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Abstract Demand fulfillment and capacity utilization directly affects customer

satisfaction, market growth, and the profitability of the company in the semicon-

ductor industry. These characteristics boost the significance of allocating various

customer demands to a number of wafer fabrication facilities (fabs) with different

capacity configurations. Before volume production, the introduction of new semi-

conductor product, namely new tape-out (NTO), requires extremely sophisticated

and lengthy qualification with high-cost masks and pilot runs in the qualified fabs.

Thus, the NTO allocation will affect future product mix of the qualified fabs, and

the flexibility to fulfill the volume demands of the allocated NTOs in the corre-

sponding fabs. This research aims to construct a two-stage stochastic programming

(2-SSP) demand fulfillment model. The first stage considers NTO allocation deci-

sions to a number of qualified fabs before the corresponding demand volume is

realized. The second stage allocates the capacity to fulfill demand requirements

based on the results of four options of capacity reconfiguration: (1) qualifying a

product to more than one fab (share); (2) physically transferring a set of masks for a

product from one fab to another, where a requalification is required (transfer); (3)

moving tools from under-loaded fabs to over-utilized fabs (backup); and (4) uti-

lizing different technologies to capacity inside a fab to support the technology with

insufficient capacities (exchange). Both the share and transfer options require long
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lead time for qualification, whereas the backup and exchange options can be

accomplished within a planned timeframe. A numerical study based on real settings

is conducted to estimate the validity of the proposed 2-SSP model via values of

stochastic solution (VSS) and expected values of perfect information (EVPI). The

results showed the benefits of adopting 2-SSP models, especially in an environment

with high-demand fluctuation. Furthermore, the proposed 2-SSP can provide near-

optimal solutions similar to those of deterministic models with perfect information.

Keywords New tape-out allocation � Capacity planning � Demand fulfillment

planning � Stochastic programming � Manufacturing strategy � Decisions under

uncertainty

1 Introduction

In the semiconductor industry that is very capital intensive, semiconductor

companies strive to enhance their capital effectiveness via managing demand

fulfillment and capacity utilization to maintain their competitive advantage

(Leachman et al. 2007; Wu and Chien 2008). Following Moore’s Law that the

number of transistors fabricated on an integrated circuit (IC) will be doubled

approximately every 1 or 2 years (Moore 1965), semiconductor manufacturing

companies have been continuously developing new technology nodes and investing

most advanced tools and facilities to fulfill the demands for producing advanced

products. In particular, the cost of building one modern 300 mm wafer fabrication

facility (fab) is 4 billion US dollars, and the price for a single machine installation

may range from 3 to 10 million US dollars. On average, equipment depreciation

costs account for approximately 60% of total production costs.

On the other hand, it takes a long lead time between 6 and 12 months for

equipment procurement especially when the demand highly fluctuates (Wu et al.

2005; Chien et al. 2010). For semiconductor manufacturers, planning the capacity

and fulfilling various customer demands are very critical, since they will affect

customer satisfaction and capacity utilization, ultimately affecting corporate

profitability and growth (Chien and Zheng 2011). On the other hand, demand

fulfillment is very challenging, due to planning the release of numerous products,

along with the high level of uncertainty associated with the demand, and the

requisite of long lead-time for qualifying a specific product in a fab. Poor

management causes strife between demand and capacity among fabs or technol-

ogies, and sales are lost while a capacity remains idle.

To avoid this strife and to enhance capacity utilization, semiconductor companies

should improve order allocation for various products, and corresponding capacity

configurations of the allocated fabs. In particular, order allocation includes the

allocation of the new tape-outs (NTOs) of forthcoming products as well as the

allocation adjustment of existing products in light of their demand changes. Since

the IC layout design was stored in magnetic tapes decades ago, NTO means to hand

off the file of new product design to make a lithography mask for mass production in

fab (Mouli and Winstead 2007). NTO is a time-consuming process that includes the
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creation of expensive masks, qualifications and pilot runs to ascertain the production

capability in the selected fab for potential volume production later. NTO allocation

is a crucial leading factor for proactively managing future demand profiles in the

fabs. However, not every NTO will generate volume production for the product later

and the generated volumes are also varied among the products with different life

cycles. Little research has been done to examine the characteristics of NTO and

address the NTO allocation.

Indeed, NTO allocation can be optimized to form a desirable expected demand

profile via allocating more NTOs to an anticipated under-loaded fab in the future

and fewer NTOs to the other fabs. Furthermore, the masks are increasingly

expensive as the device feature is continuously shrunk and not sharable between the

fabs. Thus, poor allocation of NTOs will cause reallocation of some NTO that

requires another long qualification lead time and tremendous engineering efforts in

another fab and extra cost for remaking or revising the masks. In practice, most

companies rely on time-consuming deterministic solutions and manual adjustments,

resulting in loss of consistent quality, since combinatorial complexities are involved

in the adjustments of NTO allocations.

This study constructs a demand fulfillment planning framework to facilitate the

decision-making process regarding NTO allocations, with considering capacity

backup and product reallocation to alter short-term capacity configuration, to fulfill

the demands and minimize the costs. Since the planning is based on forecast

demands, the problem is formulated to cope with demand uncertainty and to find an

optimal solution under different versions of forecasts, i.e., scenarios. In particular,

we constructed a two-stage stochastic programming (2-SSP) demand fulfillment

model that allocates NTOs to a number of qualified fabs before the corresponding

demand volume is realized and then matches fab capacity with various demands,

while employing various capacity reconfiguration options.

The remainder of this paper is organized as follows: Sect. 2 defines the NTO

allocation and demand fulfillment issues, and related literature. Section 3 presents

the 2-stage stochastic programming model, and demonstrates how it addresses the

issues. Section 4 introduces a study based on synthetic data aligning with actual

settings in a globally recognized semiconductor fab located in Taiwan, to examine

the validity of the proposed approach and to analyze the suggested decisions under

different situations of demand variation. Section 5 presents a conclusion with a

discussion on future research directions.

2 Problem statement and related studies

2.1 New tape-out allocation, capacity configuration, and production

New tape-out represents the stage where the IC designer sends a new circuit to the

manufacturer for wafer fabrication in the semiconductor industry. The name is

derived from past conventions, where the design of a new product was sent to the

manufacturer via tapes. For semiconductor manufacturers, NTOs introduce the

latest products with the potential for new demand, thereby changing the future
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demand profile of fabs. Since demand volume is highly uncertain, multiple

forecasters provide projections according to the information they obtain from

different industry experts. For example, sales and marketing professionals may

provide two contradictory demand forecasts. For example, in low season, the sales

demand forecast tends to be affected by short customer behavior and thus may be

pessimistic, while the marketing demand forecast is based on long term economic

trends and thus may be optimistic. In addition, demand planners collect information

from sales and marketing departments to form a compromise forecast. Different

forecast versions in this study represent ‘‘scenarios’’ with varied occurrence

probabilities. If no stochastic model is applied, one scenario must be consented for

NTO allocation based on group decisions.

Each semiconductor product must undergo the process of mask creation and pilot

run to qualify for fab production capability prior to entering the volume production

stage. The lead time is approximated to be two quarters, i.e., 6 months, on average.

A set of masks is essential to implement the qualification process for each new

product, so that the pilot run of products can be executed. The pilot run

manufactures products in small volumes for the purpose of qualification. The

capacity it occupies is so minuscule that it can almost be ignored. The qualification

is intended to certify the capability of fabs, to properly manufacture products

conforming to its specifications and functionality requirements. The masks are the

means to enabling follow-up actions. Masks are expensive, and can range from

several hundred thousand dollars to more than a million US dollars per set. In

addition, masks are created according to the feature of the processes and tools of the

fab.

New tape-out allocation can select the ideal fab to produce the specific NTO

where multiple fabs are concerned. It chooses a fab for each NTO for production

before the masks can be created, and the pilot run process can begin. The fact that

the creation of masks is dependent on the feature of fabs implies that sharing masks

between fabs is unfeasible, since most fabs do not possess identical tools and

homogeneous manufacturing processes. Poor NTO allocation will result in a

disparity between demand and capacity, raising the need for product reallocation

and consequently resulting in additional costs for creating or revising masks.

Therefore, NTO allocation is influential to increase future demand and lower

potential additional costs, the results of which can either be disastrous, or allow a

company to increase its profit margin substantially.

The share and transfer options are two modes of adjusting the allocation of

existing products to increase demand. To ‘‘share a product,’’ which entails the

manufacture of a product in more than one fab, an additional set of masks will be

created for the product, subsequently increasing costs. All fabs sharing a product are

qualified to manufacture the same product and enjoy the production flexibility by

adjusting production volume between these fabs. To ‘‘transfer a product’’ signifies

switching from the fab a product was originally assigned to; its masks will be

physically transferred to the new destination, where the new fab will manufacture

the product. A number of revisions on the masks may be required once the product

has been transferred, to fit the process and tools of the target fab. The cost is

typically lower than the sharing option, since only certain parts of the masks need

A two-stage stochastic programming approach 289

123



reworking. However, transferring does not have the additional benefit of increasing

flexibility that the sharing option possesses.

The capacity backup and exchange options are approaches to configuring the

capacity of different technologies and fabs to fulfill demand according to spare

capacity. The concept of inter-fab backups is to shift capacity from under-loaded

fabs to over-utilized ones, consequently relaxing the tight production schedule.

Overloaded fabs lend their machines to under-loaded fabs, where the main cost lies

on transportation. The semiconductor manufacturer in this study can benefit from

the effect of clustering fabs because fab locations are generally close, requiring little

time to transport machines between fabs for the purpose of inter-fab backup.

Inner-fab backup, also called ‘‘capacity exchange,’’ utilizes the capacity of

different technologies inside a fab to support the technology with insufficient

capacity. A fab shares a number of common tools between several technologies, and

other dedicated tools are devoted to technologies that are more specific. The

combination of the capacity of dedicated tools and the allocated working time of

common tools affect the capacity of each technology. Thus, when the working time

of common tools allocated to a technology increases, the capacity will increase

accordingly, if not bound by dedicated tools. The different cycle times for producing

special technologies result in a disparity for capacity exchange. Therefore, the

capacity exchange rate is significant for estimating capacity more accurately. In

practice, capacity backup or exchange takes a number of days, negligible when

compared to a planned timeframe, e.g., a quarter.

Considering both the capacity configuration of fabs and their capability to

manufacture products, the planned capacity configuration indicates the feasibility

for allocating products to fabs for production. With the planned capacity

configuration and wafer demand forecast, the manufacture of products can be

determined, giving rise to production costs for fulfilling demand, along with

potential penalties for failing to meet that demand. This research considers the

following expenses as targets to be minimized: mask, capacity backup, exchange,

production, and penalty for unmet demands.

2.2 Related works

The NTO allocation problem is similar to the issue of product-to-plant allocation in

the automotive industry, enunciated by Inman and Gonsalvez (2001). The trouble

lies in introducing new automotive models to plants because the modification of a

plant requires heavy financing and long lead time to qualify a new product. The

problem becomes more complex with regard to high-volume products, which may

involve the capacity of more than a single plant. Other related studies regarding the

product-to-plant allocation problem has been developed for the automotive industry.

Fleischmann et al. (2006) developed a planning model for product allocation to

global production sites, and affected capacity investment. Kauder and Meyr (2009)

also developed a strategic network-planning model for the automotive industry,

particularly for premium cars.

Sharing products is similar to the concept of ‘‘chaining’’ where a chain is the

direct or indirect connection formed between a group of products and plants,
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according to product assignment decisions (Jordan and Graves 1995). The sharing

option proposed in this research also connects fabs by manufacturing the same

product in different fabs, for flexibility in deciding the production allocation for a

certain product. Jordan and Graves (1995) demonstrated that utilizing the chaining

method can enhance limited flexibility to a near total level. This research, however,

differentiates itself from the works of Jordan and Graves (1995), Inman and

Gonsalvez (2001), and Kauder and Meyr (2009) by addressing additional

applications of transfer, inter-fab backup options, inter-fab exchange options, and

multiple demand scenarios.

Rather than assuming that the demand is deterministic, stochastic programming

(SP) can treat the demand distribution as a set of discrete scenarios in the model,

minimizing expected costs across all scenarios. Common SP methods include the

two-stage SP model and the multi-stage SP model. The decisions in the two-stage

SP can be halved into two categories: decisions in the first stage remain unaffected

by uncertain conditions, signifying that the decisions were made prior to the

emergence of said uncertain conditions. Therefore, NTO allocation is the first-stage

decision because it must be made prior to the observation of the realized demand.

The second-stage decisions are dependent on the first-stage decisions and the

scenarios. They engage in a recourse action to compensate for the first-stage

decisions, minimizing expected costs under scenarios once the uncertain variables

have been disclosed. The second-stage problem is also called the recourse problem.

The production decisions belong to the second-stage because the demand realization

and allocation results must be considered, to decide how each fab will fulfill

demand. In contrast, multi-stage SP is a generalized form allowing revisions of

decisions based on the uncertainties revealed during each time period. The multi-

stage scenarios of times can be independent or dependent, influencing the

complexity of computation and the effectiveness of modeling. This study focused

on two-stage SP, where NTO demand scenarios correspond with multiple forecasts

from different forecasters, such as sales, marketing, and demand-planning

departments. To request multi-stage scenarios across a number of times from

forecasters is unfeasible in practice, whereas generating them alongside a scenario

tree is computationally intractable. A more detailed discussion on two-stage and

multi-stage SP models and their comparisons can be found in Huang and Ahmed

(2005), who also state that the value of multi-stage SP is augmented by addressing

the gap between the objectives of two-stage and multi-stage SP models.

The performance of stochastic models is commonly measured via the expected

value of perfect information (EVPI), and the value of stochastic solution (Birge and

Louveaux 1997). Let S be the set of scenarios and denote the optimal solution of a

deterministic model under scenario s 2 S by DMðsÞ ¼ arg min
x

zðx; sÞ. Assuming

that complete information is obtainable prior to the formation of a decision, we have

the optimal wait-and-see solution, WSðsÞ ¼ DMðsÞ, of a deterministic model under

scenario s 2 S. The corresponding objective value of WS(s) is z DMðsÞ; sð Þ ¼
z WSðsÞ; sð Þ. The expected value of the WS solutions can be computed as zWS ¼
P

s2S

Ps � z WSðsÞ; sð Þ ¼ ESz WSðSÞ; Sð Þ where Ps represents the probability of
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occurrence of scenario s. Conversely, the optimal value of the so-called here-and-

now (HN) solution, corresponding to the recourse problem, is defined as zHN ¼
min

x
ESzðx; SÞ where the solution is denoted by HN(S) = arg zHN. Subsequently, the

EVPI is defined as zHN - zWS, the difference between the obtained value of the HN

solution considering uncertain circumstances versus the expected value of WS

solutions obtained when perfect information is available. A decision maker should

reject a proposal if the price of the information is greater than the EVPI.

Alternatively, the benefit of ‘‘value of the stochastic solution’’ lies in its

capability to compare the expected value (EV) solution against the HN solution. The

EV solution is the optimal solution of the mean value problem, i.e., EVð�sÞ ¼
arg min

x
zðx; �sÞ where the set of expected values of all scenarios is considered the

input scenario, denoted by �s ¼ EðSÞ. Considering realization, the expected objective

value of applying the EV can be further defined as zEV ¼
P

s2S Ps�
z EVð�sÞ; sð Þ ¼ ES z EVð�sÞ; Sð Þ½ �. Subsequently, the conventional value of the sto-

chastic solution is defined as zEV – zHN.

Instead of measuring the conventional value of the stochastic solution with

respect to the mean value problem, this study is concerned with the value of the

stochastic solution, hereafter abbreviated as the VSS, with respect to the

deterministic model solution, DM(s), under a given scenario s 2 S. In practice,

each forecaster has a distinct view, and the reality is likely similar to the proposed

scenarios. Conversely, when employing the deterministic model, one scenario must

be consented for NTO allocation based on group decisions. Simply utilizing

expected demand can hardly persuade decision makers to take further action, due to

the lack of causal explanations. Defining VSSðsÞ ¼
P

s02S Ps0 � z DMðsÞ; s0ð Þ �
zHN ¼ ES z DMðsÞ; Sð Þ½ � � zHN yields VSS ¼ ES VSSðSÞ½ �.

A number of SP applications are in practice concerning capacity planning in the

semiconductor industry and other industries. Barahona et al. (2005) presented a

stochastic model of capacity planning under demand uncertainty for semiconductor

manufacturing. They tried minimizing the expected unmet demand with a two-stage

stochastic model, to decide which tools to procure under capacity and budget

constraints. Chen et al. (2002) developed an SP model for technology and capacity

planning in an environment involving multiple products, stochastic demands, and

technology alternatives. They also proposed a solution procedure based on the

Lagrangian method restricting simplicial decomposition. Christie and Wu (2002)

presented a multi-stage SP model for strategic-capacity planning for a semicon-

ductor manufacturer; the model determined the quantity of distinct technology

configured in each facility and for each time period. Geng et al. (2009) considered

demand and capacity uncertainty when constructing an SP model. It showed that the

results of decisions were optimal according to the variation of capacity. Geng and

Jiang (2009) summarized characteristics of 2-SSP applications to semiconductor

industries, including objectives of unmet demand, production costs, allocation costs,

inventory costs, target utilization, supply preferences, constraints of tool purchase

budget and capacity, as well as decisions regarding tool purchase, wafer starts, work

assignment, and the allocation of wafer operations to different tools. Other studies
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relevant to the semiconductor industry focus on the allocation of products to tools

instead of fabs (Bilgin and Azizoglu 2009; Chung et al. 2006; Wang et al. 2007).

Studies have proposed solution techniques such as Lagrangian relaxation and

decomposition-based branch-and-bound strategies to manage the large-scale mixed-

integer program. In particular, the L-shaped method formulates 2-SSP as a dual

block-angular structure with which one may perform a Dantzig-Wolfe decompo-

sition of the dual or a Benders’ decomposition of the primal to accelerate

computation (Birge and Louveaux 1997).

Nevertheless, relevant studies have failed to present a model incorporating NTO

allocation, product share and transfer options, capacity backup and exchange

options, and production decisions. Without an integrated model, the decision-maker

cannot evaluate a critical NTO allocation plan capable of demonstrating flexibility.

3 The two-stage stochastic programming model for NTO
allocation decisions

3.1 Terminologies and notations

Sets

E Set of existing products

F Set of all fabs considered

Fi Set of fabs capable of producing technology required by product i

Fk Set of fabs capable of producing technology k

K Set of technologies considered

Kj Set of technologies fab j is capable of producing

N Set of NTOs (new products)

S Set of demand scenarios

T Set of times within planning horizon, T ¼ 1; 2; . . .;Tf g
Decision variables

xij Whether to allocate NTO i to fab j, i 2 N; j 2 Fi; xij 2 0; 1f g. The first-stage decision variable.

This decision is formed once in the model, when the action time is aligned with the first

production of the NTO

ys
ij Whether to share existing product i to fab j under scenario s, i 2 E; j 2 Fi; s 2 S; ys

ij 2 0; 1f g
zs

ijlt Whether to transfer product i from fab j to fab l at time t under scenario s,

i 2 E [ N; j; l 2 Fi; j 6¼ l; t 2 T; s 2 S; zs
ijlt 2 0; 1f g

pfs
ijt Capability to manufacture product i by fab j at time t under scenario s,

i 2 E [ N; j 2 Fi; t 2 T; s 2 S; pfs
ijt 2 0; 1f g

qs
ijt The quantity of demand of product i fulfilled by fab j at time t under scenario s,

i 2 E [ N; j 2 Fi; t 2 T; s 2 S; qs
ijt � 0

us
it The quantity of demand of product i not satisfied at time t under scenario s,

i 2 E [ N; t 2 T; s 2 S; us
it � 0

cs
jkt The amount of capacity of technology k in fab j at time t under scenario s,

j 2 F; k 2 Kj; t 2 T; s 2 S; cs
jkt � 0

ces
jhkt The amount of capacity exchanged from technology h to technology k in fab j at time t under

scenario s, j 2 F; h; k 2 Kj; h 6¼ k; t 2 T; s 2 S; ces
jhkt � 0

A two-stage stochastic programming approach 293

123



cbs
jlkt The amount of capacity of technology k in fab j physically relocating (backups) some of its

equipment (thereby capacity) to fab l at time t under scenario s,

k 2 K; j; l 2 Fk; j 6¼ l; t 2 T; s 2 S; cbs
kjlt � 0

Parameters

Ps Probability of occurrence of scenario s, Ps� 0;
P

s2S Ps ¼ 1

PTik Whether product i is manufactured with technology k, i 2 E [ N; k 2 K;PTik 2 0; 1f g
FTjk Whether fab j is capable of producing technology k, j 2 F; k 2 K;FTjk 2 0; 1f g
PFAij Capability of fab j to manufacture product i starting from time 1, i 2 E; j 2 Fi;PFAij 2 0; 1f g.

Particularly, PFAij represents the value of pfs
ijt when t is equal to zero.

CAjkt Capacity of technology k in fab j at time t, j 2 F; k 2 Kj; t 2 T;CAjkt � 0

Ds
it Forecast demand of product i at time t under scenario s, i 2 E [ N; t 2 T; s 2 S;Ds

it � 0

LSi Lead time to share product i with another fab, i 2 E [ N;LSi� 0

LTi Lead time to transfer product i to another fab, i 2 E [ N;LTi� 0

ERhk Capacity exchange rate from technology h to technology k, h; k 2 K; h 6¼ k;ERhk � 0

CELk Upper limit of capacity for technology k to be exchanged to other technologies, k 2 K;CELk � 0

CBLj Upper limit of capacity for fab j to back up other fabs, j 2 F;CBLj� 0

CEjh Cost for fab j to exchange capacity from technology h to other technologies,

j 2 F; h 2 Kj;CEjh� 0

CBjk Cost for fab j to back up technology k of other fabs, k 2 K; j 2 Fk;CBjk � 0

CMi Cost of making a new set of masks for product i, i 2 E [ N;CMi� 0

CTi Cost of transferring product i, i 2 E [ N;CTi� 0

CPij Unit cost of manufacturing product i by fab j, i 2 E [ N; j 2 Fi;CPij� 0

CUi Unit penalty for unsatisfied demand of product i, i 2 E [ N;CUi� 0

3.2 Assumptions

1. Capacity expansion decision is formed in advance, and is thus not considered in

this model. Ongoing capacity expansions are reflected by the time-indexed

capacity parameter, CAjkt.

2. No sharing or transferring decisions in progress.

3. Inventory and backlog are not considered, since this study focused on wafer

foundry that is make-to-order without inventory, while backlog will become

deferred demand.

4. All parameters are constant and do not vary with the volume of products to

manufacture.

5. The time lag for backup and exchange are negligible, since each of them only

cost a number of days, compared to monthly or quarterly based time slots. Fabs

clustered within an area with a diameter of 10-km is normal in a mega-fab

environment.

This study focuses on make-to-order production systems, such as fabrication

foundry services, where inventory and backlog are commonly negligible in the

capacity and demand-planning context. To further take nonlinear and varying

parameters, such as costs and lead times, into taken, one may consider
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incorporations of nonlinear relations among capacity, cycle time, work-in-process,

utilization, and throughput based on open-network queue models (Bitran and

Tirupati 1989; Bard et al. 1999; Kim and Uzsoy 2008) as a future research direction.

A literature review can be found in Pahl et al. (2007).

3.3 Model construction

The demand fulfillment problem is constructed as a two-stage stochastic model

under discrete uncertain scenarios. The decisions in the model include the first-

stage NTO allocation, and the second-stage product sharing and transferring

options, capacity backup and exchange options, and the production plan for each

product.

Min
X

i2N

X

j2Fi

CMixij þ
X

s2S

Ps COs þ qsð Þ ð1Þ

COs ¼
X

i2E

X

j2Fi

CMiy
s
ijþ

X

i2E[N

X

j2Fi

X

l2Fi;l6¼j

X

t

CTiz
s
ijlt þ

X

j2F

X

h2Kj

X

k2Kj;k 6¼h

X

t

CEjhkces
jhkt

þ
X

k2K

X

j2Fk

X

l2Fk ;l6¼j

X

t

CBkjlcbs
jlkt þ

X

i2E[N

X

j2Fi

X

t

CPijq
s
ijt; 8s 2 S ð2Þ

qs ¼
X

i2E[N

X

t

CUiu
s
it; 8s 2 S ð3Þ

X

j2Fi

xij� 1; 8i 2 N ð4Þ

X

j2Fi

qs
ijt þ us

it ¼ Ds
it; 8i 2 E [ N; t 2 T; s 2 S ð5Þ

cs
jkt ¼ CAjkt þ

X

h2Kj;h 6¼k

ERhkces
jhkt �

X

h2Kj;h 6¼k

ces
jkht þ

X

l2Fk ;l 6¼j

cbs
ljkt �

X

l2Fk ;l6¼j

cbs
jlkt;

8j 2 F; k 2 Kj; t 2 T; s 2 S ð6Þ
X

k2Kj

X

l2Fk ;l6¼j

cbs
jlkt �CBLj

X

k2K

CAjkt; 8j 2 F; t 2 T; s 2 S ð7Þ

X

h2Kj;h 6¼k

ces
jkht �CELkCAjkt; 8j 2 F; k 2 Kj; t 2 T; s 2 S ð8Þ

X

i2E[N

PTikqs
ijt � cs

jkt; 8j 2 F; k 2 Kj; t 2 T; s 2 S ð9Þ

PFAij ¼ pfs
ijt þ

X

l2Fi;l 6¼j

zs
ijlt; 8i 2 E; j 2 Fi; s 2 S; t ¼ 1 ð10Þ

pfs
ijt ¼ 0; 8i 2 N; j 2 Fi; s 2 S; t�LSi ð11Þ
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xij ¼ pf s
ijt þ

X

l2Fi;l6¼j

zs
ijlt; 8i 2 N; j 2 Fi; s 2 S; t ¼ LSi þ 1 ð12Þ

pfs
ij;t�1 ¼ pfs

ijt þ
X

l2Fi;l 6¼j

zs
ijlt; 8i 2 E; j 2 Fi; s 2 S; 1\t�LTi ð13Þ

pfs
ij;t�1 þ

X

l2Fi;l 6¼j

zs
ilj;t�LTi

¼ pfs
ijt þ

X

l2Fi;l 6¼j

zs
ijlt;

8i 2 E; j 2 Fi; s 2 S; t [ LTi; t 6¼ LSi þ 1

ð14Þ

pfs
ij;t�1 þ ys

ij þ
X

l2Fi;l6¼j

zs
ilj;t�LTi

¼ pfs
ijt þ

X

l2Fi;l 6¼j

zs
ijlt;

8i 2 E; j 2 Fi; s 2 S; t [ LSi þ 1

ð15Þ

PFAij þ ys
ij� 1; 8i 2 E; j 2 Fi; s 2 S ð16Þ

qs
ijt � pfs

ijtD
s
it; 8i 2 E [ N; j 2 Fi; s 2 S; t 2 T ð17Þ

The objective is to minimize the expected costs and penalties under different

scenarios, as shown in Eq. 1. Equation 2 displays the expected costs, consisting of

mask creation costs, mask revision costs, production costs, capacity backup costs,

and exchange costs. The costs arising from demand allocation decisions mainly

entail mask creation and revision costs. Mask creation costs occur because of the

NTO allocation decisions and product sharing decisions. Mask revision costs

correlate with the transfer of products. The cost of capacity decisions involves

backup and exchange to adjust the capacity configuration of fabs.

The penalty function penalizing unmet demand is as Eq. 3. The penalty for

unmet demand varies between products, to represent that the importance of each

product is not identical. The penalty occurs in both new products and existing

products, whenever a demand is not fulfilled.

Equation 4 displays the restriction that every NTO should be allocated to at least

a fab. In addition, each NTO would possibly be assigned to more than one fab,

which in actuality constitutes the sharing decisions of NTOs. Equation 5 assures the

demand consistency, which is intended to separate the total demand of each product

into satisfied demand, and unmet demand. The constraint assures the satisfied

demand, while the unmet demand will equal total demand for every product,

including both NTOs and existing demands in every period. This feature restricts

demand from reaching total satisfaction because the overall capacity might be

insufficient to fulfill demand. It avoids the unfeasibility of the model, and provides

the base for the unmet demand penalty function.

Equation 6 defines available capacity after utilizing the capacity backup and

capacity exchange option. The available capacity of a technology changes when

capacity is exchanged from other technologies for sustenance, experiencing a

decrease when it supports other technologies. Furthermore, the capacity backup and

exchange options can also cause the available capacity rate to rise or descend. When

different technologies exchange the capacity, the amount of capacity received might

not equate to the amount donated from other technologies because it is multiplied by

a capacity exchange rate. The received capacity could either be higher or lower than
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the amount donated. This is because the original capacity plan is calculated based on

a certain product mix assumption. If the product mix realization does not follow the

assumption, capacity will be different. However, setting up machines occupies little

time, since the greatest alteration lies in the assumption.

Equations 7 and 8 provide the maximum proportion for the backup and exchange

option to utilize capacity. Equation 7 requires that the amount of capacity backup be

limited to a certain ratio. Since the backup uses the capacity of one fab to support

another, to be without limitation would be unfeasible for preventing depletion of the

capacity of a fab. Capacity backup usually transfers tools between the fabs to

change capacities, and the limitation signifies that only part of these tools can be

transferred to support other fabs. Equation 8 also limits capacity exchange

decisions, to prevent exhausting the capacity of one technology to sustain another.

Equation 9 restricts the total production volume to less than the available

capacity after capacity backup and exchange. It ensures that the production volume

remains in the range achievable by fabs, while product allocation and capacity

backup approaches.

The feasibility constraints (10–13) limit the ability of fabs to manufacture

products. Equation 10 states that the ability to manufacture existing products in the

first period is dependent on the original allocation, and can be altered by product

transfer decision. When a transfer occurs, the product is removed from fab j and

relocated to fab l (i.e., the masks are moved from fab j to fab l), without involving

other fabs. Equations 11 and 12 are the constraints for NTOs. NTO allocation

affects the ability to manufacture products, and the ability of fabs to produce them is

only after a lead time to qualify, which is equal to the time period required to share

products. Equation 13 states that production feasibility remains as constant as the

previous period when t is smaller than LTi. The only possibility to alter the

feasibility is to transfer the product to another fab.

Equation 14 represents the production feasibility that will be affected by

receiving a product transferred from another fab. Equation 15 considers product-

sharing decisions for existing products, meaning that if a product i is shared to a fab,

the influence on the feasibility of the fab to manufacture it will be realized after a

lead time LSi. Finally, Eq. 16 restrains a product from being assigned to a fab which

is not able to produce it. Equation 17 limits the production volume to less than the

demand if the fab is capable of producing it. Otherwise, the production quantity will

be equal to zero. The number of total binary variables equals to the sum of number

of NTO allocation, transfer, share, and capability decision variables, or equivalentlyP
i2N

P
j2Fi

1þ
P

s2S

P
i2E

P
j2Fi

1þ
P

t2T

P
s2S

P
i2E[N

P
j;l2Fi;j 6¼l 1þ

P
t2T

P
s2SP

i2E[N

P
j2Fi

1. The number of total continuous variables equals to the sum of

number of production quantity, unmet demand, amount of capacity exchanged, and

amount of backup capacity decision variables,
P

t2T

P
s2S

P
i2E[N

P
j2Fi

1þ
P

t2T

P
s2S

P
i2N 1 þ

P
t2T

P
s2S

P
j2F

P
k2Kj

1þ
P

t2T

P
s2S

P
j2F

P
h;k2Kj;h6¼k 1þ

P
t2T

P
s2S

P
k2K

P
j;l2Fk ;j6¼l 1. On the other hand, the number of effective

constraints is the number of constraints summing over Eqs. 4–17, i.e.,
P

i2N 1þ
P

t2T

P
s2S

P
i2E[N 1 þ

P
t2T

P
s2S

P
j2F 1 þ

P
t2T

P
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P
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3 þ
P

s2S
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1. As the

estimation of problem scale shown, the proposed model can only deal with limited

number of products, technologies, fabs, scenarios, and times. When the problem size

grows much larger, we need to incorporate with specialized methods, such as the

L-shaped method (Birge and Louveaux 1997), to find solutions. On the other hand,

most of stochastic integer programming problems for capacity decisions are

NP-hard (Ahmed and Sahinidis 2003; Barahona et al. 2005). Therefore, efficient

approximate solutions or heuristic strategy are particularly required for large-scale

problems.

4 Numerical study

4.1 Experimental design

Based on real settings, the numerical study conducts experiments to evaluate the

performance of the stochastic model against the deterministic model. The proposed

models are solved by LINGO on a PC, with Intel Core 2 Duo 3.00 GHz CPU and

3.24 GB RAM. The synthetic data include three technologies, three fabs, and thirty

products over a 6-quarter planning horizon, i.e., t = 1, 2, …, 6, generated according

to the opinions of the domain expert, to simulate actual scenarios. Among the three

fabs, only Fab 2 is capable of processing all three technologies, whereas the other

two fabs are incapable of processing one technology, e.g., as shown in Table 1, Fab

1 and Fab 3 cannot process Technology 3 and Technology 1, respectively. In

addition, five of the thirty products are NTOs to be allocated, and the other 25 are

existing products. More specifically, in Tables 2 and 3, products D01 to D05 are

NTOs, while D06 to D30 are existing products. The tables provide corresponding

technologies, allocations of existing products, and demand forecasts. The setting

does not include the case of qualifying a product for more than one fab to reflect a

leading company who has utilized its flexible clustering fabs.

Table 1 Capacity settings (CAjkt) (unit: 1,000 wafers)

Fab Technology Quarter

1 2 3 4 5 6

1 1 35 34 34 36 37 37

2 31 33 35 35 36 36

3 – – – – – –

2 1 31 29 31 32 33 32

2 28 28 30 29 31 30

3 28 27 30 30 32 33

3 1 – – – – – –

2 33 33 36 36 37 36

3 29 29 32 31 33 32

298 C.-F. Chien et al.

123



The demand of existing products is generated with the assumption that several

products will opt out of the time period while a number of them with stable demand

survive. For instance, in Table 3, D06 to D11 are products that will opt out of the

Table 3 Demand setting for existing products Ds
it; i 2 E

� �
(unit: 1,000 wafers)

Product Technology Fab Share

lead time

Transfer

lead time

Quarter

1 2 3 4 5 6

D06 1 1 1 1 5.4 3.5 0.0 0.0 0.0 0.0

D07 2 1 1 1 7.2 5.2 3.5 0.0 0.0 0.0

D08 3 3 1 1 4.9 4.1 3.6 0.0 0.0 0.0

D09 2 2 2 1 9.9 7.5 6.8 5.0 0.0 0.0

D10 1 1 1 1 7.2 5.0 3.9 3.6 3.0 0.0

D11 3 2 2 1 12.0 9.8 6.6 6.2 4.5 0.0

D12 1 2 3 2 12.3 11.2 8.9 8.8 7.5 7.5

D13 1 2 1 1 10.4 9.1 8.4 7.5 7.6 6.8

D14 2 1 2 1 9.8 8.9 8.0 8.2 7.0 6.7

D15 1 2 1 1 10.9 9.6 11.1 10.9 10.7 8.1

D16 2 3 1 1 14.1 15.3 13.3 12.0 12.4 11.1

D17 2 3 2 1 11.8 10.5 10.1 9.4 9.7 8.9

D18 3 3 1 1 10.9 10.2 10.0 8.7 9.4 9.4

D19 2 3 1 1 12.5 12.4 14.4 12.2 11.6 10.9

D20 3 3 1 1 9.2 9.4 11.4 9.9 8.3 9.3

D21 1 1 1 1 6.3 7.5 7.1 6.7 7.4 7.3

D22 2 1 2 2 12.0 13.7 14.8 15.0 14.7 14.1

D23 2 2 1 1 9.5 10.4 10.8 10.0 10.6 11.5

D24 3 2 1 1 11.6 12.1 13.0 12.7 14.2 15.3

D25 1 1 1 1 6.5 7.4 8.2 9.6 7.5 8.6

D26 3 3 1 1 6.1 7.5 9.9 9.3 11.2 10.3

D27 1 1 3 2 5.0 5.9 6.7 8.4 9.2 10.7

D28 1 2 2 2 0.0 5.0 5.8 7.6 9.5 10.8

D29 3 2 2 1 0.0 5.5 7.6 9.5 10.7 12.5

D30 2 2 1 1 0.0 7.3 7.5 8.6 9.4 10.8

Table 2 Demand setting for NTOs Ds
it; i 2 N

� �
(unit: 1,000 wafers)

Product Technology Share lead time Transfer lead time Quarter

1 2 3 4 5 6

D01 1 2 1 0.0 0.0 5.0 6.7 8.6 9.8

D02 2 2 2 0.0 0.0 6.0 7.4 8.8 10.1

D03 2 1 1 0.0 0.0 6.2 8.1 9.9 10.4

D04 2 2 1 0.0 0.0 0.0 5.5 7.9 9.0

D05 3 2 1 0.0 0.0 0.0 6.0 7.5 8.5
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time period in the planning horizon, D12 to D19 are in a decreasing trend, and D20

to D30 are experiencing an increase in demand. The aggregated demand of each

technology is set at near capacity, since the capacity is assumed to expand according

to the demand forecast, shrinking the gap between demand and capacity.

Expenses required for planning include the mask cost, production cost, capacity

backup cost, capacity exchange cost, and the penalty for unmet demand. The costs

are set under the suggestion of domain experts to make their relative scale

reasonable. The costs for creating a new set of masks and revising existing masks

are different because only parts of the masks require reworking. The cost of new

masks is incurred in conjunction with NTO allocation or the sharing of a product,

and the revision cost occurs with the transference of a product. The costs also vary

with the technologies required to manufacture the product. Costs of creating masks

increase when more advanced technology is necessary. Table 4 shows the costs of

creating new masks and revising them. The production costs change depending on

the technology and fabs, since the capability of each fab is not identical. The costs

for advanced technologies are also higher than mature technologies. Table 5 lists

the production costs. In addition, the penalty of unmet demand is set at double the

rate of the average production cost, i.e., $1,770 for Technology 1, $2,300 for

Technology 2, and $2,950 for Technology 3. The costs for capacity backup and

capacity exchange are assumed to be proportionate to the production costs. Capacity

backup entails transportation costs between the fabs, and the backup cost is assumed

to equal 10% of the production cost. Capacity exchange does not calculate actual

costs because since the tools do not require transportation, the costs only involve a

number of management issues, and is thus set as 3% of production costs.

Tables 6 and 7 show the capacity backup and exchange costs. Additional

information required includes the capacity exchange rate, the limit of capacity

Table 4 Mask costs setting

($USD per mask set)
Option Technology 1 Technology 2 Technology 3

New masks (CMi) 300,000 600,000 800,000

Revisions (CTi) 120,000 280,000 350,000

Table 5 Production costs

setting (CPij) ($USD)
Fab Technology 1 Technology 2 Technology 3

1 850 1,100 –

2 920 1,200 1,500

3 – 1,150 1,450

Table 6 Backup costs setting

(CBjk) ($USD per backup)
Fab Technology 1 Technology 2 Technology 3

1 85 110 –

2 92 120 150

3 – 115 145
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backup and exchange, and the lead time to share or transfer products. The limit of

capacity backup is set as 15% for each fab, and the limit of exchange is set as 30%

for Technology 1, 25% for Technology 2, and 20% for Technology 3. Table 8

shows the capacity exchange rate. Table 9 presents a randomly generated lead time

set for each product to be shared and transferred, according to the probability

suggested by the domain expert, to be applied in each simulation instance. An

additional constraint for generating lead time is that sharing occupies more time

than transferring. The costs and lead time are also set under the suggestion of the

domain expert, to make their relative scale more relevant. NTO allocation involves

critical planning in the strategy level. Most of the input data are sensitive and

confidential. To oblige the non-disclosure agreement, all presented data have been

transformed to relative values, which will not affect the generality for further

explanation.

A scenario presents the future demand of each product during the planning

horizon. To evaluate the performance of the stochastic model, demand scenarios are

created to enable the creation of new profiles, by multiplying the original demand of

each product against the volume and variation factors. The factors are randomly

generated, and set at three levels: high, medium, and low. For the volume factor,

Fvol, the high level has a range between 105 and 130% of the original demand

volume. The range of medium volume is between 80 and 105%, and the range of

low volume is between 55 and 80%. For the variation factor, Fvar, the high-level

range is between 75 and 125% of the original demand. The ranges for medium level

and low level are between 85 and 115%, and between 95 and 105%, respectively.

Table 7 Exchange costs setting

(CEjh) ($USD per exchange)
Fab Technology 1 Technology 2 Technology 3

1 25.5 33 –

2 27.6 36 45

3 – 34.5 43.5

Table 8 Capacity exchange

rate setting (ERhk)
Technology 1 2 3

1 1 0.8 0.6

2 1.2 1 0.7

3 1.3 1.2 1

Table 9 Lead time setting for

share and transfer
Technology Share (LSi) Transfer (LTi)

1Q 2Qs 3Qs 1Q 2Qs

1 0.8 0.2 0.0 0.9 0.1

2 0.6 0.3 0.1 0.8 0.2

3 0.1 0.7 0.2 0.5 0.5
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The combination of volume and variation enable the creation of new scenarios.

According to the levels set for these factors, random numbers are generated for each

product in a demand scenario, i.e., the demand in the forecasting horizon of each

product is multiplied by a demand volume factor and a demand variation factor. For

instance, the generated demand for Product D19 in the high volume level and

medium variation level is (12.5, 12.4, 14.4, 12.2, 11.6, 10.9) 9 Fvol 9 Fvar where

Fvol and Fvar are random numbers generated from [1.05, 1.30] and [0.85, 1.15],

respectively. These factors change the relative demand volume among products, but

the increasing or decreasing trend remain unaffected.

Based on these settings, the values of applying the two-stage SP model in NTO

decisions will be evaluated from two different angles. Firstly, among different

demand variation levels, the differences between EVPIs and the VSSs will be

examined, while considering different demand volume levels as scenarios of which

probabilities are set equally, e.g., 1/3. For the high demand variation level, for

example, we will measure the corresponding EVPI and the VSS, with respect to

three scenarios, including high, medium, and low volume levels, denoted by

Sl = {Hl, Ml, Ll} with corresponding probabilities PHl ¼ PMl ¼ PLl ¼ 1=3.

Secondly, EVPIs and the VSSs will be measured under different demand variation

scenarios, say Sr = {Hr, Mr, Lr} with PHr ¼ PMr ¼ PLr ¼ 1=3 for each demand

volume level. Every problem for each demand volume or variation level replicates

10 instances. After monitoring the experiment results, regarding the above setting,

the coefficient of variation of the average total cost of ten instances for each solution

is less than 5%, one of the common simulation convergence criteria (Mackie and

Cooper 2009).

4.2 Results and discussion

This section discusses the decisions under different scenario realizations, to estimate

the validity of the proposed approach. Tables 10 and 11 summarize the VSS in the

numerical study, which shows that SP is more beneficial when demand volume and

variation are set at a high level. Table 12 shows the EVPI under different levels of

variation and volume, and indicates that perfect information is more valuable when

the variation is high, compared to the change in volume. Based on the summarized

results, reasons why SP models are useful in high demand variation environments

should be studied. This can be accomplished by analyzing the cost structure

comparisons under different scenarios (Table 13), along with the portion of

different decisions, including transfer, share, backup, exchange, and production

Table 10 VSS under different

levels of variation ($USD for six

quarters)

Variation VSS under different volumes VSS

High Medium Low

High 148,627 37,665 140,223 108,838

Medium 69,945 41,397 81,740 64,360

Low 107,737 64,067 49,235 73,679
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(Figs. 1, 2, 3). The coefficients of variation for total costs are around or lower than

50%.

The cost values in Table 13 represent the differences between the HN solutions

of 2-SSP models, DM solutions of deterministic models lacking perfect information,

and WS solutions of deterministic models. In particular, a scenario depicted by a

‘‘scenario’’ means that the HN solution provides the objective values. The smaller

the value in Table 13, the lesser the costs compared to WS solutions. Table 13

shows that when scenario realization is in the high demand volume level, SP

suggests the HN solutions with higher unmet penalties, higher backup costs, lower

exchange costs, lower production costs, while the costs of sharing and transferring

remain unchanged. In Fig. 1, the WS solutions adopted in the high demand scenario

mainly involve capacity backup and exchange, with no actions on share and transfer

options. A similar decision pattern can be discerned from the HN solutions. The

reason that share and transfer decisions are seldom made when the demand volume

is relatively high is that the act of sharing and transferring products accomplishes

little under this situation, since the problem falls under the shortage of overall

capacity. High demand volume renders capacity almost fully utilized, and only little

capacity is left idle, therefore, by using the backup and exchange options, the

capacity can be utilized to sustain the unmet demand. Since the available capacity is

limited, the cost of backup and exchange is equal to the cost of sharing or

transferring products, and thus, its priority is higher.

When the demand is at a medium volume, almost every approach is employed,

while the capacity decisions still assume a greater proportion (Fig. 2). In this

situation, overall capacity mostly suffices to fulfill all demand. However, due to the

imbalance of demand distributed among fabs and technologies, the capacity

configuration must be adjusted to fit the demand profile. Capacity backup and

exchange are more popular, since their execution is simple and their costs are lower

due to the short lead time before the decisions take effect. In addition, some sharing

and transferring decisions are also made to alter the future demand profile, to

alleviate the imbalance of demand. Although the HN solutions suggest additional

backup actions, thereby yielding extra backup costs, these further costs cancel out

because all the other costs have been lessened.

Table 11 VSS under different

levels of volume ($USD for six

quarters)

Volume VSS under different variations VSS

High Medium Low

High 35,398 62,006 31,673 43,026

Medium 34,110 18,037 36,391 29,513

Low 5,151 16,308 30,598 17,352

Table 12 Average EVPI of SP

model ($USD for six quarters)
Level demand High Medium Low

Volume 68,889 37,119 14,292

Variation 216,329 103,129 168,619
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Figure 3 depicts counter-intuition results. When demand is low, few capacity

backup and exchange decisions are necessary, and more share and transfer decisions

are made. In this case, demand can be fulfilled with the existing capacity

configuration. Backup and exchange can be beneficial for fulfilling more demand,

but the effect is less significant than sharing and transferring. Sharing and

transferring products help reduce costs in a low demand scenario because the cost

saved by manufacturing products in a fab with lower production costs is higher than

the cost for sharing or transferring. This situation occurs when production unit costs

between fabs experience significant difference, thereby enabling the saved

production cost to cover the mask costs when the demand volume of a particular

product is high enough. In the synthetic scenario, this condition is valid for a

number of products, hence, the decision of sharing and transferring are used

extensively in the low demand scenario. The importance of NTO allocation can also

be gauged by the decisions made under the low demand scenario because decision
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makers are likely to reject sharing and transferring proposals after considering

similar situations. In this circumstance, the HN solutions rearrange costs to

outperform DM solutions without perfect information, and their contributions are

marginal.

The aforementioned findings suggest that the success of 2-SSP models rely on its

ability to provide similar solution patterns with WS solutions. The run time for a

deterministic model ranges from 2 to 8 s. For stochastic models with 6,720 binary

variables, 4,570 continuous variables, and 13,580 constraints, the run time is

between 10 and 20 min when both demand volume and demand variation factors are

set at high or low levels. When one of the factors is set at medium level for a

stochastic model, up to 28 h are required to obtain results. The medium level

settings represent the situation when capacity and demand are close. Therefore,

more practicability and trade-offs should be inputted during optimization, yielding

longer computation time.

5 Conclusion

To enhance capacity utilization and improve demand fulfillment, this research has

developed a 2-SSP approach to support NTO allocation decisions for demand

fulfillment planning, to achieve a robust solution under uncertain conditions. The

first stage considers the NTO allocation decisions, before the corresponding demand

volume is realized. The second stage allocates the capacity to meet the demand

requirement based on the results of four options of capacity reconfiguration,

including share, transfer, backup, and exchange. The results employing realistic data

have validated practical viability and decision quality of this approach under

different scenarios, which are more capital effective than present deterministic

solutions. Adopting 2-SSP models in a high demand variation environment is

beneficial because the 2-SSP can provide solution patterns similar to optimal

solutions of deterministic models with perfect information.
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To implement the proposed model, data used in the model should be carefully

maintained to ensure that the decision is made based on credible information. In

practice, different departments can participate in the decision-making process

regarding the allocation of products and the planning of capacity. Inter-departmental

communication is therefore a significant trait for intelligence sharing and making

informed decisions, though a lot of time and manpower must be allocated for the

attainment of such a structure. In addition, because different departments would

make dissimilar decisions, reaching optimized decisions for the benefit of the

company would remain a challenge. The proposed model integrates the decision-

making process among departments, to reach solutions deemed most profitable for a

company, with the ability to replace the original manual labor. In addition, the

stochastic model possesses the ability to function under uncertain conditions. The

implementation of the proposed approach can save the case company allotted

manpower while shortening decision-making time, and still able to make the most

reliable choice, which is apt to achieve the optimization required.

This study focuses on a make-to-order production system. However, in the make-

to-stock environment, e.g., in memory IC fabs, inventory may be used to fulfill the

demand of different companies. Some products might also be manufactured in

advance when the forecasted demand is high. Thus, inventory and backlog policy

can also be modeled, with the risk of overproduction considered. Many NTOs are

abandoned after qualification, i.e., only several new products that pass for

qualification will yield new demand, since a good number of products are

abandoned after the qualification process. The ratio of successful NTOs entering the

market, called hit rate in practice, can be utilized to gain a more accurate estimation

of demand. Customer opinions can also be additional inputs when allocating

products. Furthermore, the model can incorporate customer opinions and priorities

to improve customer satisfaction. Sensitivity analysis can be performed on the upper

limits of capacity backup and exchange, to examine the benefits of changing the

number of dedicated tools. To prevent long run time when solving the stochastic

model, special solution techniques, such as the Lagrangian relaxation or decom-

position-based branch-and-bound strategies, such as the L-shaped method, can be

employed to solve problems within a reasonable timeframe.
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