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Abstract The patient assignment problem in Home care (HC) consists of allo-

cating each newly admitted patient to his/her reference operator, chosen among a set

of possible operators. The continuity of care, where pursued, imposes that the

assignment is not changed for a long period. The main goal of the assignment is to

balance the workload among the operators. In the literature, the problem is usually

solved with numerical approaches based on mathematical programming that do not

consider the stochastic aspects of the problem. We derive a structural policy to

assign a newly admitted patient while balancing the workload among the operators,

by minimizing the expected value of a cost function that penalizes the overtime of

operators. The workloads already loaded to the operators are assumed to be random

variables as they are in the practice, while the demand related to the new patient is

considered both deterministic and stochastic. Results show that the variability of the

new patient’s demand is negligible with respect to the variability of the already

assigned workloads and that similar assignments are obtained both in the presence

or in the absence of this demand variability. A numerical comparison with the

current practice of assigning the new patient to the operator with the highest

expected available capacity shows that better balancings and cost savings can be

reached by implementing the proposed policy.
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1 Introduction

Home Care (HC) service consists of providing medical, paramedical and social

services to patients at their domicile. The main benefit of HC is the reduction of the

hospitalization rate, that leads to significant quality of life increase for the assisted

patients and to relevant cost savings for the entire health care system (Comondore

et al. 2009).

In the US, about 3.3 million patients received HC services from more than 11,400

agencies, and Medicare spent 19 billion dollars on HC services in 2009 (Medicare

Payment Advisory Commission MEDPAC 2011). HC is a relevant aspect of the

healthcare domain also in Europe, Canada and Australia (Chevreul et al. 2005).

This is a growing sector in western countries, due to the ageing of the population,

the increase in chronic pathologies, the introduction of innovative technologies and

the continuous pressure of governments to contain healthcare costs.

Several types of resources are involved in the service delivery, including

different categories of operators (nurses, physicians, physiotherapists, social

assistants and psychologists), support staff and material resources. Managing these

HC resources is a difficult task that is still executed without appropriate

methodologies and tools (Chahed et al. 2006; Asquer et al. 2007). In fact, resource

management in HC requires to assign and schedule the human and material

resources for delivering the care services to a high number of patients that live in

different locations of a geographical area. In addition, the amount of service

required by each patient is intrinsically random, thus making the planning problem

more complex (DeAngelis 1998; Lanzarone et al. 2010). Finally, the existence of

some constraints, such as the continuity of care (Haggerty et al. 2003) and the risk

of incurring in burn-out of operators (Cordes and Dougherty 1993; Borsani et al.

2006), makes the HC resource planning peculiar and different from the planning

problems encountered in other production and service systems.

The main issues in HC human resource planning are the human resource

dimension, the partitioning of a territory into a given number of districts, the

assignment of visits to operators and the routing problem (Chahed et al. 2006). In

particular, the operator assignment is a critical issue for maintaining a high quality

of the provided service (Lanzarone and Matta 2009) when the HC provider wants to

preserve the continuity of care, i.e., when the service is delivered by the same actors.

Working with continuity of care should preserve a dimension of the service quality

perceived by the customer, because the patient receives the care from the same

operator within each category (named reference operator) for a long period (usually

a semester), and thus he/she does not have to continuously change his/her

relationships with a new operator (Haggerty et al. 2003).

In the literature, there are several works dealing with the human resource

planning in HC services without continuity of care or with a partial continuity of

care (Eveborn et al. 2006, 2009; Bertels and Fahle 2006; Thomsen 2006;

Akjiratikarl et al. 2007; Chahed et al. 2009; Bennett and Erera 2011). However,

there are not many studies dealing with the continuity of care in HC providers, yet.

Among them, Borsani et al. (2006) study the scheduling of visits in two HC

organizations and propose an assignment model coupled to a scheduling model.
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Hertz and Lahrichi (2009) propose two mixed programming models for allocating

operators to patients in the Cotes-des-Neiges local community health clinic in

Montreal, Canada. Ben Bachouch et al. (2008) develop a mixed integer linear

programming model to minimize the total distance traveled by nurses. Lanzarone

and Matta (2009) propose a set of linear programming models to balance the

workloads of the operators of different categories for different configurations of HC

providers.

An important research stream deals with the assignment and scheduling of nurses

and medical staff in hospitals and a certain number of papers testify this research

activity. Cheang et al. (2003) report a bibliographic survey of the models and

methodologies available to solve the nurse rostering problem. Burke et al. (2004)

discuss on the strengths and weaknesses of the literature on nurse rostering problem

and outline the key issues to be addressed in the research. Bard and Purnomo (2005,

2007) and Purnomo and Bard (2007) propose integer programming models for

scheduling the nurses in the presence of a fixed nursing staff, that vary in the

objective pursued (i.e., taking into account the preferences of nurses or minimizing

the number of uncovered shifts) and in the solution procedure: solved with a branch-

and-price algorithm, a column generation approach, or decomposed using

Lagrangian relaxation. Belien and Demeulemeester (2008) integrate the nurse and

the operating room scheduling processes adopting the column generation method.

Punnakitikashem et al. (2008) develop a stochastic integer programming model for

the nurse assignment in hospital. The model takes into account the variability of the

demand and is solved with a decomposition technique. DeGrano et al. (2009)

propose a scheduling that considers both nurse preferences and hospital constraints.

Sundaramoorthi et al. (2010) develop two numerical policies to make nurse-to-

patient assignments when new patients are admitted during a shift. A recent review

on nurse scheduling models is also reported in the chapter of Bard (2010). Finally,

Brunner et al. (2009, 2011) solve the flexible scheduling of physicians to shifts in

hospital with the goal of minimizing the overtime to be extra paid.

This analysis shows that the operator assignment in the healthcare domain is

solved with numerical approaches, as the mathematical programming, while no

attempts of formalizing structural policies can be found. The knowledge about the

structure of the optimal assignment policies could be helpful mainly for three

reasons. HC providers could easily apply simplified policies without requiring

expensive software applications, and this aspect can be particularly helpful for small

providers that does not have ERP-like platforms and a complex organization.

Furthermore, analytical policies can solve the problem with a limited computational

effort, allowing to easily include the high variability of the demand. Finally, the

structure of the optimal policy could be used to help research the optimum in the

heuristic-based algorithms that have to be adopted for large scale problems faced by

large HC providers.

This paper deals with the problem of assigning one newly admitted patient to a

HC operator (e.g. nurse, physician, physiotherapist) under uncertain workload

(related to the amount of care needed by the patients) and respecting the continuity

of care. Specifically, the paper proposes a structural policy for solving the

assignment problem, choosing the reference operator among a set of possible
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operators compatible with the newly admitted patient. In general, this set refers to

all of the operators belonging to patient’s district and, for this reason, compatible in

terms of skill and territory; however, in the presence of specific patient’s requests

(e.g., specific treatments related to the patient’s pathology or the gender

compatibility between the patient and the operator) the set can exclude some

operators in the district.

The reference operator of the new patient is chosen to reduce the expected value

of a penalty cost that is function of the amount of the time for visits that each

operator supplies in excess of his/her capacity (in accordance with the working

contract). Hence, the proposed policy allows planners to assign the new patient with

the minimum increase of the expected cost sustained by the HC provider under

stochastic patient demand.

In this paper we focus on nurses, who provide the largest amount of visits to the

HC patients and manage the emergencies and the fluctuations of the patient demand.

The paper is structured as follows: the detailed problem description and the

assumptions introduced are reported in Sect. 2. Then, in Sect. 3, the policy is

formally presented. In Sect. 4, the proposed policy is compared to the real practice

of HC providers that assign patients based on the expected workloads of their

operators. Finally, a real case analysis is reported in Sect. 5 and the conclusions of

the work are drawn in Sect. 6.

2 The model

This paper analyzes the case in which a new patient is admitted into the HC service

and has to be assigned to his/her reference operator. We consider the assignment of

the reference operator independent of the districting of the provider. It means that

the provider has already been divided into districts and that the human resources

have been already assigned to each district. Moreover, the problem is solved in a

configuration where the assignment is also independent of the routing of operators.

This is valid for several HC providers, where the territorial extension of the districts

is limited and the routes are drawn after the assignments are defined.

Each operator has been already loaded with a certain number of patients that, all

together, give an initial stochastic workload X0, expressed as the amount of time

spent for visits in the planning period (variable from a week to a month). To keep

simple the notation, we refer to a generic operator that is under consideration for the

assignment of a new patient; therefore, we omit the index denoting the specific

operator. The initial workload X0 is assumed distributed with a triangular probability

density function U0 xð Þ characterized by parameters a, b and c; parameter a is the

minimum workload, b the modal workload and c the maximum workload.

We consider a cost function for each operator that depends on the amount of time

for visits that he/she supplies in surplus to his/her capacity v in the planning period

(in accordance with the working contract). The analysis considers differential costs,

because only the visits above the contract threshold v are significant for the

assignment problem. The fixed costs for the HC provider are not considered (i.e.

costs associated with visits below v), because they are always sustained by the
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provider independent of the assignments of patients to their reference operator. An

implicit assumption is that nurses are employees of the HC provider.

The cost related to an operator is assumed to be a quadratic function of time for

visits above the capacity. Hence, an operator who works two hours of overtime is more

costly than two operators who work one hour of overtime. Therefore, the expected

cost C related to an operator under a stochastic workload X�U xð Þ is defined as:

C ¼
Z1

v

x� vð Þ2U xð Þdx ð1Þ

Given a set of n compatible operators, the assignment of the reference operator to

the new patient is chosen to minimize the increase of the expected cost. This leads

to balance, in some way, the workload among the operators. Workload balancing

among operators is a goal pursued in practice by most of HC providers.

We now introduce a set of further assumptions that focus the analysis on realistic

cases and allow us to simplify the analytical derivation of the optimal policy. These

assumptions are consistent with the real situation of several HC providers (Chahed

et al. 2006).

The operator capacity v is assumed to be in the second part of the triangular

density function U0 (i.e., b \ v \ c) (see Fig. 1). The other possibilities for v (i.e.,

v \ b and v [ c) are not of interest for a practical application of the assignment

policy. Indeed, the case v \ b is the case in which the operator is highly overloaded;

for this reason he/she should not be considered for the assignment of another

patient. The case v [ c refers to a highly underloaded operator that is not frequent in

real organizations.

The initial workload X0 of each operator is assumed to be stationary in the

planning period. This assumption might not be valid for some types of patients that

Fig. 1 Triangular probability density function U0 xð Þ with the related parameters. Parameter v is included
between b ? b and c
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may change their conditions during the care pathway. However, for chronic diseases

and some other pathologies that are relevant in the HC, this assumption may hold.

2.1 Initial cost

The initial expected cost C0 of an operator, according to Eq. (1) and the triangular

density function U0 xð Þ, is function of the current workload (i.e., a, b and c) and

capacity v:

C0 ¼
c� vð Þ4

6 c� að Þ c� bð Þ ð2Þ

The above expression is a convex function decreasing in v. When v is equal to the

maximum workload value c, the expected cost is 0. This is simply because the

probability of incurring in an extra time for visits is null.

2.2 Assignment cost

The new patient to assign has a stochastic service request Y (time demanded for

visits in the planning period) with a probability density function W yð Þ that strictly

depends on his/her characteristics at the beginning of the care pathway.

Two cases are considered in this paper. In the case the variability of the new

patient’s demand is neglected, a deterministic value l is assumed for Y
(with l C 0). In the case the variability of the new patient’s demand is included

in the model, it is difficult to go beyond the estimation of a minimum value a and a

maximum value b of the time requested for visits in the planning period. In the

absence of detailed information, the most convenient choice is to assume that the

density W is uniformly distributed within the interval [a, b].

The demand Y is assumed to be stationary in the planning period. Moreover, the

maximum workload related to a single patient is always inferior to the smallest

workload already assigned to an operator, i.e., b\ a. This assumption is motivated

because a patient usually requires at maximum one or two visits per day, while an

operator provides a larger number of visits on each day.

Finally, the assumption regarding v of each operator is modified into

b ? b\ v \ c to derive the assignment cost (see Fig. 1).

When the newly admitted patient is assigned to the reference operator, the initial

workload of this operator is increased with the demand of the new patient. In the

case of a deterministic patient demand, the new workload distribution ~U1 of the

assigned operator is simply shifted of l with respect to U0. Therefore, the new

expected cost (assignment cost) ~C1 is:

~C1 ¼
Z1

v

x� vð Þ2 ~U1 xð Þdx ¼ cþ l� vð Þ4

6 c� að Þ c� bð Þ ð3Þ

Alternatively, ~C1 can be directly obtained from Eq. (2) by adding l to the

parameters of the triangular distribution, or by subtracting l from v.
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With a uniform patient demand distribution W, the new workload distribution U1

is derived with the convolution product between the initial workload distribution U0

and the uniform distribution W:

U1 xð Þ ¼
Z1

�1

U0 x� nð ÞW nð Þdn

¼2
g x� að Þ

c� að Þ b� að Þ �
g x� bð Þ

b� að Þ c� bð Þ þ
g x� cð Þ

c� að Þ c� bð Þ

� � ð4Þ

where

g xð Þ ¼
Zx

�1

Zs

�1

W nð Þdn

2
4

3
5ds ð5Þ

Using a triangular density function for U0;U1 is equal to:

U1 xð Þ ¼
Zx�a

x�b

1

b� a
U0 nð Þdn ð6Þ

The resulting expression (limiting to the part x [ b ? b that is used in Eq. (1) for

calculating the cost) is:

U1 xð Þ ¼
� 2x�a�b�2c

c�að Þ c�bð Þ bþ b\x� cþ a
x�b�cð Þ2

b�að Þ c�að Þ c�bð Þ cþ a\x� cþ b
0 x [ cþ b

8><
>: ð7Þ

Then, the new expected cost C1 is obtained considering the distribution U1:

C1 ¼
Z1

vi

xi � við Þ2U1 xð Þdx ð8Þ

The analytical expression of C1, whose form is not simple, is reported in

Appendix 1. In detail, the analytical expression of the difference between ~C1 and C1,

leading to the expression of C1, is derived. This difference measures the accuracy of

the approximation derived from neglecting higher moments in patient demand Y.

2.3 Objective function

The goal of the assignment is to allocate the newly admitted patient to only one

reference operator, among the n compatible ones, characterized by the lowest

increment of the expected cost (i.e., the difference between the assignment cost in

the case of patient assignment and the initial cost).

In the case of deterministic patient demand, the objective is to minimize the

increment ~d:

~d ¼ ~C1 � C0 ð9Þ
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where the expression of ~d has a simple analytical form:

~d ¼ cþ l� vð Þ4� c� vð Þ4

6 c� að Þ c� bð Þ ð10Þ

In the case of uniform patient distribution W, the objective is to minimize the

increment d:

d ¼ C1 � C0 ð11Þ

which has a more complex analytical expression (see Appendix 1).

In Sect. 2.4, the comparison between the two cases and the appropriateness of

considering the minimization of ~d instead of d (with a simpler analytical form) are

discussed.

2.4 Comparison between deterministic and stochastic patient demand

The two objective functions introduced in Sect. 2.3 are compared with a geometrical

approach. For this purpose, we refer to the time for visits that can be loaded to the

operator below the capacity v (i.e., the assignable workload) or the extra time for

visits exceeding v (i.e., the excess workload). Therefore, the parameters of the

distribution U0 are expressed in relative terms with respect to the operator capacity

v:

at ¼ a� v
bt ¼ b� v
ct ¼ c� v

8<
: ð12Þ

ct can be interpreted as the maximum workload in excess related to the analyzed

operator and the absolute value of at as the maximum assignable workload (Fig. 1).

The domain of these parameters is determined according to the relationships

imposed among the variables:

at� bt� 0

ct� 0

�
ð13Þ

Let us now define the parameter rb, related to the asymmetry of the distribution

U0, as the ratio:

rb ¼
b� a

c� a
¼ bt � at

ct � at
ð14Þ

with 0 \ rb \ 1.

The analytical expressions of C0; ~C1 and ~d are modified as follows:

C0 ¼
c4

t

6 1� rbð Þ ct � atð Þ2
ð15Þ

~C1 ¼
ct þ lð Þ4

6 1� rbð Þ ct � atð Þ2
ð16Þ
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~d ¼ ct þ lð Þ4�c4
t

6 1� rbð Þ ct � atð Þ2
ð17Þ

and the constraints of Eq. (13) are modified into:

ct � 0

at� � rb

1�rb
ct

�
ð18Þ

The isolevel curves of C0, d and ~d can be reported in the plane ct, at. Each point

in the admissible zone of the plane ct, at (included in the IV quadrant according to

Eq. (18)) represents a possible operator, and the contour line passing through the

point his/her associated expected initial cost or cost increase. Figure 2 reports the

contour plots of d (in two cases, with different variability of the uniform patient

demand W) and ~d, while the contour plot of C0 is reported in Fig. 3.

Two operators can be considered in the same contour plot if their workload density

functions U0 have the same value of rb (same asymmetry of the distribution). As

regards the nurses, basing on several real cases, this condition is often verified among

the n nurses compatible with a new patient to assign. This probably holds because the

assignment splits the different types of patients among the operators, with consequent

similar mixes, and the mode of the distribution is in the same intermediate position

between the minimum value and the maximum value.

Points in the upper left region represent operators with a low variability of the

workload (low difference ct - at), while points in the lower right region represent

Fig. 2 Contour plot of d (dotted lines) and ~d (continuous lines) with rb = 0.5 and l = 3: a case with
medium patient variability (a = 2 and b = 4), and b case with high patient variability (a = 0 and
b = 6). The non admissible region, given by Eq. (18), is grey colored
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operators with a high variability of the workload (high difference ct - at).

Moreover, the more a point is close to the line at ¼ � rb

1�rb
ct that limits the

admissible region, the more the operator has an expected workload close to his/her

capacity.

The expected cost increases d and ~d are compared in terms of the direction of the

gradient of their isolevel curves in the plane ct, at, where the direction Dk of a curve

k is defined as the ratio between the derivative of k with respect to at and the

derivative of k with respect to ct. Dk represents the tangent of the angle between the

gradient vector of k and the axis ct.

It is possible to notice a good superposition between d and ~d for a low patient

demand variability, with a difference that limitedly grows when the variability

increases (Fig. 2). In detail, directions D~d and Dd are similar in each point, even in

the presence of a large patient demand variability. As a consequence, in the majority

of cases, the operator with the lowest cost increase remains the same including or

neglecting the variability of the new patient’s demand.

The motivation for this similarity is that the patient demand variability is

negligible with respect to the variability already assigned to the operators. When an

operator takes care of a certain number of patients, the variability of the already

assigned workload is prevailing on the variability of the new patient in the

determination of the cost increase. Therefore, it can be reasonable to consider ~d
rather than d.

Fig. 3 Contour plot of C0 (with
rb = 0.5). The non admissible
region is grey colored
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Also considering other shapes for the probability density function W,

the variability of the new patient’s demand is negligible with respect to

the variability already assigned and the assumption of considering ~d remains

valid.

After the assignment of a patient to an operator, the point relative to the

operator moves in the contour plot as a consequence of the workload increase:

both the mean value and the standard deviation of the operator workload

increase, while the skewness does not significantly change because a uniform

distribution for the new patient’s demand is assumed (we can therefore

suppose that rb remains the same). Following the geometrical approach, the

operator point movement in the plane ct, at after the assignment is derived in

Appendix 2.

3 Assignment policy

The policy minimizes the expected cost increase related to the patient-operator

assignment. The cost increase ~d is considered in the analytical derivation of the

policy, as discussed in Sect. 2.4.

The following Lemmas will be useful for deriving the policy.

Lemma 1 The direction DC0
is always positive ðDC0

[ 0Þ and C0 increases with
ct and at.

Proof The direction DC0
is calculated as the ratio between the derivative of C0

with respect to at and the derivative of C0 with respect to ct:

DC0
¼ 2 ct � atð Þ

ct
� 1

� ��1

ð19Þ

This expression is greater than zero if at\ ct

2
, that is always valid in the

admissible region because at \ 0 and ct [ 0.

Moreover, the derivative of C0 with respect to at is equal to:

oC0

oat
¼ c4

t

3 1� rbð Þ ct � atð Þ3
ð20Þ

that is always positive in the admissible region; therefore, C0 increases with at.

Also the derivative of C0 with respect to ct is always positive, because of DC0
[ 0

and oC0

oat
[ 0. Therefore, C0 increases with ct. h

Lemma 2 For any assignment patient-operator characterized by an initial
operator workload distribution U0 and a patient demand l, the directions D~d and

DC0
are related in the following way: D~d [ DC0

.

Proof The direction D~d is calculated as the ratio between the derivative of ~d with

respect to at and the derivative of ~d with respect to ct:
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D~d ¼
2 ct � atð Þ 3c2

t þ 3lct þ l2
� �

4c3
t þ 6lc2

t þ 4l2ct þ l3
� 1

� ��1

ð21Þ

Considering Eqs. (19) and (21), the condition D~d [ DC0
is expressed as follows:

2 ct � atð Þ 3c2
t þ 3lct þ l2

� �
4c3

t þ 6lc2
t þ 4l2ct þ l3

� 1

� ��1

[
2 ct � atð Þ

ct
� 1

� ��1

ð22Þ

After some manipulations it results in:

3c2
t þ 3lct þ l2

4c3
t þ 6lc2

t þ 4l2ct þ l3
\

1

ct
ð23Þ

and then in (ct ? l)3 [ 0. Therefore, inequality (22) is satisfied for all of the

admissible ct and l (both positive values). h

Lemma 3 The direction D~d is always positive ðD~d [ 0Þ and ~d increases with ct

and at.

Proof Inequalities D~d [ DC0
(Lemma 2) and DC0

[ 0 (Lemma 1) result in D~d [ 0.

Moreover, the derivative of ~d with respect to at is equal to:

o~d
oat
¼ ct þ lð Þ4�c4

t

3 1� rbð Þ ct � atð Þ3
ð24Þ

that is always positive in the admissible region; therefore, ~d increases with at.

Also the derivative of ~d with respect to ct is always positive, because of D~d [ 0

and o~d
oat

[ 0. Therefore, ~d increases with ct. h

Assuming valid to consider ~d rather than d for the expected cost increment (as

discussed in Sect. 4), the policy derived in the following is optimal. In the

derivation, the particular case of operators with the same initial cost is firstly

considered and, then, the theorem for the general assignment policy is formu-

lated.

Theorem 1 In the presence of operators with the same C0 and rb, the optimal
choice is to assign the patient to the operator with the highest assignable workload
(lowest at) independent of the new patient’s demand.

Proof Lemmas 1, 2 and 3 affirm that D~d [ DC0
[ 0. Therefore, considering

different points on the same C0 isolevel line (meaning operators with the same C0

and rb), the point with the highest at value intersects the isolevel line of ~d with the

highest value and vice versa (Fig. 4).

Hence, given different operators with the same initial cost C0, the lowest cost

increase is obtained assigning the patient to the operator with the lowest at value

(highest assignable workload). h

In the presence of different initial costs, the general theorem of the assignment

policy is now stated.
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Theorem 2 In the presence of two operators i and j with the same rb, if operator i
has the lowest C0 and the maximum assignable workload (lowest at), the optimal
choice is to assign the new patient to operator i, independent of the new patient’s
demand. Otherwise, the optimal choice also depends on the new patient’s demand
and the optimal choice is to assign the new patient to the operator with the minimum
expected cost increase.

Proof The value of ~d increases moving from the lower left part to the upper right

part in the admissible zone of the plane ct, at (Lemma 3). Consequently, considering

the ~d curve passing through the point of operator i, the region upper this line is

characterized by higher cost increases (assuming operators with the same rb value)

and operator i is the best assignment with respect to all of the operators j whose

point is in the region upper the ~d curve through the point i.

Based on Lemma 2, the isolevel curve of C0 passing through the point of operator

i is on the right with respect to the isolevel curve of ~d passing through the same

point for at values greater than the value of operator i. On the contrary, the isolevel

curve of C0 is on the left with respect to the isolevel curve of ~d for at values lower

than the value of operator i (see Fig. 4).

Therefore, if operator j has higher C0 and at values than operator i (with the same

rb), he/she consequently has a higher ~d value and the optimal choice is to assign the

patient to operator i. On the contrary, if operator j has lower C0 and at values than

operator i, he/she consequently has a lower ~d value and the optimal choice is to

assign the patient to operator j (Fig. 5).

Fig. 4 Intersections of
different operators points
having the same C0 value

with the ~d isolevel curves
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If operator j is in the remaining regions of the plane, the best assignment depends

on the new patient’s demand (i.e., l) because the ~d curve passing through the point

of operator i is included in these regions, with a direction D~d that depends on l.

Indeed, D~d increases with l where
oD~d
ol [ 0, with:

oD~d

ol
¼

ct � atð Þ l4 þ 6l3ct þ 15l2c2
t þ 16lc3

t þ 6c4
t

� �
4c3

t þ 6lc2
t þ 4l2ct þ l3

� �2 2 ct�atð Þ 3c2
tþ3lctþl2ð Þ

4c3
tþ6lc2

tþ4l2ctþl3 � 1
h i2

ð25Þ

Hence, because both l and ct are positive and at is negative, the condition
oD~d
ol [ 0 is always verified and D~d always increases with l. Therefore, if operator

j has a lower at value and a higher C0 than operator i, the optimal choice is to assign

the patient to operator i for low l values and to operator j for high l values. On the

contrary, if operator j has a higher at value and a lower C0 than operator i, the

optimal choice is to assign the patient to operator j for low l values and to operator i
for high l values. h

More complex demonstrations can be developed for d instead of ~d. We

numerically verified that the same policy can be derived considering d, as

expected.

Fig. 5 Graphical
representation of the
assignment policy in the C0

contour plot (with rb = 0.5)
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4 Comparison with the expected workload approach

In the current practice of the HC providers, the variability of patient demands, and

consequently of future operator workloads, is not considered. The only information

used for assigning the patient to his/her reference operator is the operator expected

workload, often estimated as the sum of the standard times for visits of his/her

patients in the charge (taken from existing clinical protocols). Consequently, the

patient is assigned to the operator with the smallest utilization value scaled to his/

her capacity.

To model this practice with the approach proposed in this paper, only the

expected value is extracted from each triangular distribution U0. Thus, the new

patient is assigned to the operator with the highest expected assignable workload W
that is given by the difference between the operator capacity v and his/her expected

workload:

W ¼ v� aþ bþ c

3
¼ � at þ bt þ ct

3
ð26Þ

Parameter rb is introduced also in this case:

W ¼ � at 2� rbð Þ þ ct 1þ rbð Þ
3

ð27Þ

An analogue contour plot is drawn for W, to compare the assignment policy with

the expected workload approach (Fig. 6). When W assumes a negative value, it has

to be interpreted as an expected workload in excess. Therefore, this region is not

considered for the assignment of new patients, because an operator with an expected

workload in excess than his/her capacity should not receive other patients. If

rb = 0.5, this region is equal to the region excluded from the hypotheses (Eq. (18)).

Similar directions D~d and DW in a region of the plane lead to similar assignments

under both the assignment policy and the expected workload approach, while on the

contrary, different directions indicate a solution of the assignment problem that

depends on the approach.

The direction DW is constant all over the admissible region and it is equal to:

DW ¼
2� rb

1þ rb
ð28Þ

DW varies from 0.5 if rb = 1 to 2 if rb = 0, with a value equal to 1 in the case of a

symmetric function U0 with rb = 0.5.

Because the assignment is for the highest W (while for the lowest d in the case of

the policy), the gradients to compare have opposite versa; however, the similarity

between directions is not influenced by the different versa and the approaches can be

compared by analyzing the direction.

Figure 7 reports the contour plot of D~d � DW ; very similar plots are obtained for

Dd - DW. In the admissible region, the differences D~d � DW and Dd - DW are

almost everywhere negative and the directions are highly different. Therefore,

different solutions of the assignment problem can derive from using W instead of the

proposed policy. Similar directions are obtained in a limited region, where the
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differences are low (upper part of the admissible region, characterized by a quite

null W and a low variability of the operator workload). This means that the expected

workload approach is useful only in this zone, while in the other regions there is a

potential added value in considering the service demand variability with its cost for

the entire structure. Considering the real case analyzed in Sect. 5, the majority of

operator points are in the lower region of the plane ct, at, where the difference is

high (Fig. 8).

As an example, comparing the two operators of Fig. 6, the approaches lead to

opposite decisions: operator 2 is chosen with the expected workload approach, while

operator 1 with the minimum cost increase policy. The corresponding triangular

density functions of the two operators are shown in Fig. 9. Operator 1 has a lower W
than operator 2 and the expected workload approach consequently assigns the new

patient to operator 2. However, the part of the workload distribution U0 greater than

v suggests that operator 2 has a higher probability to exceed the capacity. This

excess is translated into a higher cost for the structure, according to Eq. (1), and the

minimum cost increase policy assigns the new patient to operator 1.

In detail, the assignment provided by the expected workload approach is different

from the assignment provided by the minimum cost increase policy mainly if the

assignments provided by the policy also depends on the new patient’s demand (see

Theorem 3), as shown in the following Corollary.

Fig. 6 Contour plot of d
(continuous lines) and
W (dotted lines) with points
relative to two operators
(operator 1 with at = -10.5
and ct = 3.5; operator 2 with
at = -17 and ct = 6).
Parameters are the same as in
Fig. 2a
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Fig. 7 Contour plot of
D~d � DW with l = 3 and

rb = 0.5. The non admissible
zone is grey colored

Fig. 8 Points relative to the
nurses of the considered
districts of the analyzed HC
provider, reported in the
contour plot of C0 (the non
admissible region is grey
colored)
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Corollary 1 Considering two operators whose workloads are fitted with

triangular density functions U0 with the same rb� 1
3
, a different assignment

between the minimum cost increase policy and the expected workload approach is
possible only if the assignment of the policy is influenced by the new patient’s

demand. If rb\ 1
3
, a different assignment between the minimum cost increase policy

and the expected workload approach is also possible if the assignment of the policy
is independent of the new patient’s demand in the region where at\� ct

2
.

Proof The direction DW is always positive (0.5 B DW B 2) and W grows moving

to the lower left zone of the plane ct, at.

Considering the point of an operator i, if DC0
\ 0.5 in the point, the W line

through the point i is always included in the region where the best assignment of the

policy also depends on the new patient’s demand. This condition is verified for:

at\�
ct

2
ð29Þ

When verified, the region where the policy assigns the new patient to operator i
independently from the new patient’s demand always refers to a higher W for

operator i than for operator j and also the W approach assigns the new patient to

operator i, and vice versa. Hence, opposite choices only occur where the best

assignment of the policy also depends on the new patient’s demand (see Fig. 5).

Considering the admissible region, given by Eq. (18), the condition of Eq. (29) is

always verified if rb� 1
3
. If rb\ 1

3
, Eq. (29) is not verified close to the boundary of

the admissible region, where rb

rb�1
ct\at\� ct

2
(operators with an expected workload

close to the capacity). h

5 Real case analysis

5.1 Provider

The real case analysis is conducted considering the nurses of one of the largest

Italian public HC providers. This provider operates in the north of Italy, covering a

Fig. 9 Triangular probability
density functions U0 xð Þ for
the operators of Fig. 6
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region of about 800 km2, with about 1,000 patients assisted at the same time and 50

nurses. It is divided into three divisions and the analysis refers to the largest one. In

this division, six independent districts of nurses are present, divided by skill and

territorial distribution. Table 1 reports the main data for the districts of the analyzed

division; the districts with only one nurse are excluded from the analysis.

The capability of the proposed policy to balance the workload among the nurses

and to reduce the variable costs is evaluated over a period of 26 weeks (data from

April to September 2008).

5.2 Experimental set-up

An initial assignment of the reference nurse is carried out for the initial week

(named week 0) for all of the patients in the charge, while the other assignments are

carried out rolling at each week: at the beginning of each week, the new patients

admitted in the service in the previous week are assigned.

The weekly arrivals of new patients are taken from the historical data of the HC

provider, in terms of numerousness, characteristics and district, while the patient

demands (demand expressed in terms of weekly hours for visits) are estimated with

the patient stochastic model built with the procedure of Lanzarone et al. (2010).

The minimum cost increase policy is applied and evaluated in three different

experiments:

1. Using triangular distributions U0 for X and uniform distributions W for Y,

both computed to fit the empirical distributions from the patient stochastic

model relative to the next week. Hence, the planning horizon is equal to one

week.

2. Using triangular distributions U0 for X and deterministic values l for Y, both

computed to fit the empirical distributions from the patient stochastic model

relative to the next week, with a planning horizon equal to one week.

3. Using the empirical distributions for both X and Y, directly obtained from the

patient stochastic model. In this case, the non stationarity of the patient demand

is considered, using a planning period of eight weeks (with a different

distribution for each patient demand at each week) and considering the cost

function as the sum of the costs estimated at each one of the eight weeks.

The expected workload approach W is also evaluated, with a planning horizon

equal to one week, using the expected values of the empirical distributions from the

Table 1 Districts of nurses in

the considered division of the

analyzed HC provider

District Skill Territory Number of nurses

1 Non palliative A 8

2 Palliative A 3

3 Non palliative B 4

4 Palliative B 1

5 Non palliative C 5

6 Palliative C 1
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patient stochastic model for both the operators’ workloads X and the new patient’s

demand Y.

In all of the cases, the initialization at week 0 is carried out using the minimum

cost increase and the empirical distributions; then, in the other weeks, the different

approaches are adopted.

The goal is to evaluate the impact of an inappropriate modeling of the initial

workloads and the new patient’s demand (U0 and W, respectively).

By the data collected from the analyzed division, rb has a mean value of 0.467

and a standard deviation of 0.070 (estimations are made on the basis of a sample of

22 operators). Hence, each density function U0 is estimated based on the expected

value and the variance of the empirical distribution, assuming rb = 0.467.

Parameter a is imposed to be higher than 0; in the case a \ 0, a = 0 is set,

maintaining the same expected value and rb and underestimating the variance.

For each uniform patient distribution W; a and b are estimated based on the

expected value and the variance of the empirical distribution. In the case a\ 0,

a = 0 is set, maintaining the expected value and underestimating the variance.

Because more than one patient has to be assigned at each week, a simple rule

coherent with the assignment approach is adopted to choose the assignment order. For

the cost increase approaches, the new patients are ranked by their expected cost

increase (after having identified the best nurse for each patient). For the expected

workload approach, the new patients are ranked by their expected demand. Then,

the new patient with the highest cost increase or expected demand is the first

assigned patient, and this ranking process is repeated for the other new patients,

and so forth.

If an operator is underloaded with respect to the hypotheses (i.e., c \ v), we

consider a null cost increase so that he/she is the best assignment. On the contrary,

if an operator is overloaded with respect to the hypotheses (i.e., b ? b[ v), he/she

is the worst assignment. In the presence of two or more operators in one of these

conditions, they are ranked starting from the patient with the highest difference

v - c (for underloaded operators) or the lowest difference b - v (for overloaded

operators).

The new assignments and the planned workload of each operator at each week

are obtained in each experiment. The assignments are then executed in a set of 10

sample paths, generated with a mix between a Monte Carlo approach from the

considered demand distributions and the real execution. The Monte Carlo approach

is used for the majority of patients, while the demands of long stay non palliative

patients (with a very low variability along with the time that does not represent an

uncertainty source) are taken from their real execution. Finally, the assignments are

evaluated with the performance indicators described in Sect. 5.3 These indicators

allow to validate the hypotheses introduced and to compare the proposed policy

with the expected workload approach.

5.3 Performance indicators

The mean utilization �u along with the weeks is assumed to be the workload level

indicator for each nurse. This indicator is calculated as the ratio between the weekly
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time for visits spent by the nurse and his/her capacity v for each simulated week,

averaged from week 1 through week 25.

Within each district, the range of �u among the nurses (denoted with Z) is

computed as the indicator of the workload balancing performance of the assignment

in the district: the more a strict range is obtained, the more a higher workload

balancing is performed.

Finally, the mean variable cost is computed for each district, as the average of

costs among the nurses belonging to the district, averaged from week 1 through

week 25.

Table 2 Results of the first cost increase approach (triangular distributions U0 for X and uniform

distributions W for Y)

District 1 District 2 District 3 District 5

�u

Sample paths average 0.7997 0.6440 0.9635 0.9204

Z

Planned 0.0589 0.0345 0.0460 0.0620

Sample path 1 0.1754 0.4337 0.3344 0.1803

Sample path 2 0.3934 0.2603 0.3127 0.2179

Sample path 3 0.2138 0.4677 0.3106 0.1814

Sample path 4 0.2244 0.4027 0.2654 0.1635

Sample path 5 0.3602 0.4402 0.3676 0.2011

Sample path 6 0.3334 0.3200 0.3168 0.1598

Sample path 7 0.3537 0.3175 0.3239 0.2477

Sample path 8 0.3228 0.4140 0.1927 0.1039

Sample path 9 0.2326 0.1593 0.4096 0.2929

Sample path 10 0.3446 0.5787 0.3220 0.3049

Sample paths average 0.2954 0.3794 0.3156 0.2053

Cost

Planned 2.16* 0.90* 35.53* 12.56*

Sample path 1 5.66 4.71 42.07 15.17

Sample path 2 7.65 0.36 26.18 28.78

Sample path 3 6.61 13.05 44.06 9.47

Sample path 4 3.16 7.54 28.95 33.17

Sample path 5 9.11 5.24 26.13 34.68

Sample path 6 6.47 8.49 26.70 17.81

Sample path 7 8.68 6.73 40.89 29.54

Sample path 8 12.34 8.13 23.05 11.02

Sample path 9 11.45 5.77 49.43 7.76

Sample path 10 6.67 1.94 34.61 36.82

Sample paths average 7.78 6.20 34.21 22.42

* Planned costs for overloaded operators (i.e., b [ v) are computed based on Eq. (15) after imposing

v = b
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6 Results and discussion

Results of the experiments are reported in Tables 2, 3, 4, and 5. Planned values refer

to the expected demand predicted for assigning, while the executed values are

reported for both each sample path and averaged on the paths.

The three experiments based on the minimum cost increase show very similar

results. Thus, the adoption of the triangular approximation does not affect the

results with respect to the use of the empirical distributions (comparison among

Tables 2, 3 and 4). Moreover, the variability of the new patient’s demand seems

to be negligible with respect to the operator workload variability. Indeed, very

Table 3 Results of the second cost increase approach (triangular distributions U0 for X and deterministic

values l for Y)

District 1 District 2 District 3 District 5

�u

sample paths average 0.8010 0.6440 0.9636 0.9189

Z

Planned 0.0669 0.0345 0.0419 0.0551

Sample path 1 0.2144 0.4337 0.3073 0.1903

Sample path 2 0.3992 0.2603 0.3200 0.2294

Sample path 3 0.2300 0.4677 0.3183 0.1714

Sample path 4 0.3072 0.4027 0.2713 0.2480

Sample path 5 0.3832 0.4402 0.3145 0.2031

Sample path 6 0.2876 0.3200 0.3266 0.2091

Sample path 7 0.3704 0.3175 0.3506 0.2496

Sample path 8 0.3570 0.4140 0.1881 0.1006

Sample path 9 0.1846 0.1593 0.4311 0.3009

Sample path 10 0.3340 0.5787 0.3385 0.2854

Sample paths average 0.3068 0.3794 0.3166 0.2188

Cost

Planned 2.26* 0.90* 35.63* 12.61*

Sample path 1 6.61 4.71 45.94 13.61

Sample path 2 7.13 0.36 27.92 30.68

Sample path 3 7.46 13.05 45.15 9.09

Sample path 4 3.52 7.54 30.79 32.51

Sample path 5 9.46 5.24 21.53 33.65

Sample path 6 5.65 8.49 31.24 17.79

Sample path 7 9.35 6.73 43.05 28.02

Sample path 8 12.52 8.13 25.64 11.28

Sample path 9 9.43 5.77 49.78 7.66

Sample path 10 5.57 1.94 35.02 34.44

Sample paths average 7.67 6.20 35.61 21.87

* Planned costs for overloaded operators (i.e., b [ v) are computed based on Eq. (15) after imposing

v = b
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similar results for districts 1, 3 and 5 and equal results for district 2 are obtained

assuming a uniform distribution W (Table 2) or a deterministic patient demand l
(Table 3).

Table 6 reports the percentage differences for ranges and costs between the

proposed policy (Table 2) and the expected workload approach (Table 5).

Stricter ranges Z and lower costs are obtained with the minimum cost increase

with respect to the expected workload approach W for the districts related to

non palliative patients (districts 1, 3 and 5). In the case of palliative patients

(district 2), no benefit is shown by the cost increase policy. This holds because

Table 4 Results of the third cost increase approach (empirical distributions from patient stochastic

model)

District 1 District 2 District 3 District 5

�u

Sample paths average 0.8014 0.6304 0.9460 0.9199

Z

Planned 0.0671 0.1108 0.0459 0.0413

Sample path 1 0.1948 0.3845 0.2463 0.0894

Sample path 2 0.4818 0.0760 0.3164 0.1377

Sample path 3 0.2817 0.3233 0.2549 0.1159

Sample path 4 0.2342 0.0793 0.2310 0.1388

Sample path 5 0.4106 0.3343 0.2589 0.1032

Sample path 6 0.3458 0.2895 0.1584 0.0877

Sample path 7 0.3176 0.1852 0.3219 0.1656

Sample path 8 0.3177 0.2398 0.2777 0.1213

Sample path 9 0.1492 0.1763 0.3201 0.2169

Sample path 10 0.3112 0.4240 0.3773 0.1628

Sample paths average 0.3045 0.2512 0.2763 0.1339

Cost

Planned 0.78* 0.28* 16.60* 3.46*

Sample path 1 6.35 7.29 37.97 15.00

Sample path 2 9.87 0.35 28.51 21.65

Sample path 3 7.96 15.17 43.35 11.04

Sample path 4 5.27 4.10 23.91 29.96

Sample path 5 10.18 7.79 38.32 35.44

Sample path 6 5.34 2.81 20.20 19.15

Sample path 7 11.68 2.63 49.65 28.95

Sample path 8 10.28 10.63 32.46 16.85

Sample path 9 7.49 5.25 42.63 9.35

Sample path 10 4.74 6.81 36.96 33.18

Sample paths average 7.92 6.28 35.40 22.06

* Planned cost is the average over the adopted planning period, equal to 8 weeks; this is an underesti-

mation of the cost related to the first week, because a decreasing trend of patient demands is present along

with the weeks
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of the lower variability of the demand of palliative patients (Table 7). As a

matter of fact, the obtained cost is similar between the approaches and the

range is minimized by the expected value approach that considers the expected

available capacity rather than the probability of exceeding the capacity. The

Table 5 Results of the expected value approach

District 1 District 2 District 3 District 5

�u

Sample paths average 0.8111 0.6487 0.9928 0.9440

Z

Planned 0.0964 0.1502 0.0759 0.0598

Sample path 1 0.3504 0.4057 0.7676 0.3893

Sample path 2 0.4521 0.2290 0.5261 0.4566

Sample path 3 0.4865 0.3647 0.6210 0.3063

Sample path 4 0.4429 0.4177 0.5839 0.4132

Sample path 5 0.4332 0.4995 0.4117 0.3513

Sample path 6 0.4478 0.2468 0.5809 0.2955

Sample path 7 0.4447 0.2498 0.5197 0.4687

Sample path 8 0.4216 0.1917 0.4823 0.4019

Sample path 9 0.4813 0.1907 0.5189 0.3105

Sample path 10 0.4061 0.4423 0.6292 0.3967

Sample paths average 0.4367 0.3238 0.5641 0.3790

Cost

Sample path 1 9.39 4.75 93.56 24.69

Sample path 2 9.72 0.30 42.57 30.53

Sample path 3 17.94 5.95 72.10 15.56

Sample path 4 7.85 13.68 78.22 32.97

Sample path 5 10.67 6.57 38.58 35.65

Sample path 6 11.42 4.22 67.22 30.63

Sample path 7 19.07 5.57 56.73 45.93

Sample path 8 13.81 10.38 49.10 28.69

Sample path 9 20.67 6.44 70.79 16.09

Sample path 10 9.59 3.78 80.09 45.44

Sample paths average 13.01 6.16 64.90 30.62

Table 6 Sample paths average values compared between the proposed policy (in the case of triangular

distributions U0 for X and uniform distributions W for Y) and the W approach: value in the policy minus

value in the W approach, divided by value in the W approach

District 1 (%) District 2 (%) District 3 (%) District 5 (%)

Z -32.3 17.2 -44.1 -45.8

Cost -40.2 0.5 -47.3 -26.8
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lower variability can be explained considering that the palliative class includes

patients with very similar pathologies and, consequently, similar care pathways.

7 Conclusions

The proposed policy allows resource planners to assign the reference operator to

each newly admitted patient, with the main goal of reducing the expected costs for

the HC provider under the constraint of respecting the continuity of care.

All of the hypotheses at the basis of the policy were evaluated considering the

real data of the several HC providers (Chahed et al. 2006; Lanzarone and Matta

2009; Lanzarone et al. 2010). Therefore, the proposed policy can be considered

general and applicable to a large number of structures. The comparison with the

expected workload approach underlines that, for patients with a high variability of

the demand, the proposed policy provides lower costs and higher balancing than the

widespread approach, usually adopted by HC providers, based on the expected

available capacity. Considering the typical classification of HC providers, this refers

to non palliative patients.

Another result is that the demand variability of the newly admitted patient is

negligible with respect to the variability already assigned to the operator workload

(given by the variability of the already assigned patients). This result has been

validated on one real case analysis.

Our future work will focus on the analysis of the entire probability density function

of the cost increase, in order to develop a more general assignment policy based on

stochastic orders. Moreover, the possibility of removing some assumptions made in

this work will be evaluated. For instance, the assumption dealing with the stationarity

of the workload distribution cannot be applied to some specific categories of patients.

Table 7 Mean value and

standard deviation of the weekly

patient demand in hours at the

admission in the service for the

different types of patients (data

from the patient stochastic

model of Lanzarone et al.

(2010))

Type of care Care profile Mean SD

Extemporary care 1 1.345 1.365

15 0.921 1.188

Integrated 2 2.826 1.116

Home care 3 2.561 1.158

4 2.755 1.382

5 4.291 2.237

9 1.935 1.099

10 1.277 1.098

12 2.347 1.108

13 2.810 1.185

14 2.707 1.388

Palliative care 6 6.509 3.013

7 3.531 1.499

8 1.482 1.093
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Another extension will be the assignment of a set of newly admitted patients all

together, instead of one patient at a time. Furthermore, the assignment decision

framework could be more complex, since the HC provider could decide not to admit a

new patient if the available capacity of the operators is not sufficient.

Appendix 1: Exact cost analysis

With a uniform distribution W, the new expected cost C1 is obtained by integrating

U1 (Eq. (7)) in the expression of cost (Eq. (8)). For the sake of simplicity, C1 is

alternatively derived as follows:

C1 ¼ ~C1 � DC1 ð30Þ

where DC1 is the difference between the new expected cost under deterministic

patient demand l and the new expected cost with a uniform distribution W. Indeed,

DC1 is calculated as the difference of the integrals for cost between ~U1 and U1,

limiting the integral to the region where U1 and ~U1 are different:

DC1 ¼
Zcþa

2þ
b
2

cþa

� x� vð Þ22x� a� b� 2c

c� að Þ c� bð Þ dx

�
Zcþb

cþa

x� vð Þ2 x� b� cð Þ2

b� að Þ c� að Þ c� bð Þ dx ¼ 2

c� að Þ c� bð ÞH ð31Þ

where:

H ¼ x x2 x
4
� kþ 2v

3

� �
þ x 2kvþ v2ð Þ

2
� kv2

� �
þ k4

12
� k3v

3
þ k2v2

2

þ x
2 b� að Þ

x4

5
� x3

2
nþ vð Þ þ x2

3
n2 þ 4nvþ v2
� �

� vnx nþ vð Þ þ v2n2

� �

� 1

2 b� að Þ
8n5

15
� n4 l

2
� v

6

	 

þ n3v2

3

� �
ð32Þ

with x = c ? a, n = c ? b and k = c ? l.

In the same way, also the cost increase d is determined considering DC1:

d ¼ C1 � C0 ¼ ~C1 � DC1 � C0 ¼ ~d� DC1 ð33Þ

Appendix 2: Operator point movement after the assignment

The analytical derivation of the operator point movement after the assignment starts

from two opposite cases. In the derivation, it is assumed a triangular density

function for the operator’s workload also after the assignment.
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• Assignment of a patient with a null demand variability: in this case, the variance

of the workload remains constant after the assignment. It results in the same

at - ct both before and after the assignment. Therefore, the operator point

moves on a straight line parallel to the bisector of the I and III quadrant:

at ¼ ct þ at0 � ct0ð Þ ð34Þ

where the pedix 0 refers to the initial position of the operator.

If the demand of the new patient has a positive standard deviation, the variance

of the operator workload increases and the new operator point is under this

straight line. Therefore, the line is an upper limit to the possible operator

movements in the plane ct, at.

• Assignment of a patient with a null expected demand and a positive standard
deviation. This is a non real condition because the demand Y does not admit

negative values; however, this case is useful for analytically deriving the

operator movement. In this case, the operator point moves with a constant

expected value (same at ? bt ? ct both before and after the assignment):

at ¼ �
1þ rb

2� rb
ct þ at0 þ

1þ rb

2� rb
ct0

� �
ð35Þ

This is a straight line with a negative slope, varying from -2 if rb = 1 to -0.5 if

rb = 0. With a positive expected value of patient demand, the new operator

point is over this straight line; therefore, this line is a lower limit to the possible

operator movements in the plane ct, at.

In the general case, the operator movement secondary to an assignment can be

seen as the superposition of the assignments of a first patient with an expected

demand lpatient and a null standard deviation of the demand, and a second patient

with a null expected demand and a positive standard deviation rpatient of the

demand.

Starting from the initial operator position (characterized by l0 and r0), we define

a new plane where the axes are the limits to the operator movement (Fig. 10).

The axis of movements corresponding to a null standard deviation of the new

patient’s demand is parameterized by t and the new expected workload of the

operator after the assignment is linear with t:

l ¼ at þ bt þ ct

3
¼ l0 þ t ð36Þ

The axis of movements corresponding to a null expected patient demand is

parametrized by u and the new variance of the operator after the assignment is

quadratic with u:

r2 ¼ a2
t þ b2

t þ c2
t � atbt � atct � btct

18

¼r2
0 þ u2 11� 3rb þ 5r2

b

18 2� rbð Þ2
þ u

3
ct0 � at0ð Þ r

2
b � rb þ 1

2� rb

ð37Þ
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Given the possible values of ct, at and rb, r2 grows with u C 0 with a positive

concavity.

The operator movement is in the first quadrant of the plane t, u. However, a

further constraint between lpatient and rpatient has to be introduced for avoiding

negative values of patient demand. This is lpatient C H rpatient, where H is a

coefficient depending on the distribution W (H ¼
ffiffiffi
3
p

for the uniform distribution).

In the plane t - u, the curve lpatient ¼
ffiffiffi
3
p

rpatient is determined with the condition

l� l0ð Þ2¼ 3 r2 � r2
0

� �
. After some manipulations, this results in the following

equation:

uþ u�ð Þ2

P2
� t2

Q2
¼ 1 ð38Þ

with:

u� ¼P ¼
3 ct0 � at0ð Þ 2� rbð Þ r2

b � rb þ 1
� �

11� 3rb þ 5r2
b

Q ¼
ct0 � at0ð Þ r2

b � rb þ 1
� �

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11� 3rb þ 5r2
b

p
ð39Þ

This is an hyperbola (Fig. 10) with semiaxes P and Q, the foci on axis u, one

vertex in the origin of the plane t, u and the other vertex for u \ 0 (the distance

Fig. 10 Movement of an operator point after the assignment
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between the vertices is proportional to ct0 - at0). The slope of the asymptotes is

constant (Q/P is independent of the coordinates of the operator point).

The admissible movement is over this hyperbola. Hence, the movement area is a

region on the right of the operator point, included between a straight line (Eq. (36))

and a hyperbola (Eq. (38)).

In this area, the coordinates t and u of the operator after the assignment are

obtained from the expected value and the standard deviation of the new patient’s

demand Y, based on Eqs. (36) and (37). Different zones can be distinguished,

depending on the new patient’s demand (Fig. 10). Considering the data collected

from the analyzed HC provider, these zones correspond to the different types of

patients (Fig. 10): Extemporary Care patients with low level of demand, Integrated

HC patients with a relevant number of visits with a certain variability, and Palliative

Care patients with high level of demand associated with low variability (Table 7).
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