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Abstract Certain types of food, such as catering foods, decay very rapidly. This

paper investigates how the quality of such foods can be improved by shortening the

time interval between production and delivery. To this end, we develop an approach

that integrates short-term production and distribution planning in an iterative

scheme. Further, an aggregation scheme is developed as the interface between the

production scheduling and distribution problem. The production scheduling prob-

lem is solved through an MILP modeling approach which is based on a block

planning formulation. Our implementation shows promising results, elaborated in a

numerical investigation, which recollects the real settings of a catering company

located in Denmark.

Keywords Production scheduling � Block planning � Vehicle routing �
Catering industry � Food quality

1 Introduction

A commodity is called perishable if its quality or quantity is subject to

deterioration. A group of perishable products comprises goods in which product
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quality is subject to a continuous change after the production stage. Fresh foods,

bakery products and blood products are some well-known examples of this

category. Fresh foods create unique supply chain challenges. Foods such as fruits,

vegetables, and meat need to be nurtured to ensure that they remain in good

quality. This includes monitoring the time that this delicate cargo spends in stock

and during transport in the supply chain—the most critical time for all fresh foods.

It is essential to deliver such products right after production to limit quality

degradation. Therefore, a tight coordination between the production and distri-

bution systems is necessary which can be realized by integrating the planning of

these two stages of the supply chain.

Motivated by a case study from a food caterer in Copenhagen, we develop

mathematical models and a heuristic solution method to investigate the effect of

integrating production scheduling and distribution decisions on the total costs and

the quality of the delivered products. The distribution problem involves designing

vehicle routes and schedules for picking up prepared foods and delivering them to

customers. On the production site, food production orders must be scheduled on

available production lines. Moreover, the setup cost for producing each food type

strongly depends on the product type produced in the previous production run, i.e.

the setup costs are sequence-dependent.

In such a supply chain, product quality is determined not only by the production

processes, but also through the coordination of the production and distribution

decisions. To ease this coordination, food preparation sites are usually directly

connected to customers by a fleet of vehicles operated by the caterer. However, the

analysis of practices at the Copenhagen-based caterer shows that currently the

production and distribution stages are handled independently, causing large

operational and quality problems. In this paper, we therefore investigate how an

integrated planning approach can be used to harmonize production and distribution

decisions aiming at a trade-off between the quality of delivered products and the

total costs.

The contribution of our study is in integrating fresh food production and

distribution planning. An iterative solution framework is developed to investigate

the effect of such integration on total costs as well as on the quality of delivered

products. We reduce the problem complexity through developing a hierarchical

modeling approach, which splits the overall planning problem into a production and

a distribution sub-problem. In addition, an aggregation procedure is applied to group

customer orders into production batches. A practical approach called block planning

is employed for developing the mixed-integer linear programming (MILP)

formulation of the production scheduling problem. The distribution problem is

solved through a large neighbourhood search algorithm (LNS). Experimental

scenarios, designed for critical aspects of the planning problem, reveal the impact of

the integrative approach on the overall solution quality.

The remainder of this paper is organized as follows. In the next section, a brief

review of the relevant literature on production scheduling and distribution planning

in fresh food industries is presented. In Sect. 3, the practical planning problem is

presented in detail and the motivating catering case study is explained. In Sect. 4,

our hierarchical modeling approach consisting of a heuristic order batching
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procedure, the production scheduling model which is based on the block planning

principle, and the distribution planning heuristic is introduced. In addition, the

iterative solution procedure is presented. The results of our numerical studies are

presented in Sect. 5. Finally, conclusions are drawn and further research directions

are discussed in the last section.

2 Literature review

The production scheduling problem in fresh food industries, as briefly discussed in

Sect. 1, represents a famous class of problems referred to as scheduling with

sequence-dependent setups that are well known to be NP-hard (Sun et al. 1999). A

complete survey of production scheduling problems with setup consideration is

presented in Zhu and Wilhelm (2006) and in Allahverdi et al. (2008). A common

difficulty in these problems is the complexity of the resulting models. To overcome

such difficulty, Günther and Neuhaus (2004) developed an approach, named block

planning. Applications of the block planning concept have not been widely

investigated in literature, although this policy is easy to implement and provides

decision makers with managerial insights. Günther and Neuhaus (2004) introduced

the simultaneous lot sizing and scheduling approach in a so-called make-and-pack

production environment. They investigated fast moving consumer goods industries

including foods and beverages and realized that a set of technical considerations are

most often observed in these businesses. By incorporating such considerations, they

could significantly reduce the complexity of production scheduling in these

industries and at the same time better reflect real world conditions. Later, Lütke

Entrup et al. (2005) developed MILP models based on the block planning concept

for production of yogurt that investigate the effect of integrating shelf-life into

production planning and scheduling. Günther et al. (2006) presented two different

implementations of the block planning concept by considering a continuous

representation of time. One utilizes the Production Planning/Detailed Scheduling

module of the SAP APO software and the other approach is based on a mixed-

integer linear programming formulation. They concluded that the suggested

approach is computationally very efficient and provides the flexibility to model a

variety of application specific features.

Several aspects of food distribution are investigated in literature as different

variants of the vehicle routing problem with or without time windows (VRP/

VRPTW). Transportation planning of dairy products is investigated based on a

hierarchical approach by Adenso-Diaz et al. (1998). Considering an integrated

distribution network, they make decisions on demand assignment, frequency of

visiting each customer per week and vehicle routes. They considered a variant of

VRPTW with the objective of minimizing the total distribution costs while clients

are allocated among vendors in a fair way. Kiranoudis and Tarantilis (2001, 2002)

developed a threshold-accepting based algorithm for a heterogeneous fixed-fleet

VRP applied to a fresh milk and a fresh meat distribution environment with the goal

of minimizing the total transportation time. Belenguer et al. (2005) considered the

distribution operations of meat and developed a variant of VRPTW with the goal of
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minimizing the lateness in servicing customers and minimizing the total distance

traveled (multi-objective). They proposed a 2-phase constructive algorithm and a

tabu search based improvement algorithm to solve the resulting model. Ambrosino

and Sciomachen (2007) developed an asymmetric capacitated VRP model for

delivery of a combination of fresh and frozen foods through vehicles with two

compartments. Hsu et al. (2007) studied a VRPTW problem for perishable food

delivery with focus on customer response and energy consumption cost as a

sustainability measure. Zheng et al. (2007) considered a special transportation

infrastructure in Beijing city and developed a VRPTW model for fresh food delivery

in cities with circular transportation networks. Osvald and Stirn (2008) investigated

distribution operations of fresh vegetables and similar perishable foods. They

developed a solution algorithm for the corresponding VRPTW paying attention to

the linear quality degradation of products. Akkerman et al. (2010) performed a

thorough survey of food distribution studies in which a separate section is devoted

to transportation planning.

Integration of production scheduling and distribution planning has received a lot

of attention among researchers particularly in the recent years. Chen (2010)

classified and reviewed a rather considerable number of articles on general

integrated production and distribution scheduling. However, there are very few

studies specifically developed for the food industry. Arbib et al. (1999) developed a

three-stage matching model to investigate a scheduling problem with the goal of

reducing the time gap between distribution and the best-before date. Higgins et al.

(2006) considered the integration of production and distribution scheduling for a

sugar supply chain. Bilgen and Günther (2010) presented an integrated production

scheduling and truck routing model for a fruit juice supply chain. They considered

different transportation modes and described the production system based on the

block planning approach which establishes cyclical production patterns with regard

to the definition of setup families.

To the best of the authors’ knowledge, Chen et al. (2009) is the only study that

analyses the integration of prepared food production scheduling with short-term

distribution planning, including the solution of the associated vehicle routing

problem. However, they used a special approach and a set of fundamental

assumptions, which are not applicable to our case. While we are considering a more

complex production environment with multiple production lines and sequence-

dependent setup times and costs, Chen et al. (2009) assumed a production system

with a single production line and no setup time and costs. Further, by assuming

stochastic demand following a given distribution function, they focused on

inventory and shortage costs in their model, while we face a deterministic

environment in which customer orders and, as a result, production quantities are

given.

3 Problem description

The catering industry is the main food sector dealing with production and

distribution of fresh foods. Caterers are concerned with the provision of prepared
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food and drinks ready for consumption away from home. The main customers for

the catering industry are restaurants, cafes, take-a-ways, hospitals, schools, prisons,

residential homes, hotels and other premises, which order food for immediate

consumption (Taylor 2008). Catering is by far more complex than other sectors of

food industry in terms of the network structure and the underlying constraints. Due

to the major concern on delivering foods freshly (and most often hot), direct links

between food preparation and distribution stages are prevalent, usually without any

intermediate stage.

Fresh food supply chains often consist of three stages (see Fig. 1). The first stage

usually comprises batch processing of raw materials into food products, which are

packaged in the second and immediately distributed in the third stage. Merging the

packaging and the production stages is also frequently observed in fresh food supply

chains. Production and distribution planning of fresh food, such as in the catering

industry, is certainly a challenging task. The planner has, for example, to cope with

a high number of food variants and sequence-dependent setup costs and times of

processing equipment as well as fast quality degradation of goods.

In the problem at hand, the caterer operates a production center to produce a

multitude of variants of food products ordered from different service organizations.

To produce orders on time and in an economical way, a batch production system is

adopted to combine orders into production batches. In general, a set of orders can be

combined into a batch if the respective food menus require the same temperature

level and the same processing time at the ovens.

The setup cost and time in the catering company result from heating up and

cooling down of ovens. Since orders need to be processed at different temperatures,

the setup cost and time depend on the sequence of producing orders on ovens.

Following, a list of other specifications of this production environment is presented.

• Products are produced at a single production site that operates several identical

ovens. These ovens form the bottleneck of the production system.

• At the beginning of a production day, all ovens start from the turned-off state.

• A set of customer orders is known a day prior to their realization and has to be

processed and delivered within certain time windows.

• Each customer order includes one type of food menu. (A food menu is defined as

a unique combination of temperature requirement and processing time.)

• Idle times can be scheduled on ovens, and it is assumed that temperature of

ovens does not change during their idle times.

• Food quality decay starts right after the completion of production operations and

continues linearly until the delivery time.

DistributionRaw materials Production Packaging

Retailers
Restaurants
Hotels
Cafes
Schools
Hospitals
…

Fig. 1 A sample fresh food supply chain
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• The time difference between the completion of production operations of each

food and its delivery time represents its quality decay.

The above characteristics of the production environment result in a complex

production scheduling problem with sequence dependency in setup costs and times.

Moreover, prepared foods are distributed to customers through a fleet of vehicles,

which is run by the catering company. Therefore, the caterer is responsible for both

production scheduling and distribution decisions. The distribution operations

involve transportation of highly perishable products within tight time windows at

customer locations. The principal attributes of distribution planning in this company

can be summarized as follows:

• The distribution problem is defined in the form of planning direct deliveries

from the production site to customers (cf. Figure 1) without any intermediate

storage.

• Vehicles are homogeneous, and they all start from and return to the central

production site known as depot in the vehicle routing literature.

• Transportation costs are given based on the travel distances for delivering the

orders.

• The earliest departure time of a vehicle at the production site is determined by

the latest finishing times of batches to be delivered by the vehicle.

• For the delivery of orders at customer locations time windows (defined as

earliest and latest visiting times) have to be considered.

The entire planning problem comprises decisions on the scheduling of production

orders on the various ovens and the distribution of customer orders by use of the

company’s fleet of vehicles. In particular, this production and distribution planning

problem involves the following decisions:

• grouping of customer orders with similar temperature requirements and

processing times and with compatible delivery and vehicle departure times into

batches for joint processing at the same oven,

• assignment of batches to ovens and sequencing and time phasing of individual

batches at each oven,

• determination of temperature levels which have to be realized on each oven

according to the assigned batches and their specific temperature requirements,

• assignment of customer orders to vehicles and sequencing and time phasing of

individual deliveries to customer locations.

The caterer aims at developing a production scheduling and distribution plan that

allows to fulfill customer orders within the given delivery time windows. Major

constraints arise from the available production capacities of the ovens and the

distribution capacities determined by the fleet of vehicles. All production operations of

batches must be completed such that the delivery due dates of the respective customer

orders can be met. As for the objective of coordinating daily production and distribution

activities, the caterer seeks solutions that ensure an appropriate trade-off between the

monetary objective of minimizing total production setup and transportation costs and the

non-monetary objective of minimizing the total quality decay of products.

Integrated production and distribution planning 33

123



4 Hierarchical modeling approach

Due to its complexity, the integrated production scheduling and distribution

planning problem presented in the previous section is computationally intractable.

Therefore, we propose a hierarchical modeling approach (see Fig. 2), which

subdivides the entire planning problem into sub-problems of considerably reduced

complexity. In a preprocessing stage, an aggregation procedure is applied, which

creates batches of customer orders with similar temperature and processing

requirements and compatible delivery and vehicle departure times (Sect. 4.1). This

way, the number of entities in the production scheduling stage is considerably

reduced. For processing the various batches on the ovens, a so-called block planning

approach is proposed which schedules the batches according to a pre-defined

sequence of temperature levels (Sect. 4.2). Given the finishing times of the batches,

a heuristic solution algorithm is applied to solve the distribution planning problem

(Sect. 4.3). Finally, an iterative framework is introduced to coordinate the

production and distribution schedules (Sect. 4.4).

4.1 Batching of customer orders

The main idea behind the heuristic batching procedure is to reduce the size of the

production scheduling model by grouping consistent customer orders into a set of

production batches. As a result, the original problem is reduced to scheduling a

considerably smaller number of entities (batches vs. orders). Customer orders can be

grouped into a batch if they have the same temperature and processing time

requirements and satisfy the following consistency conditions:

Their delivery times and their corresponding vehicle departure times do not differ

by more than a pre-defined threshold value.

Preprocessing:
Batching of customer orders

Production scheduling

- Temperature setups

- Batch schedules

Distribution planning

- Vehicle departure times
- Delivery times of orders

Fig. 2 Hierarchical modelling
framework
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The respective food products can be processed on an oven within the given oven

capacity.

Details of the heuristic batching algorithm are given in Fig. 3. Depending on the

considered case, different sorting criteria, e.g. temperature level, processing time,

vehicle departure time, delivery time, and demand volume could be chosen for

sorting the orders in list L. In our case, we first rank orders based on their

temperature levels in ascending order. As a secondary ranking criterion, the earliest

vehicle departure time of orders is chosen. An important parameter in the algorithm

is the acceptable time gap between the vehicle departure and delivery times of

orders that are grouped into one batch. Later in the numerical analysis (see Sect. 5),

we investigate the influence of this threshold value on the final solution as well as on

the algorithm performance.

4.2 Production scheduling

Principally, lot sizing and scheduling models can be formulated using a discrete or a

continuous representation of time. In a discrete time-scale model, which is still

predominant in the academic literature, the start and ending of production and setup

activities are restricted by the period boundaries. Obviously, a dense time-grid is

HEURISTIC BATCHING ALGORITHM  

1   function Batching ( i {orders})

2   sort all orders in list L as follows:
3          Based on temperature in ascending order
4          Based on vehicle departure times in ascending orders for orders with the same temperature 

5          while | L|>0 do

6 create a new batch and set batch.Load=0

7 i = first order in L

8 assign i to the created batch and add i.Demand to current batch.Load
9 remove i from L

10                             j = first order in L and set A = | L|

11 while ( A > 0) do
12 if ( ( j.Temperature == i.Temperature) & 

( j.ProcessingTime == i.ProcessingTime) &
( j.DeliveryTime < i.DeliveryTime + threshold) & 
(ABS(j.DepartureTime - i.DepartureTime) < threshold) & 
(batch.Load+ j.Demand <=   Capacity) )

13 assign j to the current  batch and add j.Demand to current batch.Load
14 remove j from L
15 j= next order in L and set A = A-1
16 else

17 j = next order in L and set A = A-1
18 endwhile

19 endwhile
Note: ABS refers to absolute value

Fig. 3 Heuristic batching algorithm
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needed to adequately reflect the timing of production activities. In a continuous time

based model, however, the succession and detailed timing of production activities

can be reflected more realistically.

In the practical application at hand, an issue which further increases the

complexity is the sequence dependency of setups. A practical approach which

exploits the advantages of both the continuous time representation and the use of

predefined setup sequences is the so-called block planning concept (cf. Günther

et al. 2006, and Bilgen and Günther 2010). This concept is widely adopted in

production environments with a single bottleneck stage, such as in large parts of the

consumer goods industry. For the problem at hand, this method not only reflects the

practical settings but also significantly reduces the complexity of the problem. In

this approach, an important aspect is to define a block as a pre-set sequence of

setups based on human expertise and technological requirements. Afterwards,

production activities are scheduled based on the pre-defined setup sequence. For

instance, in food processing industries, production managers often sequence

production runs from the less intensive taste of a food product to the stronger or

from the brighter color of a product to the darker.

In catering environments, a setup operation refers to setting up a certain

temperature on an oven. As a result, a sequence of temperature increases and/or

decreases (a block) has to be defined on each oven. However, since heating up an

oven is much quicker than cooling it down, orders are scheduled on ovens based on

their temperature requirements in an ascending order. Therefore, in our catering

problem, we define a block as a sequence of all required temperature levels in

ascending order.

Setup costs and times for heating up ovens are assumed to be additive: Heating

up an oven from temperature T1 to T3 is the same as heating it up from T1 to T2 and

then from T2 to T3 (with T1 \ T2 \ T3). Therefore, after defining blocks

(temperature patterns), the total setup costs of an oven (production line) can be

defined as the cost of heating up the line to its highest realized temperature.

Accordingly, an adequate setup strategy tends to assign orders with lower

temperature requirements to a line, which produces other orders with higher

temperatures, thereby yielding the most economical schedules. Based on this

definition, no additional setup cost is incurred if a new order can be inserted into an

existing schedule without increasing the maximum temperature requirement of the

schedule. However, it is essential that all orders are processed in ascending order of

their temperature requirements. This constraint might enlarge the time gap between

the production and delivery time of certain orders and impair the total quality

measure. Therefore, an appropriate trade-off has to be sought between setup costs

and the quality decay objective.

By means of the block planning concept we are able to capture sequence

dependencies in setup costs and times and simplify the scheduling problem. Next,

an MILP model based on the block planning concept is formulated, assuming that

initial distribution decisions are given and the heuristic batching algorithm has

already been applied to group orders into a set of batches. We further assume that

batches are numbered such that the required temperature levels are non-decreasing.

The notation is introduced in Tables 1, 2 and 3.
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Model formulation:

Min W1 �
X

l2L

SCl þW2 �
X

k2J

X

i2J0
k

Bi � F0k
� �

� hi þW3 �
X

v2V

X

i2S[ �Of g

X

i02S[ Of g
ci0;i � Xi0;i;v

ð1Þ

subject to

SCl� c0h;l � Yh;l h 2 H; l 2 L ð2Þ
X

k2Jh

Zk;l�M � Yh;l h 2 H; l 2 L ð3Þ

X

l2L

Zk;l ¼ 1 k 2 J ð4Þ

Table 2 Parameters

W1, W2, W3 Weights for cost terms used in the objective function

ci0 ;i Transportation cost for delivering order i immediately after i0

c0h;l Setup cost for realizing temperature h on line l

Bi Delivery date for customer order i (given from the distribution model)

Xi0 ;i;v ¼ 1 Binary parameter (given from the distribution model) indicating

if order i is delivered immediately after i0 by vehicle v (0, otherwise)

hi Quality decay rate of customer order i per unit of time

tk Processing time of batch k

Dk Due time for producing batch k

M Sufficiently large number

gk Setup time for producing batch k after batch k - 1

Table 3 Decision variables
Yh,l = 1 If temperature h is realized on line l (0, otherwise)

Zk,l = 1 If batch k is realized on line l (0, otherwise)

Fk,l C 0 Finishing time of producing batch k
on line l (with F0,l given)

F0k C 0 Finishing time of producing batch k

SCl C 0 Setup cost on line l

Table 1 Indices and sets
i; i0 2 S [ fO; �Og Customer orders (S), production site

({O}:starting depot), production

site (f �Og: ending depot)

k 2 J Batches

i 2 J0k Customer orders processed in batch k

k 2 Jh Batches requiring temperature level h

v 2 V Vehicles

l 2 L Production lines (ovens)
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Fk;l�Fk�1;l þ gk þ tk � Zk;l k 2 J; l 2 L ð5Þ
Fk;l�Dk þM � ð1� Zk;lÞ k 2 J; l 2 L ð6Þ

F0k�Fk;l þM � ð1� Zk;lÞ k 2 J; l 2 L ð7Þ
The objective function (1) minimizes the weighted sum of total setup costs, total

food decay and transportation costs. According to Eq. 2, setup costs depend on the

highest temperature level realized on each line. Food decay is measured by the

time difference between the delivery time of an order and its production finishing

time. Since each order is assigned to a batch, the finishing time of an order is the

same as the finishing time of its corresponding batch. Transportation costs are

calculated based on the traveled distance of vehicles for visiting all customers. In

this model, the transportation part of the objective function is a constant given as

the solution to the distribution problem. However, for the sake of uniformity, we

keep this term in the objective function. The objective function consists of

monetary as well as of non-monetary terms. Thus, an appropriate trade-off is

pursued between cost components and the quality measure in the numerical tests.

Constraints (3) prevent realization of a batch on a line unless its corresponding

temperature level is used on that line. Constraints (4) guarantee that each batch

will be scheduled on one line. Constraints (5) indicate the relationship between

production finishing times of two successive batches. In these constraints, the

processing time of a batch tk, depends on the processing time of orders assigned to

it by the heuristic batching algorithm. Constraints (6) ensure that when a batch is

produced on a line, its production finishing time on that line is smaller than its due

time. It should be noted that due to the negative sign of the F-variables in the

objective function orders are scheduled as late as possible. Since a preliminary

distribution plan with the departure time of vehicles is assumed to be given,

constraints (6) impose a proper upper bound on the production finishing time of

each batch on each line. Constraints (6) cause infeasibility when the available

production capacity is not sufficient to produce orders before their due times (Dk).

Constraints (7) determine the production finishing time of each batch depending on

its assigned production line. Variable domains are already given in Table 3 with

the definition of the decision variables.

The application of the block planning concept and the heuristic batching

algorithm significantly simplifies the production scheduling problem. As a result,

the developed model is easy to solve using standard optimization software.

4.3 Distribution planning

Given the production scheduling decisions, the distribution problem determines the

vehicles’ tours and schedules. It seeks solutions that minimize a trade-off between

transportation cost and the quality decay component of the objective function.

Further, it ensures that the developed production schedules are observed in

determining the vehicle tours. The distribution problem in our catering case can be

formulated as a variant of the vehicle routing problem with time windows

(VRPTW). Since it is a classical model (with a different objective function) and we
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aim at solving this problem using a heuristic approach, we do not present the

mathematical model for the distribution problem.

Several heuristic algorithms were developed to deal with the VRPTW, which

mainly work on the exchange of two or a few nodes between routes. Such node

exchange algorithms can be considered as small neighborhood search methods.

However, it is believed that such small neighborhood explorations, even when

combined with meta-heuristic methods, are not effective in avoiding local

optimality thereby making it difficult to jump from one promising area of the

solution space to another, when a tightly constrained problem is solved (Ropke and

Pisinger 2006). In the following, we develop a large neighborhood search (LNS)

algorithm that obtains good quality solutions for this problem.

The LNS algorithm was first applied to the VRPTW by Shaw (1997) showing its

superiority over other heuristic methods. This algorithm iteratively relaxes and re-

optimizes the current solution. In VRPTW applications, the relaxation phase refers

to removing a certain number of orders from the available routes and the re-

optimization stage inserts them back in the feasible positions based on some

optimization criteria. Therefore, in designing an LNS algorithm, the number of

orders to remove in each iteration (denoted by q) and the removal and insertion

operators must be determined. In this paper, we adopt two operators for removal and

perform the insertion based on the greedy insertion method. The first removal

operator is taken from Shaw (1997) and described in Fig. 4.

The relatedness measure Ri0;i between orders i0 and i is defined in Eq. 8. This

equation determines the relatedness of every pair of orders based on four criteria,

namely travelling cost ci0;i, delivery time difference Bi0 � Bij j, being served by the

same vehicle T 0i0;i ¼ 1
� �

or not T 0i0;i ¼ 0
� �

, and load difference di0 � dij j. The

corresponding weights for these criteria are set to a = 0.75, b = d = 0.1 and c = 1

based on the results of preliminary test runs.

1

Ri0;i
¼ aci0;i þ b Bi0 � Bij j þ cT 0i0;i þ d di0 � dij j ð8Þ

Further, we consider a simple worst-case removal operator as a second removal

operator to diversify the search scope. This operator removes orders based on their

influence on the objective function. First, a random number is generated and is

Shaw’s removal procedure

1. randomly choose one of the orders from the routes to be removed

2. while not enough orders are removed do

3. i = an order chosen randomly from the set of removed orders

4. Rank all unremoved orders based on their relatedness to order i

5. r = a random number in [0,1)

6. Remove the order which is ri of the way through the rank

7. endwhile

Fig. 4 Shaw’s removal procedure
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compared to a parameter p. If the generated number is less than p, Shaw’s operator

is applied. Otherwise, the worst case operator is chosen. Considering two different

operators incorporates a random component into the algorithm while orders are still

removed systematically. The appropriate value of p depends on characteristics of

each case study. In the case at hand, we set p to 0.75 as it results the best solution in

our numerical implementations. In each operation of the LNS algorithm, the greedy

insertion operator ranks the removed orders based on their influence on the objective

function and selects the one which increases the total costs the least. In order to

increase the feasible solution space for the algorithm, time-windows at customer

locations are considered as soft constraints that can be violated subject to high

penalty costs. The developed LNS algorithm stops after a certain number of

iterations and returns the best incumbent solution as described in Fig. 5.

4.4 Iterative solution procedure

To solve the integrated production and distribution problem, an iterative solution

framework is developed as illustrated in Fig. 6. We initialize the solution algorithm

by assuming a set of very early production finishing times as the starting point.

Afterwards, an iterative procedure is employed starting with the distribution model

and followed by the production scheduling model. The main reason for this

initialization is that every set of early production finishing times allows obtaining a

feasible schedule for the distribution problem. Afterwards, the production schedule

is determined by solving the production scheduling model using the departure times

of vehicles as inputs. Due to the time windows around lunch time, the departure

times are such that a feasible solution for the production scheduling problem can

always be obtained. On the other hand, the distribution problem is facing tight time

windows at customers, which limits the possibility of accepting any arbitrary

Large Neighborhood Search algorithm
1 function LNS ( s {solutions} , q)
2   while stopping criterion is not met do

3             s’= s
4             r = a random number in [0,1]
5             while q orders have not been removed do

6                      if ( r < p)
7                            remove one order from  s’ based on Shaw operator
8                      else

9                            remove one order from   s’ based on worst case operator
10           endwhile

11           reinsert removed orders into s’ based on greedy insertion operator
12           if ( f(s’) < f(s) )
13                     s= s’
14 endwhile
15 return s

Fig. 5 Large neighborhood search algorithm
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distribution pattern as the starting point. Therefore, different starting points are

utilized to initialize the algorithm by different early production finishing times.

To stop the algorithm, we used two termination criteria: (1) maximum solution

time, as a common stopping criterion in designing iterative algorithms, and (2)

maximum number of iterations in which the model cannot achieve any improvement

in the objective function. The reason for the second criterion is that either a new

solution of the heuristic batching algorithm or a degenerate solution of the

production scheduling problem is obtained. At each iteration, the heuristic batching

algorithm may find a new set of batches resulting in a different solution space of the

production scheduling problem. Therefore, it re-initializes the algorithm with a new

initial solution, which may lead to further improvements in total costs in subsequent

iterations. Also, in the case of problem degeneracy, the production scheduling

problem may find solutions with the same objective function. Therefore, we let the

algorithm continue unless the same objective value is obtained b times in a row

(with b being the maximum number of acceptable iterations without any

Initial production 
completion times & b = 0

Distribution planning

Improvement in total 
costs

Yes

Heuristic batching

Production scheduling

Improvement in total 
costs

Update the best solution 
& Set b = 0

Yes

b ? 3

STOPYes

Accept the current 
solution & Set b = b + 1

No

No

No

Maximum solution time

Yes

No

Update the best solution 
& Set b = 0

Fig. 6 Iterative solution method
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improvement in the objective function). In the numerical investigations, we noticed

that setting b to be 3 is sufficient for our case study.

Figure 7 illustrates one iteration of the solution algorithm showing how the

production scheduling problem is simplified by using the heuristic batching

algorithm and the decomposition into the production and distribution problem. This

figure considers a simple instance with eleven orders, three temperature levels and

three ovens. For simplicity, all order processing times are assumed to be the same

and a single threshold value of five time units is used for both delivery and departure

time-differences. Further, we assume that all order sizes are 3 units and the capacity

of the ovens is 9 units.

Given a set of production schedules, the LNS algorithm is called to solve the

distribution problem generating vehicle routes and departure times as depicted in the

first box of Fig. 7. As a result, vehicle departure times (Sv) and customer delivery

times are determined. These variables serve as input in running the heuristic batching

algorithm, which mainly comprises two steps shown in the second and third box. In

the second box, orders are sorted in a list (L) in ascending order based on their

temperature requirements and their due times (their corresponding vehicle departure

times). The list of sorted orders, L, represents the priority of orders for being grouped

into batches. The third box shows the grouping of orders into batches based on the

consistency conditions in the following way. The first order in L, order 2, is selected

and removed from the list to form batch 1. Then, considering the two combination

conditions of the heuristic batching algorithm (see Sect. 4.1), the batching procedure

combines consistent orders from the top of the list into batch 1. Next, it generates a

new batch (batch 2) which includes the first order that cannot be combined with batch

1, and combines the remaining consistent orders with this order with regard to the

two combination conditions. In the illustrated example, first the consistency of order

Sv: departure time of vehicle v
(i,j,k): (customer number, temperature level, delivery time)

Distribution plannig
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3 H1 16 7
7 H2  10 7
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11 H3 15 9
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10 H3 21 9

DueTime
Batch1=(2, 5)

Batch2=(4, 1, 3)

Batch3=(7, 8)

Batch4=(6)

Batch5=(11, 9)
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Forming batches

Sv:Departure time of vehicle v obtained by solving the 
distribution problem serving as the due time of the corresponding 
batches in the production scheduling problem 

Fig. 7 An illustrative example of the solution method
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5 with order 2 is checked. Since its processing time and temperature requirement are

the same as of order 2, it is consistent with order 2. Besides, its delivery and departure

times are closer than 5 time units to those of order 2 (condition 1) and the aggregate

load of the batch does not violate the oven capacity (condition 2). Therefore, order 5

is removed from the list and added to batch 1. However, the remaining orders cannot

be combined with order 2. For example, order 4 cannot be added to batch 1 because

its delivery time is not closer than 5 time units to that of order 2 (condition 1 is

violated). Therefore, batch 2 is created for the first remaining order of the list, order

4. Later, order 7 cannot be added to batch 2 because its temperature requirement is

not the same as that of order 4. The algorithm continues until all orders are grouped

into a set of batches. In this small instance, the algorithm reduces the number of items

to be scheduled from 11 to 6.

Then, the production scheduling problem is solved for the generated batches such

that each batch is finished before its due date. (The due date of a batch is the

departure time of the vehicle that carries orders of that batch). As shown in Fig. 7,

lines 1 and 3 start later than line 2. This is because the due dates of their batches

allow them to postpone the production time to reduce the time gap between the

production and delivery times of orders. Finally, the resulting production schedules

are released into the distribution module as input for the next iteration, where the

production finishing times provide bounds on the vehicle departure times.

5 Numerical results

In this section, the proposed planning approach is evaluated through a number of

numerical tests. We developed a main test set consisting of 200 orders based on the

real setting of the catering company at hand. Three additional test sets are derived

from the main set for testing the algorithm on different problem sizes (see Sect. 5.1).

To obtain problem instances, we modified Solomon’s R201 test instance (Solomon

1987) regarding customer locations and delivery durations. In case 1 and 2,

Solomon’s R201 data are used by considering the first 50 and 100 orders. In case 3

and 4, the first 100 orders from the second test instance are copied and location data

are randomly generated for the next 50 and 100 orders such that they locate in the

defined area of the first 100 customers. Customer order size is randomly generated in

the range of 40–60 units based on a uniform distribution function. Orders are

randomly assigned to one of the available temperature levels, processing times and

decay rates. Production setup costs and times are determined based on the difference

in temperature levels while transportation costs depend on the distance between

customer locations. Further, setup costs, transportation and quality decay costs are

weighed 0.2, 0.3 and 0.5, respectively, in the objective function. We also determined

the number and capacity of ovens and vehicles based on the generated customer

demand. Furthermore, to better represent the company’s case, we set the same time

window of 11 a.m. to 1 p.m. for delivering all orders. Table 4 briefly presents the

other production and transportation parameters used in the different test sets.

To implement the algorithm, we coded the iterative framework, heuristic

batching and LNS algorithm using VC?? 6 and modeled the production
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scheduling problem with ILOG OPL 6.1.1. CPLEX 11.2 was used as the solver. All

programs are run on a PC with Intel P4 3.2GH CPU and 1 GB RAM.

In designing the LNS algorithm, two parameters are to be set: The number of

nodes to be removed and reinserted at each iteration (q), and the number of

iterations. Selecting a large value for q will lead to a redesign of a large part

of available routes at each iteration. However, since a very myopic operator is used

for the insertion procedure, the chance to generate a feasible solution would be very

small. Further, such setting inflates the computational time. On the other hand,

selecting a very small value for q will limit the chance of exhaustively exploring the

potential neighborhoods. Based on the problem settings and time windows, we

found a value of 3 to be appropriate for q. The number of iterations is set to 8,000 as

the algorithm rarely achieves a significant solution improvement thereafter.

Since the selection of a certain starting point might affect the way the algorithm

proceeds in the next stages, we considered different sets of initial solutions. In

determining the starting points for the algorithm, we took into account the

requirements of the distribution problem in terms of the time-windows at customer

locations. As a result, different sets of potential earliest and latest production

finishing times are considered. For each set, once we ran a test instance by assigning

an identical production finishing time to all orders. Further, we produced other sets

of starting solutions by assigning different production finishing times to different

orders as random numbers between the potential earliest and latest finishing times.

For running the numerical analysis, we chose the starting solution set, which

produced the best results.

The next two parameters that need to be determined are the threshold parameters

in the heuristic batching algorithm. They influence the number of batches to be

generated and significantly affect the performance of the algorithm. We set the

threshold parameters to a value of 70 min and investigate the sensitivity of these

values in Sect. 5.3. Finally, we should mention that we limited the total solution

time to 40 min through which most problem instances are solvable, regardless of the

chosen threshold values.

The principal questions addressed in the numerical studies are as follows:

1. What is the effect of integrating production and distribution decisions?

2. How does the perishability of products impact the overall solution quality?

3. How do different parameter settings for the heuristic batching algorithm

influence the final solution?

Table 4 Problem parameters
Test set number 1 2 3 4

# of orders 50 100 150 200

# of ovens 2 3 4 5

# of vehicles 8 15 20 25

# of temperature levels 3 4 4 5

# of processing times 3 3 3 3

Decay rates {3,6,9} {3,6,9} {3,6,9} {3,6,9}
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4. How can an appropriate balance be found between the conflicting objectives of

minimizing quality decay and minimizing setup and transportation costs?

5.1 Sequential versus integrated planning approach

As a benchmark, we consider a sequential approach similar to the procedure

currently used by the company. This approach performs the production and

distribution planning tasks separately and only based on their related cost terms, i.e.

the quality decay is not optimized in this approach. Production activities start at the

beginning of the shift every day (6:00 am), and we consider a realistic fixed due

time (10:00 am) based on staffs’ experience to finish all production activities. To

determine the production schedule in the sequential approach, the concept of block

planning is applied. We first run the heuristic batching by only considering

combination condition 2 of the heuristic batching procedure. After running the

heuristic batching, production schedules are determined imposing constraints on

the distribution problem. Then, the distribution problem is solved with regard to the

established production schedules.

Table 5 shows that the relative improvement in the quality decay of the

integrated approach over the sequential approach increases considerably with

problem size. In the problem instance with 200 customers (main problem),

integration resulted in a significant decrease of 40.9% in quality decay. At the same

time, the increase in transportation and production costs is about 18.7%. The

magnitude of quality improvement justifies the integrated planning approach despite

the increase in production and transportation costs. In problems with a small number

of orders, the number of consistent orders that can be combined into a batch

decreases considerably. The heuristic batching procedure hence creates a large

number of small-sized production batches. Therefore, the oven’s capacity is not well

utilized leading to an increase in makespan. This leads to high quality decays in

batches that must be produced early. However, the algorithm still works

considerably better than the sequential approach for all problem instances. In Sect.

5.3, we further investigate other settings that yield a large number of small batches

and show how they impair the quality of the final solution.

5.2 Integrated decision making and product characteristics

We now analyze how the degree of product perishability influences the importance

of integrated decision making. In this regard, three variants of the main problem are

Table 5 Comparison of the integrated versus the non-integrated approach

Number of customers 50 100 150 200

Relative change in the quality decay value -18 -27.7 -36 -40.9

Relative change in transportation and production costs ?12.3 ?16.5 ?18.3 ?18.7

Relative change in objective function -9.5 -14.7 -22.3 -28.2
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analyzed each with all products having the same decay rate of 3, 6 and 9,

respectively. It can be expected that a higher reduction in the objective function

value is conceivable by integrating production and distribution decisions when

products are more perishable. Figure 8 shows that the relative objective value

improves more when products are more perishable. However, in our problem

instance, the final improvement for decay rates 3 and 6 is almost identical.

5.3 Parameter settings in the heuristic batching algorithm

As explained in Sect. 4.1, the heuristic batching algorithm uses threshold parameters

to identify consistent orders that can be grouped into batches. Generally, a threshold

parameter defines a certain acceptable distance from a base value of a parameter. In

this section, we analyze the effect of threshold parameters by running the main test

set under different values for both the delivery and departure thresholds. We tested a

range of values between the two extreme settings of 0 and 120 min for the threshold

parameters. In our main problem instances, the value of 120 min for the threshold

parameters is an extreme setting because the total time-window over which a

customer may be served is between 11 a.m. and 1 p.m.

Setting the threshold value to zero prevents order combinations. Hence, orders

have to be scheduled sequentially based on the list L (see Fig. 3). In such situation,

since the number of production lines is limited, early scheduling of the first batches

is unavoidable. This solution is indeed very poor in terms of quality decay. In the

other extreme, setting a too large threshold value reduces the number of batches, but

combines orders that better not be produced together. Thus, some orders will again

be produced earlier than necessary and the quality decay will be high. As illustrated

in Fig. 9, the threshold parameters mainly influence the decay cost, while other

objectives are impacted much less. We found the best results using a value of

70 min for the threshold. The figure also depicts that, in general, high threshold

values are more appropriate than very low values. Although a high threshold may

combine more orders than necessary, a too low threshold value has a stronger

impact on decay costs by generating too many batches and increasing the total
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production time. Such extra production time forces the whole schedule to start

earlier, thus yielding a higher quality decay cost.

The total production time can be reduced to a certain extent by setting higher

threshold parameters. On the other hand, a direct relationship is inherent between

the length of processing times and the total production time such that the longer the

processing times are, the longer will be the total production time and vice versa.

Therefore, in a problem instance where all parameters are fixed, if processing times

are increased, the optimal decision is most likely to increase the threshold values to

compensate for the newly added production times.

5.4 Finding an appropriate trade-off between quality decay and other cost terms

The last part of the numerical analysis addresses the question of how an appropriate

trade-off can be found between quality decay and production and transportation

costs. To investigate the relationship between these conflicting objectives, we

solved the main test problems with five different weights for decay cost and

considered equal weights for production and transportation costs. In our problem

setting, setup and transportation costs are relatively smaller than decay cost.

Therefore, by increasing the decay cost weight the model compromises on the setup

and transportation costs and adapts distribution decisions accordingly to improve

the quality term. In Fig. 10, the corresponding unweighted values of quality decay,

production and transportation costs are compared. As illustrated in this figure, by

increasing the decay weight from 0.1 to 0.5 a continuous decrease in the decay

objective can be achieved without exorbitantly increasing total transportation and

production costs. The two dashed lines represent the share of production and

transportation in the total costs.

By increasing the decay weight beyond 0.5 still a major improvement in food

quality is achieved. However, the achieved improvement in food quality goes along

with a significant increase in the other cost terms. Thus, the cost related

consequences of such quality improvement should be carefully discussed with

managers of the company for setting the quality decay weight in such situations.
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One possibility for further improving quality cost without increasing the

production and transportation costs would be to change the block definition.

Currently, production blocks are defined based on an incremental temperature

pattern, because heating up ovens is much easier than cooling them down. However,

if we could change this technical limitation, we could for example obtain block

definitions that allow for cooling down ovens at the end of their production

schedules. Such consideration could significantly increase the flexibility of the

production system.

5.5 An alternative quality improvement approach

As an alternative approach, we first run a pre-optimization procedure, through

which a problem instance is solved with quality decay being optimized by a min–

max function. Contrary to the previous approach in which the difference between

the highest and lowest product quality might be very large, the new method ensures

that all customers enjoy a minimum level of quality. In order to implement this

approach we introduce a new decision variable and a new set of constraints as

follows:

u� 0 Maximum quality decay among all delivered products

u�
X

8k2J

Bi � F00k
� �

� hi 8i 2 S ð9Þ

Further, we modify the objective function accordingly to incorporate the newly

defined variable as follows:
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Constraints (9) set u as the maximum quality decay among all delivered products

and equivalently the minimum quality level perceived by customers. Further, the

quality component is defined in the objective function (10) such that it minimizes

the value of u resulting in a better lower bound on the quality level. The same

analysis as in Sect. 5.4 is required to find the appropriate weight W2
0.

In a pre-optimization stage, constraints (9) are added to both the production

scheduling and transportation planning problems, and they are solved with the

modified objective function (10) considering u as a decision variable. Afterwards,

the modified problem is solved again, with objective function (1) considering the

value of u as a given parameter. This parameter provides an upper bound on the

quality decay that a customer might observe. To investigate the influence of the pre-

optimization stage, we solved the main problem instance (with 200 customers) and

compared its results with those of the previously introduced method. Table 6

presents the ratio of the results achieved when the pre-optimization stage is

considered versus the option without pre-optimization. The comparison reveals a

14% improvement in maximum perceived quality decay (minimum quality level)

and a 4% improvement in minimum perceived quality decay for a virtually

unchanged total quality decay (increase of 0.01%).

6 Summary and conclusions

Among several specific characteristics of fresh food industry, the quality concern is

perhaps the most prominent one. In the fresh food industry, food quality is strongly

influenced by the two interrelated stages of production and distribution. However,

due to the complexity of these problems, research attention is usually limited to

solving them separately thereby neglecting their strong interrelation. Being aware of

such complexity, we incorporated some simplification steps to develop an integrated

approach for production scheduling and distribution planning of fresh foods such

that the model is still a good representation of the real world situation. To this end,

we focus on decomposing the production model into two successive stages and

designing a solution algorithm to appropriately integrate them with the distribution

model. As a result, we were able to reduce the problem complexity considerably and

to solve the integrated problem in a reasonable time.

Results of our numerical investigation indicate that the integrated approach

significantly improves food quality without considerably increasing production and

distribution costs. Further, we showed that an appropriate minimum quality level

can be guaranteed through our alternative approach which imposes a measure of

Table 6 Comparative results

between with and without the

pre-optimization stage

Impact of the

pre-optimization step

Total quality decay 1.0001

Maximum perceived quality decay 0.86

Minimum perceived quality decay 0.96
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balance among customers service levels. We also showed that the improvement in

food quality is larger when foods are more perceptible to quality decay. However,

focusing on food quality improvement is sound and commercially viable only as

long as the total costs do not exceed certain limits. We took into account the

particular characteristics of a catering problem in developing the mathematical

model, designing the algorithm, and setting the parameters. The developed models

reflect major issues arising in catering industry based on the explained case study.

Nevertheless, their main features are also relevant for other types of fresh food

industries like bakeries. Analyzing more complex cases with multiple producers is

the subject of our future research.
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