V13 (RF Vdc) were regarded as the cause of the peeling issue.

Variable V12 (RF Vpp) was extracted in the first level of decision tree and classified

23 peeling wafers, implying that it had the largest impact on classifying peeling

wafers.

To evaluate the effectiveness and practical viability of the proposed approach,

two conventional approaches including MPCA and the kNN method were selected

for comparison. The kNN method categorizes an unlabeled wafer as normal or

Table 2 Basic statistics for

each cluster
Cluster (i) Cluster (ii) Cluster (iii)

Number of wafers 14 62 24

Peeling wafers 1 9 22

Percentage of peeling

wafers in the cluster (%)

7.14 14.51 91.67

Fig. 9 Average Q contribution plot for Cluster (iii)
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abnormal according to the k-nearest similar wafers in the training data. First, the

number of kNNs for each sample is determined in the normal wafers. The sum of

the k-smallest squared Euclidean distances from the ith wafer to the j-nearest wafer

is then calculated. The number of kNNs was set as five based on domain knowledge

and data quality. The fault detection threshold was estimated at the 95 % and 99 %

confidence intervals from the 68 normal wafers. Figure 11 shows that the kNN

method detected 24 abnormal wafers at the 99 % control limit, and only 1 normal

wafer was identified as abnormal.

Table 3 shows a comparison of the three methods by sensitivity and specificity.

Sensitivity measures the proportion of peeling wafers that were correctly classified

into the peeling wafer group. Specificity measures the proportion of non-peeling

wafers that were correctly classified into the non-peeling wafer group. The control

limit was set under the 99 % confidence level. MPCA using the D and Q statistic

control charts has the large sensitivity (93.75 %) and small specificity (77.94 %),

respectively. The kNN method has the small sensitivity (75 %) and the large

specificity (98.53 %). The proposed method has the large sensitivity (90.63 %) and

the large specificity (100 %). While the results indicate that the proposed method

effectively detects abnormal wafers, it is difficult to show significant differences

among these methods because of the small number of wafers used in the study.

Using a larger data set from a semiconductor company to reproduce this study

should produce a more robust comparison and results.

Comparing the fault detection and classification results shows that the accuracy

of the MPCA method for classifying the peeling issue is low and many non-peeling

wafers exceeded the control limit of Q. Because only 50.87 % of the variation is

Fig. 10 Decision tree for
classifying peeling wafers
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explained in the score space, the remaining 49.13 % of the variation remains in the

residual space. This results in many wafers that exceed the Q control limit and

produces many false alarms. However, most peeling wafers were classified by

clustering analysis and the decision tree method. This means that peeling wafers can

be detected by the average process variable performance, and the data fluctuation in

process time should be smoothed via data preparation for constructing the

monitoring model.

5 Conclusion

This study develops an effective approach for semiconductor fault detection and

classification. It integrates MSPC methods and data mining approaches for

manufacturing intelligence and yield enhancement. The proposed approach detects

potential process faults or abnormal events effectively by monitoring fewer key

variables than conventional approaches. The results demonstrate the practical

Fig. 11 Fault detection using the kNN method

Table 3 Comparison results for

fault detection
Sensitivity (%) Specificity (%)

MPCA approach 93.75 (30/32) 77.94 (53/68)

kNN approach 75.00 (24/32) 98.53 (67/68)

Proposed approach 90.63 (29/32) 100.00 (68/68)
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viability of the proposed approach. The MPCA method unfolds 3D historical data

and projects the data onto the score space and residual space. Abnormal wafers are

then detected based on the D and Q statistic control charts. The process variables

most critical to abnormal events are then identified by SOM analysis and

contribution plots. Understandable rules are extracted to classify the normal and

abnormal wafer classes. With the information extracted from the historical process

data, diagnosis of abnormal events can be performed systematically and effectively.

The decision to remove the abnormal events and reset the process to normal

conditions can be made by engineers or domain experts in a timely and precise

manner. Moreover, simple and understandable rules are generated to predict wafer

performance and classify wafers into different classes using classification

approaches. The proposed approach has been implemented in the FDC system of

the company for in situ real-time monitoring for yield enhancement and quality

control.

In the semiconductor manufacturing process, some recipes and products result in

different behaviors in the same equipment and processes. The effects between

change of recipe or product changes and equipment abnormalities are not

considered in this study. To detect faults while accounting for different recipes in

the same monitoring model, recipe effects must be eliminated before model

construction. Further studies can develop an integrated model for fault detection by

considering recipe changes and different products. Most existing methods consider

the reference model to compare different conditions by using a group of normal

measurements. However, equipment conditions are not fixed because of the

complex processes and varied products in fab. Further research should develop a

rolling scheme for adaptive monitoring and equipment diagnostics and prognostics.
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