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Abstract The train fueling cost minimization problem is to find a scheduling and

fueling strategy such that the fueling cost is minimized and no train runs out of fuel.

Since fuel prices vary by location and time from month to month, we estimate them

by fuzzy variables in this paper. Furthermore, we propose a fuzzy fueling cost

minimization model by minimizing the expected fueling cost under the traversing

time constraint, maximal allowable speed constraint, tank capacity constraint, and

so on. In order to solve the model, we decompose it into a nonlinear scheduling

strategy model and a linear fueling strategy model. Based on the Karush–Kuhn–

Tucker conditions, we design an iterative algorithm to solve the scheduling strategy

model, and furthermore design a numerical algorithm to solve the fuzzy fueling cost

minimization model. Finally, some numerical examples are presented for showing

the efficiency of the proposed approach on saving fueling cost.

Keywords Fueling cost � Karush–Kuhn–Tucker conditions � Fuzzy variable �
Credibility measure � Energy management � Green transportation

1 Introduction

A train timetable includes the arrival and departure times of a set of trains at stations

and the assignment of tracks and platforms. The timetable optimization is generally

divided into a scheduling process and a rescheduling process. For scheduling
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process, the railway company would like to minimize the operational cost by

meeting the safety constraint and the requirements of passengers. For example,

Kraay et al. (1991) formulated a mixed integer programming (MIP) model to

minimize the energy cost and delay, Higgins et al. (1995) proposed a MIP model to

minimize the delay cost. Ghoseiri et al. (2004) proposed a two-objective optimi-

zation model for railway network which minimizes the fuel consumption cost and

the total passenger-time. Yang et al. (2009) proposed a fuzzy expected value

programming model by minimizing the delay time and the total passenger-time on

the assumption that the numbers of passengers at stations are fuzzy variables. The

authors designed a branch and bound algorithm to solve the fuzzy optimization

model. Chien et al. (2011) developed a modular fuzzy ranking framework that can

systematically decompose the fuzzy ranking methods into specific modules.

Furthermore, Li et al. (2011) studied another fuzzy expected value programming

model which minimizes the average energy consumption under the maximal

allowable velocity constraint and traversing time constraint. The authors designed

an iterative algorithm based on the Karush–Kuhn–Tucker optimality conditions.

The numerical examples illustrated that the fuzzy optimization technique can

further save energy 3.75 % in average.

As the uncertain disturbances arising from bad weather conditions, equipment

faults and unexpected passengers, the original timetable obtained at the scheduling

process may be suboptimal or infeasible during the operation process. Therefore, a

rescheduling procedure is needed to suggest new arrival/departure times and a new

assignment of railway resources within a reasonable computation time. In this case,

the main objective is to assure that the reassignment is as similar as possible to the

original timetable, e.g., minimizing the negative effect of the disturbances. For

example, Tonquist and Persson (2007) formulated a complex MIP model to

minimize a discontinuous delay cost on the last station for each train, which allows

for the modeling of a highly complex multi-bidirectional-tracks network in which

each track consists of several blocks. The authors analyzed the connections

constraints and tolerance of delays. In contrast to previous approaches, the authors

analyzed how the approach performs for large and real problem instances. Acuna-

Agost et al. (2011) proposed a MIP model to minimize the differences between the

original plan and the new provisional plan. The objective function is defined as a

weighted sum of the costs of delays, changes of tracks/platforms, and unplanned

stops. It supports bidirectional lines, multi-track lines and extra time for accelerating

and braking. Since the large number of variables and constraints, an approach called

Statistical Analysis of Propagation of Incidents is developed to tackle the problem.

The train fueling cost minimization is a special type of timetable optimization

problem, which studies how to find a scheduling and fueling strategy for trains on a

corridor such that the fueling cost is minimized and no train runs out of fuel. As the

continuously increasing of fuel price in the world, railway companies pay more and

more money for purchasing fuel to keep their trains running. Generally speaking, fuel

price is affected by many factors, for example, crude oil price, refining cost,

distribution and marketing, and fuel tax, where crude oil price dictates the fuel price

varies over time, and the other three factors dictate the fuel price varies across

locations. In addition, the official adjustment policy also has an important influence on
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the fuel price. For example, the Chinese average diesel fuel price had been increasing

from month to month in 2009, one liter of diesel fuel costs 4.11 RMB on January, 4.26

RMB on March, 4.60 RMB on June, 4.93 RMB on July, 5.18 RMB on September, and

5.43 RMB on November. On the other hand, the fuel prices in different provinces are

also different, take the date July 8, 2010 for example, one liter of diesel fuel costs 6.69

RMB in Beijing, 5.58 RMB in Shanghai, 6.23 RMB in Tianjin, 6.31 RMB in

Chongqin, and 6.76 RMB in Tibet. These two characteristics of fuel price impact the

train fueling cost minimization problem as follows: the variation over time makes it

necessary to treat the fuel price as an uncertain variable, then the fueling cost

minimization model should be an uncertain optimization model; the variation across

locations dictates the optimal fueling strategy avoids fuel purchases at high price

stations, and dictates the optimal scheduling strategy reduces the amount of energy

consumption when trains pass high price stations as much as possible.

Traditionally, fueling stations are generally assumed to have a common fuel

price. Then the fueling cost minimization problem is equivalent to the fuel

consumption minimization problem. For example, Chang and Sim (1997) inves-

tigated a coasting control optimization model for saving fuel consumption, Howlett

(2000) investigated a fuel consumption minimization model with a traversing time

constraint, and designed a numerical algorithm based on the Karush–Kuhn–Tucker

conditions for the optimal solution, Effati and Roohparvar (2006) presented a linear

programming approach and a dynamic programming approach to solve the fuel

consumption minimization problem. A survey on fuel consumption minimization

model and algorithm was given by Miyatake and Ko (2010), and the latest

developments may consult literatures (Bai et al. 2009; Howlett et al. 2009;

Khmelnitsky 2000; Liu and Golovitcher 2003).

Recently, Nourbakhsh and Ouyang (2010) proposed an optimal fueling strategy

model for locomotive fleets in railway networks, which first considers the variation

of fuel price across locations, but does not consider the variation over time. In their

work, the authors studied the fueling strategy problem with a given train scheduling

strategy. Since the fueling cost depends on the the amount of fuel consumption,

while the amount of fuel consumption is determined by the speeds of trains, it is

reasonable to study the fueling strategy problem and the train scheduling problem in

an integrated formulation. To the best of our knowledge, the integrated problem has

not been studied before. The purpose of this paper is to formulate a mathematical

model to determine an optimal scheduling and fueling strategy such that the fueling

cost is minimized. Since the fueling strategy will be used by many trains over a long

period of time, during which the fuel prices at the refueling points will vary, we

employ fuzzy variables to model the fuel prices and thus proposed this approach,

which has not been seen in the literature to our best knowledge.

The rest of this paper is organized as follows. Section 2 proposes a fuzzy fueling

cost minimization model which minimizes the expected value of the fuzzy fueling

cost under the traversing time constraint, the maximal allowable speed constraint,

the tank capacity constraint and so on. Section 3 describes the proposed approach as

a nonlinear scheduling strategy model and a linear fueling strategy model. Based on

the Karush–Kuhn–Tucker conditions, we design an iterative algorithm to solve the

scheduling model, and then design a numerical algorithm to solve the fueling cost
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minimization model. Section 4 presents two numerical examples to show the

efficiency of the proposed model and algorithm. Section 5 concludes with

discussions of contributions and future research directions.

2 Mathematical model

This paper studies the fuzzy train fueling cost minimization problem within the

framework of credibility theory (Liu 2007; Li and Liu 2006), which is a powerful

tool for dealing with fuzzy phenomena.

Suppose that there is a railway line consisting of n ? 1 stations (see Fig. 1).

Without loss of generality, we assume that trains may purchase fuel at the first

n stations with different prices. In this section, we shall formulate an optimization

model for determining a scheduling and fueling strategy, which minimizes the

fueling cost and ensures that no train runs out of fuel. In addition, the traversing

time constraint, the maximal allowable speed constraint, and the tank capacity

constraint will be also considered. First, we introduce some parameters and the

decision variables.

2.1 Parameters and decision variables

n: number of fueling stations along the rail line

li: link between the ith station and the (i?1)th station

di: length of link li
m: weight of the train

ri0: resistance coefficient due to grade and rolling resistance on link i

ri1: resistance coefficient due to rail friction on link i

ri2: resistance coefficient due to air friction on link i

s: amount of fuel consumption per joule of power

T: the predetermined traversing time for the train

b: the tank capacity for the train

ni: fuel price at fueling station i, which is treated as a fuzzy variable

ui
max: the maximal allowable speed on the ith link

ui: train average speed on the ith link, which is the decision variable

wi: amount of fuel purchased at fueling station i, which is the decision variable.

2.2 Assumptions

(a) Since we consider trains with high power/weight ratio travelling long

distances, they are assumed to run with constant speeds on all links.

i+1i1 2 n n+1

Fig. 1 A rail line which consists of n ? 1 stations
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(b) The fueling stations are assumed to be located such that a full tank of fuel can

avoid the train running out of fuel between any two adjacent stations.

(c) The dwell time for each train at each station is fixed and predetermined for

satisfying the loading/unloading requirements, which is larger than the fueling

operation time.

2.3 Fuzzy fueling cost minimization model

If the link between the ith station and the (i ? 1)th station is labeled with its starting

station, then there are n links along the rail line. We use ui to denote the average

speed of the train when it runs on the ith link. If the gradient is constant and the train

travels at a constant speed then the resistance force on the train can be modeled by

the Davis formula (Ghoseiri et al. 2004), a quadratic m(ri0 ? ri1ui ? ri2ui
2), where

m is the mass of the train, ri0 is the resistance coefficient due to grade and rolling

resistance, ri1 is the resistance coefficient due to rail and bearing friction, and ri2 is

the resistance coefficient due to air friction. If the length of the ith link is di, then the

fuel consumption will be

ei ¼ m ri0 þ ri1ui þ ri2u2
i

� �
dis; ð1Þ

where s is the fuel consumption per joule of energy. More generally, the fuel use on

a link with varying gradients and varying train speed will increase with average

speed. The relationship between fuel use and average speed can be found by sim-

ulation, then approximated by a quadratic similar to Eq. (1).

We use wi to denote the amount of fuel purchased at the ith fueling station. In

order to avoid the train running out of fuel, for each 1 B k B n, the total amount of

fuel purchased at the first k stations should be larger than the amount of fuel

consumption, that is,

Xk

i¼1

wi � m ri0 þ ri1ui þ ri2u2
i

� �
dis

� �
� 0: ð2Þ

In addition, since the tank capacity is finite, the amount of fuel purchased at the kth

station should not exceed the maximal allowable value. That is, for each 1 B k B n,

we have

Xk�1

i¼1

wi � m ri0 þ ri1ui þ ri2u2
i

� �
dis

� �
þ wk � b; ð3Þ

where the sum item denotes the amount of fuel left in the tank when the train arrives

at the kth fueling station, and b denotes the tank capacity.

Since the fuel prices at fueling stations generally vary from month to month

affected by the crude oil price and the adjustment policy based on regional concerns,

it is unreasonable to estimate the future fuel prices by crisp numbers when making

the fueling strategy. In this paper, we use fuzzy variables n1; n2; . . .; nn to model

them. Then the fueling cost n1w1 þ n2w2 þ � � � þ nnwn is also a fuzzy variable. If

the decision-maker would like to minimize its expected value, that is, the average
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fueling cost, then we get the following fuzzy fueling cost minimization model

(FCM)

min E n1w1 þ n2w2 þ � � � þ nnwn½ �

s:t:
Xk�1

i¼1

ðwi � m ri0 þ ri1ui þ ri2u2
i

� �
disÞ þ wk � b; 8k ¼ 1; 2; . . .; n

Xk

i¼1

ðwi � m ri0 þ ri1ui þ ri2u2
i

� �
disÞ� 0; 8k ¼ 1; 2; . . .; n

Xn

i¼1

di=ui ¼ T

umax
i � ui [ 0; 8i ¼ 1; 2; . . .; n

wi� 0; 8i ¼ 1; 2; . . .; n;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð4Þ

where the first constraint is the tank capacity constraint, the second constraint

ensures that no train runs out of fuel, the third constraint ensures that the traversing

time is equal to a predetermined value, and the fourth constraint ensures that the

running speeds for the train are less than the maximal allowable values.

3 Algorithms

If fuzzy variables n1; n2; . . .; nn are not independent, the fuzzy simulation technique

(Liu and Liu 2002) can be well used to approximate the expected fueling cost, and

the FCM model can be solved with a hybrid intelligent algorithm (Li et al. 2009). In

what follows, we assume that fuzzy variables n1; n2; . . .; nn are independent. Then it

follows from the linearity of expected value that

E n1w1 þ n2w2 þ � � � þ nnwn½ � ¼ E½n1�w1 þ E½n2�w2 þ � � � þ E½nn�wn:

The FCM model contains two decision vectors, that is, fueling strategy and

scheduling strategy. For each given feasible scheduling strategy ðu1; u2; . . .; unÞ; the

FCM model is a linear programming model on fueling strategy. Now, let us analyze

its optimal solution. For simplicity, we denote k1 = 1, use Li to denote the amount

of fuel left in the tank when the train arrives at the ith station, and use F(i, j) to

denote the amount of fuel required to travel from station i to station j. For all

1 B i \ j B n ? 1, it is easy to prove that

Li ¼
Xi�1

k¼1

wk � m rk0 þ rk1uk þ rk2u2
k

� �
dks

� �
; ð5Þ

Fði; jÞ ¼
Xj�1

k¼i

m rk0 þ rk1uk þ rk2u2
k

� �
dks: ð6Þ

When the train prepares to start its travel at station k1, let i1 be the smallest index

satisfying E[ni1 ] \ E[nk1
]. In the case of there is no station with smaller average fuel

price than station k1, we set i1 = n ? 1. If the amount of fuel consumption for the

subjourney from station k1 to station i1 is less than the tank capacity, that is,
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F(k1, i1) B b, then we should purchase all the required fuel at station k1 since it has

a lower price. In this case, the train will perform the next fueling operation at station

k2 = i1 with Lk2
= 0. Otherwise, we have F(k1,i1) [ b. It is clear that we should fill

the tank fully at station k1, and consider the next fueling operation at station

k2 = k1 ? 1. When the train arrives at station k2, the amount of fuel left in the tank

is Lk2
= b - F(k1,k2). In general, we have

wk1
¼ Fðk1; i1Þ; if Fðk1; i1Þ� b

b; if Fðk1; i1Þ[ b;

�
ð7Þ

k2 ¼
i1; if Fðk1; i1Þ� b

k1 þ 1; if Fðk1; i1Þ[ b;

�
ð8Þ

Lk2
¼ 0; if Fðk1; i1Þ� b

b� Fðk1; k2Þ; if Fðk1; i1Þ[ b:

�
ð9Þ

In addition, for each k1 \ i \ k2, the optimal amount of fuel purchased at station i

should be wi = 0. Now, suppose that the train has fueled at station kl-1, and we

consider the fueling operation at the klth station. Let il be the smallest index sat-

isfying il [ kl and E[nil ] \ E[nkl
]. In the case of E[ni] C E[nkl

] for all i [ kl, we set

il = n ? 1. If F(kl, il) B Lkl
, that is, the left fuel in the tank is enough for providing

the train runs from station kl to station il, then we should not purchase fuel at station

kl since it has a higher fuel price than station il. If Lkl
\ F(kl, il) B b, then the

optimal amount of fuel purchased at the klth station should be F(kl, il) - Lkl
:For

these two cases, we perform the next fueling operation at station il. If

F(kl, il) [ b, we should fill the tank fully at station kl, and consider the next possible

fueling operation at station kl ? 1. In general, we have

wkl
¼

0; ifFðkl; ilÞ� Lkl

Fðkl; ilÞ � Lkl
; if Lkl

\Fðkl; ilÞ� b

b� Lkl
; if Fðkl; ilÞ[ b;

8
<

:
ð10Þ

klþ1 ¼
il; if Fðkl; ilÞ� Lkl

il; if Lkl
\Fðkl; ilÞ� b

kl þ 1; if Fðkl; ilÞ[ b;

8
<

:
ð11Þ

and the amount of fuel left in the tank when the train arrives at the kl?1th station is

Lklþ1
¼

Lkl
� Fðkl; ilÞ; if Fðkl; ilÞ� Lkl

0; if Lkl
\Fðkl; ilÞ� b

b� Fðkl; klþ1Þ; if Fðkl; ilÞ[ b;

8
<

:
ð12Þ

For each kl \ i \ kl?1, the optimal amount of fuel purchased at station i should be

wi = 0. Since the number of fueling stations is finite, the optimal fueling strategy

and the minimum fueling cost with given scheduling strategy ðu1; u2; . . .; unÞ may be

solved by at most n loops.

Theorem 1 For each given scheduling strategy ðu1; u2; . . .; unÞ; let

ðw1;w2; . . .;wnÞ be the optimal fueling strategy of the FCM model. Then there is

a constant c such that the minimum fueling cost is
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Xn

i¼1

E½ni�wi ¼
Xn

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
disþ c ð13Þ

where ai 2 E½n1�;E½n2�; . . .;E½nn�f g for all 1 B i B n.

Proof Assume that the train performs the fueling operations at stations

k1; k2; . . .; kL along its trip, that is, we have F(kl, il) [ Lkl
for all 1 B l B L. For

each 2 B l B L, we will prove that there is a constant cl such that
Xl

j¼1

E½nkj
�wkj
¼
Xkl�1

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
dis

þ E½nkl
�min Fðkl; ilÞ; bf g þ cl;

ð14Þ

where ai 2 E½n1�;E½n2�; . . .;E½nn�f g for all 1 B i B n. For l = 2, the argument

breaks down into two cases.

Case 1. F(k1,i1) B b. In this case, we have k2 = i1, the amount of fuel purchased

at the k1th station is F(k1,i1). When the train arrives at station k2, the amount of fuel

left in the tank is Lk2
= 0. Then it is easy to prove that

Xl

j¼1

E½nkj
�wkj
¼ E½nk1

�Fðk1; i1Þ þ E½nk2
�min Fðk2; i2Þ; bf g

¼
Xk2�1

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
disþ E½nk2

�min Fðk2; i2Þ; bf g þ c2;

ð15Þ

where c2 = 0 and ai = E[nk1
] for all 1 B i B k2 - 1.

Case 2. F(k1,i1) [ b. It is easy to prove that the amount of fuel purchased at the

k1th station is b, and the amount of fuel left in the tank is Lk2
= b - F(k1,k2) when

the train arrives at station k2, which implies that

Xl

j¼1

E½nkj
�wkj
¼ E½nk1

�bþ E½nk2
� min Fðk2; i2Þ; bf g � Lk2
ð Þ

¼
Xk2�1

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
disþ E½nk2

�min Fðk2; i2Þ; bf g þ c2;

ð16Þ

where c2 ¼ E½nk1
� � E½nk2

�
� �

� b and ai = E[nk2
] for all 1 B i B k2 - 1.

Now, assume that formulation (14) holds for l = h, then there are parameters

ch; a1; a2; . . .; akh�1 such that
Xh

j¼1

E½nkj
�wkj
¼
Xkh�1

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
dis

þ E½nkh
�min Fðkh; ihÞ; bf g þ ch:

ð17Þ

We will prove that (14) still holds for l = h ? 1. The argument breaks down into

two cases.
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Case 1. F(kh, ih) B b. In this case, it is easy to prove that kh?1 = ih?1, the amount

of fuel purchased at the khth station is F(kh, ih), and the amount of fuel left in the

tank is Lkhþ1
= 0 when the train arrives at station kh?1, then

Xh

j¼1

E½nkj
�wkj
þ E½nkhþ1

�wkhþ1

¼
Xkh�1

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
disþ E½nkh

�Fðkh; ihþ1Þ þ ch

þ E½nkhþ1
�min Fðkhþ1; ihþ1Þ; bf g

¼
Xkhþ1�1

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
disþ chþ1

þ E½nkhþ1
�min Fðkhþ1; ihþ2Þ; bf g;

ð18Þ

where ch?1 = ch and ai = E[nkh
] for all kh B i B kh?1 - 1.

Case 2. F(kh, ih) [ b. It is easy to prove that the amount of fuel purchased at the

khth station is b, and the amount of fuel left in the tank is Lkhþ1
= b - F(kh,kh?1)

when the train arrives at station kh?1, then we have

Xh

j¼1

E½nkj
�wkj
þ E½nkhþ1

�wkhþ1

¼
Xkh�1

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
dis

þ E½nkh
�bþ ch þ E½nkhþ1

� min Fðkhþ1; ihþ1Þ; bf g � Lkhþ1

� �

¼
Xkhþ1�1

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
disþ chþ1

þ E½nkhþ1
�min Fðkhþ1; ihþ1Þ; bf g;

ð19Þ

where ch?1 = ch ? (E[nkh
] - E[nkhþ1

]) 9 b and ai = E[nkhþ1
] for all kh B i

B kh?1 - 1.

Hence, formulation (14) holds for all 2 B l B L. In particular, take l = L, since

iL = n ? 1 and F(kL, iL) B b, it is easy to prove that (13) holds. The proof is

complete.

For each given scheduling strategy ðu1; u2; . . .; unÞ; if the average fuel prices at

fueling stations are decreasing, i.e., E½n1�[ E½n2�[ � � � [ E½nn�; then it is easy to

prove that the optimal amount of fuel purchased at the ith station is

wi = m(ri0 ? ri1ui ? ri2ui
2)dis, and the minimum fueling cost is

Xn

i¼1

E½ni�wi ¼
Xn

i¼1

E½ni�m ri0 þ ri1ui þ ri2u2
i

� �
dis: ð20Þ

According to Theorem 3.1, we may decompose the FCM model into a scheduling

strategy model (FCM-I)
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min
Xn

i¼1

aim ri0 þ ri1ui þ ri2u2
i

� �
dis

s:t:
Xn

i¼1

di=ui ¼ T

umax
i � ui [ 0; 8i ¼ 1; 2; . . .; n

8
>>>>><

>>>>>:

ð21Þ

where a1; a2; . . .; an are determined by ðu1; u2; . . .; unÞ; and a linear fueling strategy

model (FCM-II)

min
Xn

i¼1

E½ni�wi

s:t:
Xk�1

i¼1

wi � m ri0 þ ri1ui þ ri2u2
i

� �
dis

� �
þ wk � b; 8k ¼ 1; 2; . . .; n

Xk

i¼1

wi � m ri0 þ ri1ui þ ri2u2
i

� �
dis

� �
� 0; 8k ¼ 1; 2; . . .; n

wi� 0; 8i ¼ 1; 2; . . .; n:

8
>>>>>>>>>><

>>>>>>>>>>:

ð22Þ

For each given scheduling strategy ðu1; u2; . . .; unÞ; according to the analysis in

above section, the optimal fueling strategy ðw1;w2; . . .;wnÞ and parameter

ða1; a2; . . .; anÞ may be solved by the following two algorithms.

Algorithm 31 A numerical algorithm for solving ðw1;w2; . . .;wnÞ with a given

scheduling strategy ðu1; u2; . . .; unÞ is summarized as follows:

Step 1. Set i0 = 1, L = 0, and wi = 0 for all i ¼ 1; 2; . . .; n.

Step 2. Define i1 ¼ minfi0\i� nþ 1 j E½ni�\E½ni0 �g where E[nn?1] = 0.

Step 3. If F(i0, i1) B L, set L = L - F(i0,i1) and i0 = i1.

Step 4. If L \ F(i0, i1) B b, set wi_0 = F(i0, i1) - L, L = 0 and i0 = i1.

Step 5. If F(i0, i1) [ b, set wi_0 = b - L, L = b - F(i0, i0 ? 1) and

i0 = i0 ? 1.

Step 6. If i0 = n ? 1, return ðw1;w2; . . .;wnÞ. Otherwise, goto step 2.

Algorithm 32 A numerical algorithm for solving ða1; a2; . . .; anÞ with given

scheduling strategy ðu1; u2; . . .; unÞ and fueling strategy ðw1;w2; . . .;wnÞ is described

as follows:

Step 1. Set i0 = 1 and ai = 0 for all i ¼ 1; 2; . . .; n.

Step 2. Define i1 ¼ minfi0\i� nþ 1 j E½ni�\E½ni0 �g where E[nn?1] = 0.

Step 3. If F(i0, i1) B b, set ai = E[ni_0] for all i0 B i B i1 - 1 and i0 = i1.

Step 4. If F(i0, i1) [ b, define k ¼ minfi0\k� nþ 1 j wk [ 0g. Set ai = E[nk]

for all i0 B i B k - 1 and i0 = k.

Step 5. If i0 = n ? 1, return ða1; a2; . . .; anÞ. Otherwise, goto step 2.

In the following, we shall design an iterative algorithm for solving the FCM-I

model based on the Karush–Kuhn–Tucker conditions. Let ða1; a2; . . .; anÞ be a given

parameter vector. For each positive real number S and index subset I �
f1; 2; . . .; ng; we denote FCM-I(S, I) as the following nonlinear programming model
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min
X

i2I

aim ri0 þ ri1ui þ ri2u2
i

� �
dis

s:t:
X

i2I

di=ui ¼ S

ui [ 0; 8i 2 I:

8
>>><

>>>:

ð23Þ

First, let us consider how to solve the FCM-I(S,I) model. Since it is a convex

programming, according to the Karush–Kuhn–Tucker conditions, ðu1; u2; . . .; unÞ is

an optimal solution if and only if there is a real number k such that

aim ri1 þ 2ri2diuið Þs� kdi=u2
i ¼ 0; 8i 2 IX

i2I

di=ui � S ¼ 0:

8
<

:
ð24Þ

For each 1 B i B n, applying Kaerdannuo formula to the first equation of (24), the

optimal velocity ui is determined by parameter k as

ui ¼
ffiffi
½

p
3�k=4ri2aims� ri1=6ri2ð Þ3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=4ri2aims�2 ri1=6ri2ð Þ3
� �

k=4ri2aims

r

þ
ffiffi
½

p
3�k=4ri2aims� ri1=6ri2ð Þ3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=4ri2aims�2 ri1=6ri2ð Þ3
� �

k=4ri2aims

r

� ri1=6ri2: ð25Þ

On the other hand, according to the second equation of (24), it is easy to prove that

parameter k is determined by ðu1; u2; . . .; unÞ via the following formulation

k ¼
X

i2I

aim ri1ui þ 2ri2u2
i

� �
dis=S: ð26Þ

Then we may solve the model by finding a number k and vector ðu1; u2; . . .; unÞ
satisfying conditions (25) and (26).

Now, we consider the problem on how to solve the FCM-I model. First, let S1 be

the predetermined traversing time T, and let I1 be the universal set f1; 2; . . .; ng. We

solve the optimal solution ðu1; u2; . . .; unÞ of the FCM-I(S1,I1) model. If it satisfies

the maximal allowable speed constraint, then it is the optimal solution of the FCM-I

model. Otherwise, we denote I0 ¼ i 2 I1 j ui [ umax
i

� 	
. Since Li et al. (2011)

proved that the optimal solution of the FCM-I model should satisfy ui = ui
max for all

i 2 I0; we modify ui = ui
max for all i 2 I0. Now, let us consider the second

modification. Set

I2 ¼ I1 n I0; S2 ¼ S1 �
X

i2I0
di=umax

i ; ð27Þ

then we get a new optimization model FCM-I(I2, S2). If its optimal solution fui; i 2
I2g satisfies the maximal allowable speed constraint, then ðu1; u2; . . .; unÞ is the

optimal solution of the FCM-I model. Otherwise, we modify the optimal solution,

and goto the next loop. Since the optimal solution consists of n components, the

FCM-I model may be solved by at most n loops.
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Algorithm 33 An iterative algorithm for solving the FCM-I model is described as

follows:

Step 1. Set e ¼ 0:001; I ¼ f1; 2; . . .; ng and S = T.

Step 2. Initialize a feasible solution v ¼ fvi; i 2 Ig of the FCM-I(I,S) model, and

calculate the parameter k0 by (26);

Step 3. Calculate a new feasible solution fui; i 2 Ig with k0 by (25);

Step 4. Corresponding to feasible solution u, update parameter k by (26);

Step 5. If jk0 � kj[ e; set k0 = k, and goto step 3.

Step 6. Define I0 ¼ i 2 I j ui [ umax
i

� 	
. If I0 = [, set ui = ui

max for all i 2 I0.

Reset I ¼ I n I0; S ¼ S�
P

i2I0 di=umax
i ; and goto step 2.

Step 7. Return ðu1; u2; . . .; unÞ as the optimal solution of the FCM-I model.

By integrating Algorithms 4.1, 4.2, and 4.3, a numerical algorithm for solving the

FCM model is designed in the following. A flow chart for the algorithm is illustrated

in Fig. 2.

Algorithm 34 An algorithm for the FCM model is described as follows:

Step 1. Initialize some parameters, including resistance coefficients ri0, ri1,

ri2, tank capacity b, train’s weight m, length of link ðd1; d2; . . .; dnÞ; fuel price

ðn1; n2; . . .; nnÞ; and maximal allowable speed ðumax
1 ; umax

2 ; . . .; umax
n Þ.

Step 2. Set ðE½n1�;E½n2�; . . .;E½nn�Þ as the initialized parameter vector a0.

Step 3. Calculate the optimal solution u of the FCM-I model with parameter a0 by

using Algorithm 4.3.

Step 4. Calculate a new parameter vector a by using Algorithm 4.2.

Step 5. If a = a0, then set a0 = a and goto step 3.

Step 6. If a = a0, calculate the optimal solution w of the FCM-II model by

Algorithm 4.1, and return (w, u) as the optimal solution of the FCM model.

4 Numerical example

In order to show the efficiency of the FCM model on saving fueling cost, we

illustrate two numerical examples in this section, which consider the optimal

scheduling and fueling strategy for a passenger train and a freight train, respectively.

In these examples, some basic parameters are listed as follows: resistance

coefficient due to grade and rolling resistances ri0 = 16.6 for all i, resistance

coefficient due to rail friction ri1 = 0.366 for all i, resistance coefficient due to air

friction ri2 = 0.0261 for all i, and quantity of fuel consumption for providing per

joule of power s = 2.89 9 10-5 L.

Example 1 In this example, we consider the optimal fueling and scheduling

strategy for a passenger train. Along the trip, the train will stop for fueling

operations at seven stations. Table 1 shows the basic information for the train,

where the lengths of links and the initialized speeds consults train T27 in Chinese

railway system, and the fuel prices on different stations consults the website
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Fig. 2 Flow chart for the numerical algorithm, where c ¼ E½n1�;E½n2�; . . .;E½nn�ð Þ
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http://oil.usd-cny.com/, which lists the daily fuel prices for the main cities in China.

If the train runs with the initialized speed, it is easy to calculate that the traversing

time for the train is 43.93h, which is selected as the traversing time parameter in the

FCM model. In addition, the weight of train is assumed to be m = 2 9 106 kg, and

the tank capacity is assumed to be b = 2 9 107 L.

Now, let us calculate the optimal fueling strategy and scheduling strategy for the

train. By performing Algorithm 4.4 on the database, it is easy to calculate that the

optimal scheduling strategy is

u1 ¼ 94:41; u2 ¼ 96:84; u3 ¼ 96:95;

u4 ¼ 97:22; u5 ¼ 93:94; u6 ¼ 85:00; u7 ¼ 85:00;

the optimal fueling strategy is

w1 ¼ 0:45� 107;w2 ¼ 1:58� 107;w3 ¼ 1:16� 107;w4 ¼ 2:00� 107;

and the corresponding minimum fueling cost is 4.08 9 107 RMB. If we use the

initialized speed shown in Table 1, a run of Algorithm 4.1 shows that the minimum

fueling cost is 4.27 9 107 RMB. It can be readily proved that the FCM model

reduces the fueling cost by (4.27–4.08)/4.27 9 100 % = 4.45 %.

Example 2 In this example, we consider the optimal fueling and scheduling

strategy for a freight train in Chinese railway system, which runs from Datong

station to Qinhuangdao station. Along its trip, there are thirty-two stations where the

train may stop for fueling. Table 2 shows the distance between each station and

Qinhuangdao station. According to the data on website http://oil.usd-cny.com/, the

fuzzy fuel prices on different fueling stations are also given in this table. It follows

from Table 2 that the total length for the trip is 653 km. If the average speed for the

train is 80km/h, then the traversing time is 8.16 h, which is selected as the traversing

time parameter in the FCM model. In addition, different links are assumed to have a

common maximal allowable speed umax = 100 km/h, the weight of train is assumed

to be m = 2 9 107 kg, and the tank capacity is assumed to be b = 8 9 106 L.

In order to solve the optimal scheduling strategy and fueling strategy for the train,

we perform Algorithm 4.4 on the database. The computational results are

Table 1 Database for numerical example 5.1

Line length

(km)

Maximal/Initialized speed

(km/h)

Fuzzy fuel price

(RMB)

Expected price

(RMB)

1 277 130/121.31 (6.59, 6.69, 6.79) 6.69

2 923 110/105.69 (6.13, 6.19, 6.21, 6.31) 6.21

3 676 110/105.63 (6.13, 6.25) 6.19

4 216 100/88.16 (6.11, 6.15) 6.13

5 830 100/89.89 (6.10, 6.14, 6.18) 6.14

6 820 85/76.76 (6.73, 6.85) 6.79

7 322 85/77.59 (6.73, 6.85) 6.79
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summarized in Table 3. For each station, the scheduling strategy denotes the speed

of the train runs from this station to the next station, and the fueling strategy denotes

the amount of fuel purchased at this station. It is easy to prove that the minimum

fueling cost is 5.00 9 108 RMB. If the train runs uniformly with speed 80 km/h, the

minimum fueling cost is 5.32 9 108 RMB, which implies that the FCM model

reduces the fueling cost by (5.32–5.00)/5.32 9 100 % = 6.02 %.

5 Conclusions

In this paper, we study the train fueling cost minimization problem, in which the

fuzziness of fuel prices is first considered. First, we propose a fuzzy fueling cost

minimization model by minimizing the expected value of the fuzzy fueling cost. In

order to solve the model, we decompose it into a scheduling strategy model and a

fueling strategy model. Then we design an iterative algorithm to solve the

scheduling strategy model based on the Karush–Kuhn–Tucker conditions, and

design a numerical algorithm to solve the fuzzy fueling cost minimization model.

Finally, we prove that our model may reduce the fueling cost significantly in terms

of numerical examples.
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