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Abstract With the rapid development of global ocean transportation, storage

space in container terminals is becoming a scarce resource. Hence, the terminal yard

only performs as a temporary storage facility for inbound cargos. A storage charge

is levied for inbound cargos that stay longer than a free storage time (called free-

time-limit). After the free-time-limit, customers may move cargos from the terminal

yard to a remote container yard where the storage price is lower than that in the

terminal. This paper proposes inbound container storage pricing game models

between the container terminal and a remote container yard. Two cases are con-

sidered: (1) the inbound container’s dwell time is random and follows a probability

distribution function; (2) the inbound container’s dwell time is sensitive to the

storage prices. The primary objective of this paper is to analyze the storage pricing

behavior and competition outcomes of the container terminal and the remote con-

tainer yard. A number of insights and analysis are provided.

Keywords Container terminal � Remote container yard � Storage price �
Game theory

1 Introduction

With the rapid development of globalization, the ocean transportation business is

booming. Motivated by the growth of market demand, container size and vessel

volume are increasing. Consequently, the storage space in container terminals is
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becoming scarce, especially in the major merchandize ports of East Asia and

Europe. Researchers have been trying to improve the operations efficiency in

container terminal yards by optimization (operations research) methods, such as

yard crane scheduling and storage/stacking logistics. Besides operational level

approaches, strategic level decisions, such as port capacity development, terminal

layout design and handling/storage price schemes may also help to relieve the

congestion situation in the container terminal. In this paper, we adopt the non-

cooperative game theory to study the inbound container storage price schemes

between the container terminal and a remote container yard.

From the supply chain system dynamics perspective, the high capacity utilization

level in terminals causes long leadtimes and large variability, which makes shippers

send their cargos earlier (Fransoo and Lee 2010). However, customers may not pick

up inbound cargos earlier than needed and will just store them on the quay.

Increased storage of inbound cargos on the quay further reduces the terminals’

operations efficiency and causes a vicious cycle of capacity problems.

Hence, the container terminal yard (hereafter CTY) only provides a temporary

storage space for inbound cargos and it is not set up for long-term storage. Long-

term storage creates high congestion, and thus low productivity in yard operations.

For all inbound cargos passing through the container terminal and temporarily

stored in the yard, a terminal handling charge is levied. And to discourage customers

from storing containers in the terminal for too long, the terminal will charge an extra

storage fee if inbound containers stay longer than a free-time-limit. In practice, the

storage fee charged by the terminal is usually proportional to the length of dwell

time beyond the free-time-limit. For example, in the Hong Kong seaport, after the

free-time-limit, a terminal operator will start to charge the storage fee: about

HK$100 to HK$500 per container per day, depending on the relationship between

the terminal and shipping lines.

The limited storage space in the terminal yard and customers’ extra storage

payment after the free-time-limit make possible the emergence of an alternative

inbound container storage place, called remote container yard (hereafter RCY).

RCYs have less severe capacity constraints and charge a lower storage price than

the CTY. But customers need to pay additional handling and transportation costs to

move a container from CTY to RCY. So RCYs are only attractive for relatively long

term storage. The idea of the transport route combination of CTY and RCY in the

port transport system was first discussed by Imakita (1978).

The container terminal and the RCY are operated by different companies. If the

dwell time of inbound containers is shorter than the free-time-limit, containers will be

stored in the CTY after arrival, and then be transported directly to customers when

needed. Otherwise, containers may be transported to an outside RCY after the free-

time-limit. When needed, containers will then be delivered to customers from the RCY.

Motivated by the competitive relationship of the CTY and RCY, we study an

inbound container storage price competition problem in this paper. We adopt the

non-cooperative game theory to analyze the existence and uniqueness properties of

the price equilibrium. The sequence of decision events is defined as follows: (1) The

CTY and the RCY simultaneously and independently decide and announce their

storage prices per unit time per container for the inbound container; (2) Based on the
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announced storage price schemes in the CTY and the RCY, and the cost of moving a

container from the CTY to the RCY, the customer determines whether to move his

container from the CTY to the RCY so as to minimize storage payment and the

potential container movement cost.

Two cases are considered: price-independent container dwell time and price-

dependent container dwell time. In the first case, the dwell time of the inbound

container is random and follows a probability distribution function. This is

applicable to the transit container whose dwell time is relative to the customer’s

production or sales plan. The second case is proposed for the situation when the

customer tends to treat the CTY and RCY as long term storage places. In this case, it

is assumed that the customer has a random tolerance payment for every container.

The tolerance payment characterizes the maximal storage payment per container the

customer willing to disburse. The customer stores a container in the CTY (or RCY)

till the tolerance payment is reached. Given the storage prices, the container storage

time increases with the tolerance payment. Consequently, with a given tolerance

payment, the container dwell time decreases with the per unit time storage price.

We summarize our contributions as follows.

1. We adopt the idea of non-cooperative game theory and for the first time study

the inbound container storage price competition problem. Three different

models are considered: uniformly distributed dwell time model, linearly

reduced distributed dwell time model and price-dependent dwell time model.

2. We study the pricing schemes of the CTY and the RCY, aiming to maximize

their storage profits. In all the three models, we analyze the existence and

uniqueness of the price equilibriums.

3. We propose a convex operation cost for the CTY, taking the limited capacity of

the CTY into account. This applies to the situation when the capacity

development of the container terminal lags behind the demand, and long

container dwelling in the terminal increases the congestion level.

4. We provide operational insights with respect to the change of parameters, and

strategic analysis for the rationality of RCY’s existence.

The rest of the paper is organized as follows. Section 2 reviews the related

literature. Section 3 discusses the general storage pricing game model when dwell

time is stochastic. In Sect. 4, we analyze the competition outcomes when the dwell

time follows the uniform distribution. Section 5 discusses the pricing game model

with linearly reduced dwell time distribution. Section 6 provides equilibrium

analysis when the dwell time depends on the storage prices. In Sect. 7, we

demonstrate the numerical analysis result. Further discussion and conclusions are

provided in Sect. 8. For clarity of description, all proofs are deferred to the

‘‘Appendix’’.

2 Literature review

There is plenty of research for container terminal operations efficiency improvement

from different perspectives. A comprehensive literature review can be found in
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Steenken et al. (2004), Stahlbock and Voss (2008), Günther and Kim (2006).

Recently, Fransoo and Lee (2010) point out that there are still some interesting and

challenging container supply chain research questions remaining to be answered, in

areas such as pricing and risk management, capacity management, competition

research, and coordination analysis. In the following, we discuss a few results that

are related to our work.

Little literature has been found in container supply chain competition issues.

The main reason lies in the fact that the structure of the container supply chain

is quite complex. It involves many different entities and various contractual

relationships. Yang (1999) analyzes the three-player (port administrators, carriers,

and shippers) game theory model in the container transportation market and

discusses port management policy in an equilibrium shipping market. Anderson

et al. (2008) develop a game-theoretic best response framework to analyze the

current investment and competition between the ports of Busan and Shanghai.

Lim et al. (2008) study the auction mechanism between the shipper and carrier

in the ocean transportation procurement process. In their model, shipments made

in nonpeak periods will be commensurate with shipments in peak periods when

shipping demand fluctuates in peak and nonpeak seasons. Zhou and Lee (2009)

study the empty container repositioning problem by using the two-carrier

symmetric Bertrand competition game model. Luo et al. (2010) use a two stage

duopoly game model to investigate the port competition between Hong Kong

and Shenzhen in two steps: the pricing subgame and the capacity expansion

subgame.

Some literature is available on storage and stacking logistics in the container

terminal yard, while only a few papers focus on the storage price research. Fransoo

and Lee (2010) mention that, if the storage price for inbound cargos is too low, the

terminal yard may become a remote warehouse for the customers. Castilho and

Daganzo (1991) study the pricing schemes for temporary storage facilities at ports

with and without remote warehouses. Two pricing policies are considered,

nondiscriminatory and discriminatory pricing strategies. Holguin-Veras and Jara-

Diaz (1999) develop models to determine the optimal yard allocation and the

corresponding storage price for different container classes in a priority container

port system. They analyze three different pricing rules: welfare maximization,

welfare maximization under a financial constraint, and profit maximization. Kim

and Kim (2007) discuss the optimal price schedule for inbound container storage in

a container yard, assuming that there is an alternative storage site outside the

container yard. However, they take the storage price in the outside storage site as

given and ignore the price competition between the terminal and the outside

storage site. We extend their paper and consider the competition relation of the

inbound cargo storage price between the port terminal and a private remote yard.

The problem in our paper belongs to the game-theoretic duopoly model of the

Bertrand type. The reader may refer to the extensive Bertrand duopoly research in

the literature, which provides a broad foundation for the price competition analysis

in our paper.

Inbound Container Storage Price Competition 323

123



3 General framework

In this section, we propose a general mathematical formulation for the storage

pricing game. The framework of the mathematical models in this paper is based on

the following assumptions.

Assumption 1 The inbound cargo flow is stable and independent of storage prices.

This assumption is reasonable in that the inbound cargo flow in a port is mainly

affected by the customers’ physical locations, the local market size and the

productivities of the container terminal. This assumption is widely used in the

literature (Castilho and Daganzo 1991; Holguin-Veras and Jara-Diaz 1999).

Assumption 2 The capacity development of the CTY lags behind the demand, and

the operation cost in the limit-capacity CTY is mainly determined by the rehandle

operations. Hence, long container dwelling causes high stacks in the yard, thus more

rehandle operations. Considering the rehandle number estimation in Kim (1997) and

Kim and Kim (1999) which is a quadratic function, we assume the container

operation cost in the CTY is also a quadratic function of the container dwell time1.

So the unit time container operation cost grows with the container dwelling. Note

that the quadratic type of terminal operation cost function is also used in Luo et al.

(2010).

Assumption 3 Compared to the CTY, the RCY has unrestricted capacity. Thus,

the container operation cost in the RCY is a linear function of the dwell time. This

assumption is possible in practice due to the fact that the RCY usually has more land

resources.

Assumption 4 We consider homogeneous customer behavior. Namely, we only

consider one type of inbound containers and they have identical dwell time

characteristics. The homogeneous container dwell time could be obtained from the

statistic average among all inbound container dwell times from a long term

perspective.

We have the following notations in the problem definition and formulation.

F: the free-time-limit in the CTY.

c0: the transportation cost per container of moving containers from the CTY to the

RCY.

T: a random variable which stands for the container dwell time. The container

dwell time is defined as the time interval between the container unloaded time

and the time when the customer calls for the container. Every container’s dwell

time is independently and identically distributed (i.i.d.).

c1: the operation cost coefficient of the CTY. According to Assumption 2, c1 T2 is

the container operation cost in the CTY when the container dwelling is T.

1 In Kim (1997) and Kim and Kim (1999), they proposed an evaluated expression for the total rehandles

needed to retrieve all containers in a container bay. Their estimation is a quadratic function with respect

to the average height of the container stack. And the average height of the container stack is proportional

to container dwell time (with stable container flow). So we can estimate that the operation cost is also a

quadratic function of the container dwell time.
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c2: the operation cost coefficient of the RCY. According to Assumption 3, c2 T is

the container operation cost in the RCY when the container dwelling is T. Since

we assume that the CTY is capacity limited and the RCY has unlimited capacity,

it is reasonable that c2 \ c1.

f(T): probability density function of container dwell time. f(T) is assumed to be a

non-increasing function. In practice, the container dwell time distribution could

be found from the history data. For example, in the container terminal literature,

Watanabe (2001) proposed uniform and exponential distributions for the inbound

container dwell time.

Decision variables:

s1: the container storage price per unit time per container in the CTY. We assume

s1 C c1, which indicates that, when the container dwelling after the free-time-

limit (denoted by t) is not longer than one time unit, the storage charge of a

container in the CTY, s1t, is higher than c1t2.

s2: the container storage price per unit time per container in the RCY. We assume

s2 C c2, which ensures the per unit time per container storage price of the RCY is

higher than his marginal operation cost.

Firstly, the CTY and RCY will simultaneously determine their storage prices, s1

and s2. After they finish the price decisions and announce the storage prices, the

customer will decide whether and when to move their containers from the CTY to

the RCY with the objective of minimizing storage payment and the potential

container movement cost. Figure 1 shows the customer payment function. The

container will be stored in the CTY if its dwell time is shorter than F ? ts, where

ts = c0/(s1 - s2) is the indifference time . If its dwell time is longer than F ? ts, the

container will be first transported to the RCY at time F and then delivered to the

customer later.

Mathematically, in order to maximize the CTY’s profit, the optimal value of F is

zero2. However, in practice, F is set as positive, and the operation cost in the time

interval [0,F] is covered by the terminal handling charge. In our models, we treat F
as a given positive parameter and only focus on the storage profit after F. Actually,

terminals usually set the value of F according to their relationship with shipping

lines. For example, in the Hong Kong International Terminal (HIT), F is about 7

days. In Busan terminal, Korea, F is around 4 days (Kim and Kim 2007).

The objective of the CTY (RCY) is to decide the appropriate price for inbound

container storage service so that the profit of storing a container is maximized. That

is, to maximize CTY’s storage profit p1(s1,s2) and RCY’s storage profit

p2(s1, s2), respectively,

2 Let the terminal handling charge be h per container. Then the total profit of the CTY is, hþ
R Fþts

F s1ðt � FÞf ðtÞdt �
R Fþts

0
c1t2f ðtÞdt: Differentiating the profit with respect to F, we get s1ts � f ðF þ

tsÞ �
R Fþts

F s1f ðtÞdt � c1ðF þ tsÞ2 � f ðF þ tsÞ: Since f(T) is a non-increasing function, s1ts � f ðF þ tsÞ �R Fþts
F s1f ðtÞdt� 0: Hence, the profit decreases with F, and to maximize the profit, the CTY should set

F = 0.
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max
s1

p1ðs1; s2Þ ¼
ZFþts

F

s1ðt � FÞf ðtÞdt �
ZFþts

F

c1ðt2 � F2Þf ðtÞdt; ð1Þ

max
s2

p2ðs1; s2Þ ¼
Z �T

Fþts

ðs2 � c2Þðt � FÞf ðtÞdt: ð2Þ

Here �T is the up-bound of the container dwell time. The RCY will compete with the

CTY such that F þ ts� �T: The first and second terms of (1) are the revenue and

operation cost of the CTY after F, respectively. In (1), we only consider CTY’s

storage profit after the free-time-limit (F) because the terminal handling charge

covers the operation cost before F. We aim to determine the duopoly pricing game’s

Nash equilibrium (hereafter NE), and also guarantee the non-negative profits of the

two players at the NE. So what we intend to find is the intersection of the two

players’ best response functions (hereafter BRF), (s1
*, s2

*), under which p1(s1
*,s2

*) C 0

and p2(s1
*,s2

*) C 0.

In order to further study the properties of the equilibrium prices and to find out

how the change of parameters affects the competition outcomes, we will specify the

container dwell time distribution in the following two sections. In container

terminals, the delivery date of inbound containers to the customer may vary under

different local factors. In the next two sections, we follow the analysis of Watanabe

(2001) and use two patterns of inbound container dwell time distribution, uniform

distribution and linearly reduced distribution (Fig. 2).

Fig. 1 The payment function of the customer
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4 Price-independent container dwell time: uniform distribution

In this section, we study the model (called M1) in which the container dwell time

follows uniform distribution on [0, b], b [ F. Since customers just store the

inbound containers in the CTY before time F, the CTY and the RCY will compete

with each other only if container dwell time is longer than F.

Based on (1) and (2), we have the objective functions of the CTY and the RCY

when container dwell time follows uniform distribution:

max
s1

pU
1 ðs1; s2Þ ¼

1

b

ZFþts

F

s1ðt � FÞdt � 1

b

ZFþts

F

c1ðt2 � F2Þdt; ð3Þ

max
s2

pU
2 ðs1; s2Þ ¼

1

b

Zb

Fþts

ðs2 � c2Þðt � FÞdt: ð4Þ

Here s1 C c1, s2 C c2, and we use the superscript ‘‘U’’ to denote the uniform

distribution. In this section, we aim to find the price NE (s1
U*, s2

U*) and prove that the

CTY and the RCY make non-negative profits at the NE, namely, p1
U(s1

U*, s2
U*) C 0

and p2
U(s1

U*, s2
U*) C 0. The following two propositions prove the quasi-concavities of

p1
U(s1,s2) and p2

U(s1,s2).

Proposition 1 In M1, the profit function of the CTY is quasi-concave.

Proposition 2 In M1, the profit function of the RCY is quasi-concave.

Let the BRFs of the two players in M1 be s1
U*(s2) and s2

U*(s1), respectively.

Propositions 1 and 2 make sure that there is at least one BRF curve intersection in

the storage game with uniformly distributed container dwell time. From the proofs

of Propositions 1 and 2, we can get the first order conditions of the price NE:

s2
1 � s2

2 � 4c1Fðs1 � s2Þ � 2c0c1 ¼ 0; ð5Þ

ðb� FÞ2ðs1 � s2Þ3 � c2
0ðs1 þ s2 � 2c2Þ ¼ 0: ð6Þ

By solving (5) and (6), the price NE (s1
U*, s2

U*) could be obtained. Before the

following analysis of the non-negative profits of the two players at the NE, we shall

explicitly specify an assumption which ensures that at the NE, F ? ts
U* B b. Here

ts
U* = c0/(s1

U* - s2
U*).

Fig. 2 Two patterns of dwell time distribution
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ASS 4:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1

27

r
3

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1

27

r
3

s

� 1:

Here a ¼ b0ðc1 � c2Þ=c0 and b0 ¼ b� F: Let Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

27

q
3

r

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

27

q
3

r

; then we will have qQ/qb [ 0 and qQ / qc0 \ 0. ASS 4.1 assumes

that Q C 1, hence it indicates that: given the operation cost coefficients of the CTY

and RCY, the transportation cost (c0) is not too large and the maximum dwell time

(b) is not too short.

Proposition 3 In M1, the CTY makes a non-negative profit at the NE. And if ASS
4.1 holds, the RCY makes a non-negative profit at the NE.

We now examine the uniqueness property of the price NE.

Proposition 4 In M1, the storage pricing game has a unique price NE.

We use an example to demonstrate the best response functions of the two players

in M1. In the example, we set the parameter values as: F = 4, b = 20, c0 =

50, c1 = 20 and c2 = 10. As shown in Fig. 3, the best response mapping is a

contraction. So every storage-price node will converge to the unique price NE,

PU*(s1
* = 230, s2

* = 214).

5 Price-independent container dwell time: linearly reduced distribution

In this section, we discuss the model (called M2) in which the container dwell time

follows a linearly reduced distribution. Let the probability density function of

container dwell time T be f(T) = l(a - T), a [ 0, l = 2/a2 and 0 B T B a, so the

CTY and the RCY compete with each other only if the inbound containers’ dwell

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350
s2

s1

*
1 2( )Us s

*
2 1( )Us s

*UP

Fig. 3 The BRFs in M1
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time is in range [F, a]. We can write out the objective functions of the CTY and the

RCY:

max
s1

pL
1ðs1; s2Þ ¼ l

ZFþts

F

s1ðt � FÞða� tÞdt � l

ZFþts

F

c1ðt2 � F2Þða� tÞdt; ð7Þ

max
s2

pL
2ðs1; s2Þ ¼ l

Za

Fþts

ðs2 � c2Þðt � FÞða� tÞdt: ð8Þ

Here s1 C c1, s2 C c2, and we use the superscript ‘‘L‘‘ to denote the linearly

reduced distribution. We aim to find the price NE, (s1
L*, s2

L*) and prove that the CTY

and the RCY make non-negative profits at the NE, namely, p1
L(s1

L*, s2
L*) C 0 and

p2
L(s1

L*, s2
L*) C 0. Below, we provide two propositions to show the quasi-concavities

of the two profit functions.

Proposition 5 In M2, the profit function of the CTY is quasi-concave.

Before the analysis about the quasi-concavity of the RCY’s profit function, we

shall explicitly specify following assumption which ensures that given s1, F ?

ts
L*(s1) B a in p2

L(s1,s2). Here ts
L*(s1) = c0/(s1 - s2

L*(s1)).

ASS 5:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 0:443

q
3

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 0:443

q
3

r

� 1:

Here b ¼ ð162a0ðc1 � c2Þ=c0 þ 34Þ=250 and a0 ¼ a� F:

Let Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 0:443

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 0:443

p
3

q
; then we have qQ0/qa [ 0

and qQ0/qc0 \ 0. ASS 5.1 assumes that Q0 C 1, therefore it indicates that: given the

operation cost coefficients of the CTY and RCY, the transportation cost (c0) is not

too large and the maximum dwell time (a) is not too short.

Proposition 6 In M2, if ASS 5.1 holds, the profit function of the RCY is quasi-
concave.

We denote the best response functions of the CTY and RCY in M2 as s1
L*(s2) and

s2
L*(s1), respectively. By Propositions 5 and 6, with ASS 5.1, there exists at least one

BRF curve intersection in M2. We now further verify whether the intersection is

unique.

By the proofs of Propositions 5 and 6, the price NE could be obtained by solving

the following two equations (a0 ¼ a� F):

3a0ðs1� s2Þ3� 2c0ðs1� s2Þ2� 6ða0s1� a0s2� c0Þ½ðs1� 2c1FÞðs1� s2Þ� c0c1� ¼ 0;

ð9Þ

a02ðs1 � s2Þ3 þ a0c0ðs1 � s2Þ2 � 2c2
0ðs1 � s2Þ � 6c2

0ðs2 � c2Þ ¼ 0: ð10Þ

Based on Eq. (9), s1
L*(s2) could be derived by solving the following cubic equation

for s1:
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3a0s3
1 þ Lðs2Þ � s2

1 þMðs2Þ � s1 þ Nðs2Þ ¼ 0: ð11Þ

Here, Lðs2Þ¼�3a0s2 � 4c0 � 12a0c1F; Mðs2Þ ¼ �3a0s2
2 þ ð2c0 þ 24a0c1FÞs2 � 6a0

c0c1 þ 12c0c1F; and Nðs2Þ ¼ 3a0s3
2 þ ð2c0 � 12a0c1FÞs2

2 þ ð6a0c0c1 � 12c0c1FÞs2þ
6c2

0c1: We find that the discriminant of (11), denoted by D; is greater than zero.

Namely, there are three distinct BRF curves for s1
L*(s2). Similarly, from (10) we find

that s2
L*(s1) is unique. Hence, there may be finite multiple BRF curve intersections in

M2. Nevertheless, Proposition 7 shows that, under ASS 5.1, there is a unique price

NE. In addition, Proposition 8 indicates that the CTY and RCY make non-negative

profits at the NE under ASS 5.1.

Proposition 7 In M2, if ASS 5.1 holds, there exists a unique price NE.

Proposition 8 In M2, if ASS 5.1 holds, the CTY and the RCY make non-negative
profits at the NE, namely, p1

L(s1
L*, s2

L*) C 0 and p2
L(s1

L*, s2
L*) C 0.

We use an example to demonstrate the best response functions of the two players

in M2. The parameter values are set as: F = 2, a = 12, c0 = 50, c1 = 15 and

c2 = 5. As shown in Fig. 4, in the feasible region (s1 C c1, s2 C c2), there exist a

unique NE, PL* (s1
L* = 106, s2

L* = 84).

6 Price-dependent container dwell time

In previous sections, we discuss the case where the container dwell time is

independent of the storage prices. This is applicable to the transit container whose

dwell time is relative to the customer’s production or sales plan. However,

customers may hoard cargos, such as grain, coal and nonferrous metal in the CTY or

the RCY, and tend to treat them as relative long term storage places. In this case, we

believe that the container dwell time is not unrestricted, namely, it is sensitive to the

storage prices. That is, the larger the per container per unit time storage prices, the

shorter the container dwell time.
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*
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*
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Fig. 4 The BRFs in M2
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Therefore, in this section, we consider a new model (M3) which has a price-

dependent container dwell time. In order to model the relationship between the

storage prices and the container dwell time, we assume that the CTY and RCY

believe the customer has a tolerance payment for each container’s storage beyond the

free-time-limit (F), denoted by p (p C 0). We assume that p is random and follows a

uniform distribution on [0, P], P [ c0. The tolerance payment characterizes the

maximal storage payment per container the customer willing to disburse. To enjoy

long term storage for the container, the customer will store it in the CTY or the RCY

till the tolerance payment is reached. p = 0 means that a container will not stay in the

CTY longer than the free-time-limit and it can be moved away any time before F.

As shown in Fig. 5, if 0 \ p B s1ts, the customer will continue storing the

container in the CTY for p/s1 time units after the free-time-limit. On the other hand,

if p [ s1ts, the customer will transfer the container to the RCY after the free-time-

limit and store it there for (p - c0)/s2 units time. We call s1ts indifference payment.

Recall that in M1, the container dwell time is uniformly distributed, and the

customer chooses the best storage place so as to minimize his payment. While in M3

where the payment tolerance is uniformly distributed, the customer decides the

storage place to store the container as long time as possible.

According to Fig. 5, the RCY will compete with the CTY such that s1ts B P. We

can write out the objective functions of the CTY and the RCY:

max
s1

pD
1 ðs1; s2Þ ¼

1

P

Zs1ts

0

pdp� 1

P

Zs1ts

0

½c1ðF þ p=s1Þ2 � c1F2�dp; ð12Þ

max
s2

pD
2 ðs1; s2Þ ¼

1

P

ZP

s1ts

p� c0

s2

ðs2 � c2Þdp: ð13Þ

Here s1 C c1, s2 C c2, and we use the superscript ‘‘D‘‘ to denote the price-

dependent dwell time. We aim to find the price NE, (s1
D*, s2

D*) and prove that the

CTY and the RCY make non-negative profits at the NE. We now discuss the quasi-

concavities of p1
D(s1,s2) and p2

D(s1,s2).

t

Customer 
payment

F F+ts

Slope:s1

Slope:s2

c0

s1ts

p

p

F+p/s1

F+(p-c0)/s2

CTY

RCY

Fig. 5 The container storage
time under different tolerance
payments
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Proposition 9 In M3, given s2 [ c1F, the profit function of the CTY is quasi-
concave.

Before discussing the quasi-concavity of p2
D(s1,s2) and the non-negative benefits

of the two players at the NE, we introduce the following assumption which ensures

that given s1 we have s1ts
D*(s1) B P in p2

D(s1,s2). Here ts
D*(s1) = c0/(s1 - s2

D*(s1)).

ASS 6:1 c0=P�ðc1 � c2Þ=c1:

Specifically, ASS 6.1 states that: given the operation cost coefficients of the CTY

and RCY, the transportation cost (c0) should not be too large and the maximum

tolerance payment (P) should not be too small.

Proposition 10 In M3, the profit function of the RCY is quasi-concave under
assumption ASS 6.1.

The BRFs of the CTY and RCY in the storage game with price-dependent

container dwell time are denoted as s1
D*(s2) and s2

D*(s1), respectively. Based on

Propositions 9 and 10, there exists at least one BRF curve intersection, and the

RCY’s storage price is above c1F at the intersection. From the proofs of

Propositions 9 and 10, we can get the first order conditions of the NE:

ð3s2 � 3c1FÞs2
1 � ð3s2

2 þ 2c0c1Þs1 þ 3c1Fs2
2 � c0c1s2 ¼ 0; ð14Þ

Cðs1Þ � s3
2 þ Dðs1Þ � s2

2 þ Gðs1Þ � s2 þ Hðs1Þ ¼ 0: ð15Þ

Here, C(s1) = - P0 - 2c0
2s1, D(s1) = (3P0 ? 4c0

2c2)s1, G(s1) = - (3P0 ? 3c0
2c2)

s1
2, H(s1) = (P0 ? c0

2c2)s1
3 and P0 = c2P2 - 2c0c2P. By solving (14) and (15), the

price NE could be derived. We now prove that at the NE, the two players make non-

negative profits.

Proposition 11 In M3, the CTY makes a non-negative profit at the NE. And if ASS
6.1 holds, the RCY makes a non-negative profit at the NE.

The following proposition shows the uniqueness property of the BRF curve

intersection.

Proposition 12 In M3, if ASS 6.1 holds, there exists a unique price NE.

We use an example to demonstrate the best response functions of the two players in

M3. The parameter values are set as: F = 4, P = 500, c0 = 50, c1 = 20 and

c2 = 10. As shown in Fig. 6, there is a unique price NE, PD*(s1
D* = 241, s2

D* = 132).

7 Numerical analysis

In this section, we use numerical experiments to analyze the competition outcomes

with the change of different parameters. We analyze how the change of parameters

affects the competition outcomes in models M1-M3. All parameter values in the

numerical analysis are randomly selected and it is guaranteed that b [ F,

a [ F, P [ c0 and the three assumptions (ASS 4.1, ASS 5.1 and ASS 6.1) are

satisfied. In each instance set of the three models, we adjust one parameter value,
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keeping all other parameters unchanged. The common parameter values are set as

follows: M1: c0 = 50, c1 = 20, c2 = 10, b = 12, F = 2; M2: c0 = 50,

c1 = 20, c2 = 5, a = 16, F = 2; M3: c0 = 50, c1 = 20, c2 = 10, P = 500,

F = 2. The numerical results are provided in Fig. 7–12.

The important insights can be concluded as follows:

(1) According to Fig. 7, the indifference times (ts
U* and ts

L*) increase with the

transportation cost in M1 and M2; and the indifference payment (s1
D*ts

D*)

increases with the transportation cost in M3. Recall that, the container whose

planning dwell time (tolerance payment) is shorter (less) than the indifference

time (indifference payment) will stay in the CTY after time F. Hence Fig. 7

reveals that there will be more containers stored in the CTY when the

transportation cost is large. So the profit of the CTY increases with the

transportation cost (refer to Fig. 8).
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Fig. 6 The BRFs in M3
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(2) As shown in Fig. 9, the storage prices in the CTY and the RCY increase with

the transportation cost. Therefore Fig. 9 reveals that the customer suffers not

only high container transportation cost but also high storage cost when the

transportation cost is high.

(3) As demonstrated in Fig. 10, the indifference times (ts
U* and ts

L*) and the

indifference payment (s1
D*ts

D*) decrease with the CTY’s operation cost

coefficient, respectively. Large operation cost coefficient of the CTY indicates

his low capacity level. Since a container will be moved to the RCY at time F if its

planning dwell time (tolerance payment) is longer (larger) than the indifference

time (indifference payment); Fig. 10 exposes that the more restricted the CTY’s

capacity, the more containers will be transferred to the RCY. Hence, the

existence of the RCY helps to relieve the congestion in the CTY.

(4) In Fig. 11, the profit of the RCY increases with the CTY’s operation cost

coefficient. As a result, the more restricted of the CTY’s capacity (higher

operation cost coefficient in the terminal), the more profit the RCY makes.

(5) Refer to Fig. 12, the indifference time and indifference payment decrease with

F. A container will keep staying in the CTY after time F if its planning dwell
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time (tolerance payment) is shorter (less) than the indifference time

(indifference payment). Namely, Fig. 12 exposes that in the competition

situation, a short F may lead to more containers stored in the CTY after the
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free-time-limit, which increases the congestion level. Therefore, the CTY

should balance the total profit and the capacity utilization situation in the

terminal yard to choose a proper free-time-limit value.

8 Discussion and conclusion

In this paper, we analyze the storage price competition between the CTY and the

RCY. This competition relationship exists in practice but is not emphasized in the

literature. The RCY performs as a long term storage alternative when customers do

not have enough warehouse space to store the cargo. For example, at the beginning

of 2009, when the steel price was dropping, customers stored steel in Hangzhou

terminal of China for a long time for the purpose of hoarding and speculation3.

Under this situation, if there is a remote yard located near the terminal, customers

will transfer their cargo there. Hence, the existence of the remote yard not only

benefits the terminal by relieving in-port crowding, but also helps to reduce

customers’ storage payments.

To sum up, in this paper we study the inbound container storage pricing game

between the CTY and the RCY. Our primary objective is to develop the basic theory

concerning the pricing behavior and competition outcomes in such a market. We

build mathematical models for two cases: the price-independent container dwell

time and price-dependent container dwell time. We analyze the existence and

uniqueness of the competition outcomes and reveal a number of insights.

It is shown that the CTY makes more profit when the transportation cost of cargo

moving is large. The customer suffers not only high container transportation cost

but also high storage cost when the transportation cost is high. The more restricted

of the CTY’s capacity, the more profit the RCY makes.

We have made some assumptions to make our models tractable. We study

homogeneous customer behavior; namely, we assume the container dwell time

distribution and container tolerance payment distribution are the same for all

containers. Furthermore, a simple two-player game model with one port yard and

one remote yard is studied. Although these assumptions limit the applicable range of

the conclusions, our results provide a conceptual base for the inbound container

storage competition which exists in reality but has not been studied in the literature.

The results and ideas of this paper may provide some managerial suggestion for

decision makers in government, port authorities and remote yards.

An interesting extension is to study heterogeneous customer behavior, namely,

there are multiple types of containers and their dwell time characteristics are not

identical. One may also study a new topic on the optimal value of the free-time-

limit, taking the three-player relationship (RCY, CTY and the shipping lines) into

consideration. Furthermore, instead of only one remote yard, multiple remote yards

could be considered. The inbound cargo storage competition model may also be

applied to the storage market where there are a central public warehouse and remote

warehouses.

3 Chinese Website: http://www.dfjinshu.com/thmlnews/2009/03/10/20093102536.html.
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Appendix

Proof of Proposition 1 From the expression of p1
U(s1, s2), we can get the first

order condition:

opU
1 ðs1; s2Þ
os1

¼ 1

b

ZFþts

F

tdt � F

b

ZFþts

F

dt � 1

b

c2
0ðs1 � c1ts � 2c1FÞ
ðs1 � s2Þ3

¼ t2
s

2bðs1 � s2Þ
ð�s1 � s2 þ 2c1ts þ 4c1FÞ ¼ 0;

namely,

s1 þ s2 ¼ 2c1ts þ 4c1F: ð16Þ

There are several methods to prove the quasi-concavity of a function4. One method

is that, to prove the quasi-concavity of p1
U(s1, s2), we only need to prove that given

s2, we have q2 p1
U(s1,s2)/qs1

2 B 0 when (16) is satisfied.

o2pU
1 ðs1; s2Þ
os2

1

¼ � 2c2
0

bðs1 � s2Þ3
þ 3c2

0ðs1 � c1ts � 2c1FÞ
bðs1 � s2Þ4

� c1c3
0

bðs1 � s2Þ5

¼ c2
0

bðs1 � s2Þ4
ðs1 þ 2s2 � 4c1ts � 6c1FÞ;

thus, it is equivalent to prove that given s2, we have 4c1ts C s1 ? 2s2 - 6c1F when

(16) is satisfied. In addition, from (16) we have s2 = 2c1ts ? 4c1F - s1. Hence we

only need to prove that given s2, s1 C 2c1F. Substituting ts = c0/(s1 - s2) into

(16), we can solve, sU�
1 ðs2Þ ¼ 2c1F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 � 2c1FÞ2 þ 2c0c1

q
� 2c1F; which

finishes the proof. h

Proof of Proposition 2 From the expression of p2
U(s1, s2), we can get the first

order condition:

opU
2 ðs1; s2Þ
os2

¼ 1

b

Zb

Fþts

ðt � FÞdt � c2
0ðs2 � c2Þ

bðs1 � s2Þ3
¼ 0:

We now prove that given s1, we have q2 p2
U(s1,s2) / qs2

2 B 0 when the first order

condition is satisfied.

o2pU
2 ðs1; s2Þ
os2

2

¼ � 2c2
0

bðs1 � s2Þ3
� 3c2

0ðs2 � c2Þ
bðs1 � s2Þ4

¼ c2
0

bðs1 � s2Þ4
ð�2s1 � s2 þ 3c2Þ;

4 Quasiconcavity and quasiconvexity–by Martin J. Osborne, University of Toronto Department of

Economics.
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hence, it is equivalent to prove that given s1, - 2s1 - s2 ? 3c2 B 0 when the first

order condition is satisfied. Given s1, from the first order condition we solve,

sU�
2 ðs1Þ ¼ s1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� c2
0ðs1 � c2Þ

b02
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

0ðs1 � c2Þ2

b04
þ c6

0

27b06

s
3

vu
u
t

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� c2
0ðs1 � c2Þ

b02
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

0ðs1 � c2Þ2

b04
þ c6

0

27b0

s
3

vu
u
t

\s1:

Given s1, since s2
U*(s1) \ s1, we must have s2

U*(s1) C c2, otherwise the first order

condition is violated. By s1 [ s2
U*(s1) C c2, - 2s1 - s2

U*(s1) ? 3c2 B 0 is obvi-

ous. Therefore p2
U(s1,s2) is quasi-concave. h

Proof of Proposition 3 We first prove p1
U(s1

U*,s2
U*) C 0. From the expression of

p1
U(s1,s2),

pU
1 ðs1; s2Þ ¼

1

b

ZFþts

F

s1ðt � FÞdt � 1

b

ZFþts

F

c1ðt2 � F2Þdt

¼ 1

b

ZFþts

F

ðt � FÞðs1 � c1t � c1FÞdt

� 1

b

ZFþts

F

ðt � FÞðs1 � c1ts � 2c1FÞdt; ðts ¼ c0=ðs1 � s2ÞÞ

We now prove that s1
U* - c1 ts

U* - 2c1F C 0 and s1
U* C s2

U*. Because if these two

inequalities are true, we have p1
U(s1

U*,s2
U*) C 0. In the proof of Proposition 1, we

already get that sU�
1 ¼ 2c1F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsU�

2 � 2c1FÞ2 þ 2c0c1

q
� sU�

2 : Therefore we now

prove s1
U* - c1 ts

U* - 2c1F C 0. Substitute (s1
U*, s2

U*) into the first order condition of

p1
U(s1,s2),

1

b

ZFþtU�
s

F

ðt � FÞdt � 1

b

c2
0ðsU�

1 � c1tU�
s � 2c1FÞ

ðsU�
1 � sU�

2 Þ
3

¼ 0;

we find that s1
U* - c1 ts

U* - 2c1F C 0 must be true at the NE, otherwise the above

first order condition is violated.

We now prove that p2
U(s1

U*,s2
U*) C 0 under assumption ASS 4.1. From the

expression of p2
U(s1, s2),

pU
2 ðs1; s2Þ ¼

1

b

Zb

Fþts

ðs2 � c2Þðt � FÞdt; ðts ¼ c0=ðs1 � s2ÞÞ
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if we can prove ts
U* [ 0, F ? ts

U* B b and s2
U* C c2, then p2

U(s1
U*,s2

U*) C 0. Since in

the proof of Proposition 1 we already get s1
U* [ s2

U*, namely ts
U* [ 0, we now only

prove F ? ts
U* B b and s2

U* C c2. In the first order condition of p2
U(s1,s2)

1

b

Zb

FþtU�
s

ðt � FÞdt � c2
0ðsU�

2 � c2Þ
bðsU�

1 � sU�
2 Þ

3
¼ 0;

if F ? ts
U* B b then s2

U* C c2 must be true, otherwise the first order condition is

violated. So we only need to prove tU�
s � b0 (here b0 ¼ b� F), that is sU�

1 �
sU�

2 � c0=b0: From Eq. (6), we can solve the BRF of the RCY,

sU�
2 ðs1Þ ¼ s1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� c2
0ðs1 � c2Þ

b02
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

0ðs1 � c2Þ2

b04
þ c6

0

27b06

s
3

vu
u
t

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� c2
0ðs1 � c2Þ

b02
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

0ðs1 � c2Þ2

b04
þ c6

0

27b06

s
3

vu
u
t

:

Therefore sU�
1 � sU�

2 � c0=b0 means
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
0ðsU�

1 � c2Þ
b02

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

0ðsU�
1 � c2Þ2

b04
þ c6

0

27b06

s
3

vu
u
t

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
0ðsU�

1 � c2Þ
b02

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

0ðsU�
1 � c2Þ2

b04
þ c6

0

27b06

s
3

vu
u
t � c0=b0:

Because s1 C c1 and the left part of the above inequality is an increasing function of

s1, so we only need the following assumption to guarantee sU�
1 � sU�

2 � c0=b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
0ðc1 � c2Þ

b02
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

0ðc1 � c2Þ2

b04
þ c6

0

27b06

s
3

vu
u
t

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
0ðc1 � c2Þ

b02
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

0ðc1 � c2Þ2

b04
þ c6

0

27b06

s
3

vu
u
t � c0=b0:

Simplifying the above assumption, we get assumption ASS 4.1. h

Proof of Proposition 4 By the Index Theory approach (Cachon and Netessine

2003), to show the uniqueness of the BRF curve intersection, we only need to prove

that,

osU�
1 ðs2Þ
os2

osU�
2 ðs1Þ
os1

\1 at sU�
1 and sU�

2 :
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We firstly prove -1 \ qs1
U*(s2) / qs2 \ 1. From (16), we can get the best

response function of the CTY, sU�
1 ðs2Þ ¼ 2c1F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 � 2c1FÞ2 þ 2c0c1

q
: So the

slope of it is, osU�
1 ðs2Þ
os2

¼ s2 � 2c1F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 � 2c1FÞ2 þ 2c0c1

q :

It is obvious that -1 \ qs1
U*(s2) / qs2 \ 1. Also from the Implicit Function Theorem

(Bertsekas 1999), we have

os�U2 ðs1Þ
os1

¼ �
o2pU

2
ðs1;s2Þ

os2os1

o2pU
2
ðs1;s2Þ

os2
2

¼
c2

0

bðs1�s2Þ3
þ 3c2

0
ðs2�c2Þ

bðs1�s2Þ4

2c2
0

bðs1�s2Þ3
þ 3c2

0
ðs2�c2Þ

bðs1�s2Þ4
:

According to the proof of Proposition 2, we have s1
U* [ s2

U* and s2
U* C c2 at the NE,

so 0 \ qs2
U*(s1) / qs1 \ 1 at the NE. Together with -1 \ qs1

U*(s2) / qs2 \ 1, we

finish the proof. h

Proof of Proposition 5 The first order condition of CTY’s best response function

is:

opL
1ðs1;s2Þ
os1

¼ l

ZFþts

F

ða� tÞðt�FÞdt� l a�F� c0

s1�s2

� �
c2

0ðs1�c1ts�2c1FÞ
ðs1�s2Þ3

¼ lt2
s

6ðs1�s2Þ2
½3a0ðs1� s2Þ2�2c0ðs1�s2Þ�6ða0s1�a0s2�c0Þðs1�c1ts�2c1FÞ�¼0:

Namely,

3a0ðs1 � s2Þ2 � 2c0ðs1 � s2Þ � 6ða0s1 � a0s2 � c0Þðs1 � c1ts � 2c1FÞ ¼ 0: ð17Þ

Here a0 ¼ a� F: To prove the quasi-concavity of p1
L(s1, s2), we only need to prove

that given s2, we have q2 p1
L(s1,s2)/qs1

2 B 0 when (17) is satisfied. Substitute ts = c0/

(s1 - s2) into (17), we have

3a0ðs1 � s2Þ3 � 2c0ðs1 � s2Þ2 � 6ða0s1 � a0s2 � c0Þ½ðs1 � 2c1FÞðs1 � s2Þ � c0c1�
¼ 0:

Given s2, the discriminate of the above cubic equation is greater than zero, so it has

three distinct roots. Given s2, define,

gðs1Þ ¼ 3a0ðs1 � s2Þ3 � 2c0ðs1 � s2Þ2 � 6ða0s1 � a0s2 � c0Þ½ðs1 � 2c1FÞðs1 � s2Þ
� c0c1�:

By setting s1 = s2, we have g(s2) = - 6c0
2c1 \ 0. So from the shape of function

g(s1), we find that at least one root of the cubic equation is larger than s2 and we

only focus on those that are larger than s2, therefore s1
L*(s2) C s2. From (17) we get,
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s1 ¼ kþ 2c0

3a0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36a02ðs2 � kÞ2 þ 24a0c0ðs2 � kÞ þ 16c2

0

q

6a0
; ðk ¼ c1ts þ 2c1FÞ

ð18Þ

Hence, s1 - c1ts - 2c1F [ 0. With s1 C s2 and s1 - c1ts - 2c1F [ 0, we must

have a0[ ts; otherwise the first order condition is violated.

o2pL
1ðs1; s2Þ
os2

1

¼� 2lc2
0ða0 � tsÞ
ðs1 � s2Þ3

� lc3
0ðs1 � c1ts � 2c1FÞ
ðs1 � s2Þ5

þ 3lc2
0ða0 � tsÞðs1 � c1ts � 2c1FÞ

ðs1 � s2Þ4
� lc1c3

0ða0 � tsÞ
ðs1 � s2Þ5

:

From a0[ ts and s1 C s2, we find �lc1c3
0ða0 � tsÞ=ðs1 � s2Þ5\0: Therefore, to

prove q2 p1
L(s1, s2) /qs1

2 B 0, it is sufficient to prove,

� 2lc2
0ða0 � tsÞ
ðs1 � s2Þ3

� lc3
0ðs1 � c1ts � 2c1FÞ
ðs1 � s2Þ5

þ 3lc2
0ða0 � tsÞðs1 � c1ts � 2c1FÞ

ðs1 � s2Þ4

¼ lc2
0

ðs1 � s2Þ5
½�2a0ðs1 � s2Þ2 þ 2c0ðs1 � s2Þ þ ðs1 � c1ts � 2c1FÞ

ð3a0s1 � 3a0s2 � 4c0Þ� � 0:

Hence, it is equivalent to prove �2a0ðs1 � s2Þ2 þ 2c0ðs1 � s2Þ þ ðs1 � c1ts �
2c1FÞð3a0s1 � 3a0s2 � 4c0Þ� 0: From (17) we get the expression of (s1 - s2)2,

and submit it into �2a0ðs1 � s2Þ2 þ 2c0ðs1 � s2Þ þ ðs1 � c1ts � 2c1FÞð3a0s1 �
3a0s2 � 4c0Þ� 0; we have 2c0ðs1 � s2Þ � 3a0ðs1 � c1ts � 2c1FÞðs1 � s2Þ� 0:
Namely, we just need to prove 2c0=3a0 þ k� s1; which is obvious according to

(18). h

Proof of Proposition 6 The first order condition of RCY’s best response function

is:

opL
2ðs1; s2Þ
os2

¼ l

Za

Fþts

ða� tÞðt�FÞdt� lða�F� c0

s1� s2

Þc
2
0ðs2� c2Þ
ðs1� s2Þ3

¼ 6lða0 � tsÞ
ðs1� s2Þ3

½a02ðs1� s2Þ3þ a0c0ðs1� s2Þ2� 2c2
0ðs1� s2Þ� 6c2

0ðs2� c2Þ�

¼ 0;

namely,

a02ðs1 � s2Þ3 þ a0c0ðs1 � s2Þ2 � 2c2
0ðs1 � s2Þ � 6c2

0ðs2 � c2Þ ¼ 0: ð19Þ

Here a0 ¼ a� F: To prove the quasi-concavity of p2
L(s1, s2), we only need to prove

that given s1, we have
o2pL

2
ðs1;s2Þ
os2

2

� 0 when (19) is satisfied.
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o2pL
2ðs1; s2Þ
os2

2

¼� 2lc2
0ða0 � tsÞ
ðs1 � s2Þ3

þ lc3
0ðs2 � c2Þ
ðs1 � s2Þ5

� 3lc2
0ða0 � tsÞðs2 � c2Þ
ðs1 � s2Þ4

¼ lc2
0

ðs1 � s2Þ3
½�2a0 þ 2c0

ðs1 � s2Þ
� 3a0ðs2 � c2Þ
ðs1 � s2Þ

þ 4c0ðs2 � c2Þ
ðs1 � s2Þ2

�:

We now prove that given s1, if ASS 5.1 holds then s1 � sL�
2 ðs1Þ� 4c0=ð3a0Þ and

s2
L*(s1) C c2, because if these inequalities are satisfied, we will have q2 p2

L(s1,s2)/

qs2
2 B 0. In addition, if s1 � sL�

2 ðs1Þ� 4c0=ð3a0Þ; then s2
L*(s1) C c2 must be true,

otherwise the first order condition of RCY’s best response is violated. So we just

focus on proving if ASS 5.1 holds then s1 � sL�
2 ðs1Þ� 4c0=ð3a0Þ: By solving (19),

we get the best response function of the RCY:

sL�
2 ðs1Þ ¼ s1 þ

c0

3a0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðs1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðs1Þ þ B3

p
3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðs1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðs1Þ þ B3

p
3

q
;

here Aðs1Þ ¼ ð162c2
0a0s1 � 162c2

0a0c2 þ 34c3
0Þ=ð54a03Þ; B ¼ 11c2

0=ð9a02Þ: Therefore

to prove s1 � sL�
2 ðs1Þ� 4c0=3a0 is equivalent to prove

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðs1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðs1Þ þ B3

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðs1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðs1Þ þ B3

p
3

q
� 5c0=ð3a0Þ: ð20Þ

Because s1 C c1 and the left part of the above inequality is an increasing function of

s1, so we only need the following assumption to guarantee the above inequality.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðc1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðc1Þ þ B3

p
3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðc1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðc1Þ þ B3

p
3

q
� 5c0=ð3a0Þ:

Simplify the above assumption we get assumption ASS 5.1. h

Proof of Proposition 7 By the Index Theory approach (Cachon and Netessine

2003), to show the uniqueness of the BRF curve intersection, we only need to prove

that,

osL�
1 ðs2Þ
os2

osL�
2 ðs1Þ
os1

\1 at sL�
1 and sL�

2 :

We firstly prove qs1
L*(s2) / qs2 \ 1 at the NE. From the Implicit Function

Theorem (Bertsekas 1999),we have

os�L1 ðs2Þ
os2

¼ �
o2pL

1
ðs1;s2Þ

os1os2

o2pL
1
ðs1;s2Þ
os2

1

¼
lc2

0
ða0�tsÞ
ðs1�s2Þ3

þ lc3
0
ðs1�c1ts�2c1FÞ
ðs1�s2Þ5

� 3lc2
0
ða0�tsÞðs1�c1ts�2c1FÞ

ðs1�s2Þ4
þ lc1c3

0
ða0�tsÞ

ðs1�s2Þ5

2lc2
0
ða0�tsÞ

ðs1�s2Þ3
þ lc3

0
ðs1�c1ts�2c1FÞ
ðs1�s2Þ5

� 3lc2
0
ða0�tsÞðs1�c1ts�2c1FÞ

ðs1�s2Þ4
þ lc1c3

0
ða0�tsÞ

ðs1�s2Þ5
:

According to the proof of Proposition 5, we know that q2p1
L(s1,s2)/qs1

2 B 0 at the

NE, namely the denominator of the above expression is greater than zero. Hence to
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show qs1
L*(s2) / qs2 \ 1 at the NE, it is equivalent to show

lc2
0
ða0�tsÞ
ðs1�s2Þ3

\ 2lc2
0
ða0�tsÞ

ðs1�s2Þ3
at the

NE. By the proof of Proposition 6, we know if ASS 5.1 holds, then sL�
1 �

sL�
2 � 4c0=ð3a0Þ; with which

lc2
0
ða0�tsÞ
ðs1�s2Þ3

\ 2lc2
0
ða0�tsÞ

ðs1�s2Þ3
is true at the NE.

We now prove 0 \ qs2
L*(s1) / qs1 \ 1 at the NE. Also from the Implicit Function

Theorem (Bertsekas 1999), we have

os�L2 ðs1Þ
os1

¼ �
o2pL

2
ðs1;s2Þ

os2os1

o2pL
2
ðs1;s2Þ
os2

2

¼
lc2

0

ðs1�s2Þ3
a0 � c0

ðs1�s2Þ þ
3a0ðs2�c2Þ
ðs1�s2Þ �

4c0ðs2�c2Þ
ðs1�s2Þ2

h i

lc2
0

ðs1�s2Þ3
2a0 � 2c0

ðs1�s2Þ þ
3a0ðs2�c2Þ
ðs1�s2Þ �

4c0ðs2�c2Þ
ðs1�s2Þ2

h i :

Since in the proof of Proposition 6 we get that sL�
1 � sL�

2 � 4c0=ð3a0Þ and s2
L* C c2.

Hence 0 \ qs2
L*(s1) / qs1 \ 1 at the NE. By qs1

L*(s2) / qs2 \ 1 and 0 \ qs2
L*(s1) /

qs1 \ 1 at the NE, we finish the proof. h

Proof of Proposition 8 We first prove p1
L(s1

L*,s2
L*) C 0 under assumption ASS 5.1.

From the expression of p1
L(s1, s2), we have

pL
1ðs1; s2Þ ¼ l

ZFþts

F

s1ðt � FÞða� tÞdt � l

ZFþts

F

c1ðt2 � F2Þða� tÞdt

¼ l

ZFþts

F

ðt � FÞða� tÞðs1 � c1t � c1FÞdt

� l

ZFþts

F

ðt � FÞða� tÞðs1 � c1ts � 2c1FÞdt: ðts ¼ c0=ðs1 � s2ÞÞ

We now prove s1
L* - c1 ts

L* - 2c1F C 0 and s1
L* C s2

L*. Because if these two

inequalities are true, we have p1
L(s1

L*,s2
L*) C 0. By the proof of Proposition 6, we

know at the NE, sL�
1 � sL�

2 � 4c0=3a0 under assumption ASS 5.1, so s1
L* C s2

L*.

Substitute (s1
L*, s2

L*) into the first order condition of p1
L(s1,s2)

l

ZFþtL�
s

F

ða� tÞðt � FÞdt � l a� F � c0

sL�
1 � sL�

2

� �
c2

0ðsL�
1 � c1tL�

s � 2c1FÞ
ðsL�

1 � sL�
2 Þ

3
¼ 0;

we find that s1
L* - c1 ts

L* - 2c1F C 0 must be true at the NE, otherwise the above

first order condition is violated.

We now prove that p2
L(s1

L*,s2
L*) C 0 under assumption ASS 5.1. From the

expression of p2
L(s1, s2), if we can prove s1

L* C s2
L*, F ? ts

L* B a and s2
L* C c2, then

p2
L(s1

L*,s2
L*) C 0. We already have s1

L* C s2
L*, hence we just focus on the proof of F ?

ts
L* B a and s2

L* C c2. In the first order condition of p2
L(s1,s2)
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l

Za

FþtL�
s

ða� tÞðt � FÞdt � l a� F � c0

sL�
1 � sL�

2

� �
c2

0ðsL�
2 � c2Þ

ðsL�
1 � sL�

2 Þ
3
¼ 0;

if F ? ts
L* B a then s2

L* C c2 must be true. So we only need to prove tL�
s � a0; here

a0 ¼ a� F; that is sL�
1 � sL�

2 � c0=a0; which is satisfied under assumption ASS 5.1.

Therefore we have p2
L(s1

L*,s2
L*) C 0 if ASS 5.1 holds. h

Proof of Proposition 9 We can write out the first order condition of CTY’s best

response function:

opD
1 ðs1; s2Þ
os1

¼ 2c1t3
s

3P
þ c1Ft2

s

P
� s2t2

s ðs1 � c1ts � 2c1FÞ
Pðs1 � s2Þ

¼ 0: ð21Þ

Simplifying the first order condition, we get

ð3s2 � 3c1FÞs2
1 � ð3s2

2 þ 2c0c1Þs1 þ 3c1Fs2
2 � c0c1s2 ¼ 0: ð22Þ

To prove the quasi-concavity of p1
D(s1,s2) we only need to prove that given s2, we

have q2 p1
D(s1,s2) / qs1

2 B 0 when (21) is satisfied.

o2pD
1 ðs1; s2Þ
os2

1

¼ � 2c1t3
s

Pðs1 � s2Þ
� 2c1Ft2

s

Pðs1 � s2Þ
þ 3s2t2

s ðs1 � c1ts � 2c1FÞ
Pðs1 � s2Þ2

� s2t2
s

Pðs1 � s2Þ
½1þ c0c1

ðs1 � s2Þ2
�:

From (21) we know

3s2t2
s ðs1 � c1ts � 2c1FÞ

Pðs1 � s2Þ2
¼ 2c1t3

s

Pðs1 � s2Þ
þ 3c1Ft2

s

Pðs1 � s2Þ
:

Substitute the above equation into the expression of q2 p1
D(s1, s2)/qs1

2, we find that to

prove q2 p1
D(s1,s2)/qs1

2 B 0 is equivalent to prove,

Fc1t2
s

Pðs1 � s2Þ
� s2t2

s

Pðs1 � s2Þ
1þ c0c1

ðs1 � s2Þ2

" #

� 0;

which can be verified if we can show that, s1
D*(s2) [ s2 when s2 [ c1F. Thus we now

try to prove, given s2 [ c1F, s1
D*(s2) [ s2. From (22), we solve,

sD�
1 ðs2Þ ¼

3s2
2 þ 2c0c1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3s2

2 þ 2c0c1Þ2 � 4ð3s2 � 3c1FÞð3c1Fs2
2 � c0c1s2Þ

q

2ð3s2 � 3c1FÞ :

Given s2 [ c1F, to ensure s1
D*(s2) [ s2 we need 3c0c1s2 [ 0, which is obvious. h

Proof of Proposition 10 We can write out the first order derivative and second

order condition of p2
D(s1,s2):
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opD
2 ðs1; s2Þ
os2

¼ 1

P

ZP

s1ts

c2

s2
2

ðp� c0Þdp� 1

P
ð1� c2

s2

Þ c0s1ðs1ts � c0Þ
ðs1 � s2Þ2

; ð23Þ

o2pD
2 ðs1; s2Þ
os2

2

¼ � 2

P

ZP

s1ts

c2

s3
2

ðp� c0Þdp� 2c0c2s1ðs1ts � c0Þ
Ps2

2ðs1 � s2Þ2
� c2

0s2
1ðs2 � c2Þ

Ps2ðs1 � s2Þ4

� 2c0s1ðs1ts � c0Þðs2 � c2Þ
Ps2ðs1 � s2Þ3

� 0:

To prove the quasi-concavity of p2
D(s1, s2), we only need to prove that given s1, the

above inequality is satisfied at (s1 ,s2
D*(s1)). We now prove that s2

D*(s1) \ s1,

s1ts
D*(s1) B P and s2

D*(s1) C c2. Because if these relations are true, the above

inequality is satisfied. From (23), if s2
D*(s1) \ s1 and s1ts

D*(s1) B P, then

s2
D*(s1) C c2 must be true. So we only need to prove s2

D*(s1) \ s1 and s1ts
D*(s1) B P

now. Given s1, by letting (23) equal to zero, we have

Cðs1Þ � s3
2 þ Dðs1Þ � s2

2 þ Gðs1Þ � s2 þ Hðs1Þ ¼ 0:

Here, C(s1) = - P0 - 2c0
2s1, D(s1) = (3P0 ? 4c0

2c2)s1, G(s1) = - (3P0 ?

3c0
2c2)s1

2, H(s1) = (P0 ? c0
2c2)s1

3 and P0 = c2P2 - 2c0c2P. The discriminate of this

cubic equation is less than zero, so it has only one real root. And given s1, define,

dðs2Þ ¼ Cðs1Þ � s3
2 þ Dðs1Þ � s2

2 þ Gðs1Þ � s2 þ Hðs1Þ:

Let s2 = s1, we have d(s1) = 2c0
2c2 - 2c0

2s1 \ 0. So according to the shape of

function d(s2), we know that s2
D*(s1) \ s1.

Now we prove s1ts
D*(s1) B P, namely, (1 - c0/P)s1 - s2

D*(s1) C 0. According to

the shape of d(s2), it is sufficient to prove d((1 - c0/P)s1) B 0, that is,

dðð1� c0=PÞs1Þ ¼
2c2

0s3
1

P3
½Pc2ðP� c0Þ2 � s1ðP� c0Þ3� � 0:

By P [ c0, it is sufficient to prove Pc2 - Ps1 ? s1c0 B 0. Because s1 [ c1, with the

assumption Pc2 - Pc1 ? c1c0 B 0, the above inequality is satisfied. Hence, by

assuming Pc2 - Pc1 ? c1c0 B 0, we have s1tD�
s ðs1Þ�P: h

Proof of Proposition 11 By the proof of Proposition 10. we know that if ASS 6.1

is satisfied, then s2
D* \ s1

D* and s1
D*ts

D* B P at the NE. Substitute (s1
D*, s2

D*) into the

first order condition of RCY’s best response,

1

P

ZP

sD�
1

tD�
s

c2

sD�2
2

ðp� c0Þdp� 1

P
1� c2

sD�
2

� �
c0s1ðsD�

1 tD�
s � c0Þ

ðsD�
1 � sD�

2 Þ
2
¼ 0;

we find that at NE, we must have s2
D* C c2, otherwise the first order condition is

violated. Therefore if ASS 6.1 holds, then in the expression of p2
D(s1

D*, s2
D*), we have

s2
D* C c2, s2

D* \ s1
D* and s1

D*ts
D* B P, and these three inequalities ensure that

p2
D(s1

D*,s2
D*) C 0.
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Similarly, since s2
D* \ s1

D*, according to the first order condition of the CTY’s

best response, (21), we find that at NE, we must have s1
D* - c1ts

D* - 2c1F C 0,

otherwise the first order condition is violated. By the expression of p1
D(s1,s2),

pD
1 ðs1; s2Þ ¼

1

P

Zs1ts

0

pdp� 1

P

Zs1ts

0

½c1ðF þ p=s1Þ2 � c1F2�dp

¼ 1

P

Zs1ts

0

p

s1

ðs1 �
c1p

s1

� 2c1FÞdp

� 1

P

Zs1ts

0

p

s1

ðs1 � c1ts � 2c1FÞdp:

With s2
D* \ s1

D* and s1
D* - c1ts

D* - 2c1F C 0, we get pD
1 ðsD�

1 ; sD�
2 Þ� 0: h

Proof of Proposition 12 By the Index Theory approach (Cachon and Netessine

2003), to show the uniqueness of the NE, we only need to prove,

osD�
1 ðs2Þ
os2

osD�
2 ðs1Þ
os1

\1 at sD�
1 and sD�

2 :

We first prove qs1
D*(s2)/qs2 \ 1 at the NE. Note that, by the Implicit Function

Theorem (Bertsekas 1999),
osD�

1
ðs2Þ

os2
¼ �

o2pD
1
ðs1 ;s2Þ

os1os2

o2pD
1
ðs1 ;s2Þ

os2
1

.

o2pD
1 ðs1; s2Þ

os1os2

¼ 2c1t3
s

Pðs1 � s2Þ
þ 2Fc1t2

s

Pðs1 � s2Þ
� ð2s2 þ s1Þt2

s ðs1� c1ts � 2c1FÞ
Pðs1 � s2Þ2

þ c1s2t3
s

Pðs1 � s2Þ2
;

According to (21), the above equation can be simplified to

o2pD
1 ðs1; s2Þ

os1os2

¼ ðs2 � s1Þt2
s ðs1� c1ts � 2c1FÞ
Pðs1 � s2Þ2

� c1Ft2
s

Pðs1 � s2Þ
þ c1s2t3

s

Pðs1 � s2Þ2
:

Hence, we need to prove

osD�
1 ðs2Þ
os2

¼ �
o2pD

1
ðs1;s2Þ

os1os2

o2pD
1
ðs1;s2Þ

os2
1

¼
c1s2t3

s

Pðs1�s2Þ2
� Fc1t2

s

Pðs1�s2Þ �
t2
s ðs1�c1ts�2c1FÞðs1�s2Þ

Pðs1�s2Þ2

c1s2t3
s

Pðs1�s2Þ2
� Fc1t2

s

Pðs1�s2Þ þ
s2t2

s

Pðs1�s2Þ

\1:

As shown in Proposition 11, s1
D* [ s2

D* and s1
D* - c1ts

D* - 2c1F C 0. Therefore the

above inequality is satisfied at the NE.

We then prove 0 \ qs2
D*(s1) / qs1 \ 1 at the NE. Because we have:
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o2pD
2 ðs1; s2Þ
os2

2

¼ � 2

P

ZP

s1ts

c2

s3
2

ðp� c0Þdp� 2

P

c0c2s1ðs1ts � c0Þ
s2

2ðs1 � s2Þ2

� 1

P
s2

1 1� c2

s2

� �
c2

0

ðs1 � s2Þ4
� 1

P
1� c2

s2

� �
2c0s1ðs1ts � c0Þ
ðs1 � s2Þ3

;

o2pD
2 ðs1; s2Þ

os2os1

¼ c2ðs1ts � c0Þ
Ps2

2

c0s1

ðs1 � s2Þ2
� ts

" #

þ c0s1ðs2 � c2Þ
Ps2ðs1 � s2Þ2

c0s1

ðs1 � s2Þ2
� ts

" #

þ ðs1ts � c0Þðs2 � c2Þ
Ps2

2c0s1

ðs1 � s2Þ3
� c0

ðs1 � s2Þ2

" #

;

also from the Implicit Function Theorem:

osD�
2 ðs1Þ
os1

¼ �
o2pD

2
ðs1;s2Þ

os2os1

o2pD
2
ðs1;s2Þ

os2
2

;

substitute the expressions of q2 p2
D(s1,s2) / qs2

2 and q2 p2
D(s1,s2)/ qs2 qs1 into the

above equation and then simplify it, we find that to prove 0 \ qs2
D*(s1) / qs1 \ 1, we

only need,

2

P

ZP

s1ts

c2

s3
2

ðp� c0Þdpþ c2tsðs1ts � c0Þ
Ps2

2

þ c0c2s1ðs1ts � c0Þ
Ps2

2ðs1 � s2Þ2

þ c0ð2s1ts � c0Þðs2 � c2Þ
Ps2ðs1 � s2Þ2

[ 0:

According to the proof of Proposition 11, if ASS 6.1 holds, s2
D* \ s1

D*, s2
D* C c2 and

s1
D*ts

D* B P at the NE. And these three relations ensure the above inequality.

Therefore 0 \ qs2
D*(s1) / qs1 \ 1 at the NE. By qs1

D*(s2)/qs2 \ 1 and 0 \ qs2
D*(s1) /

qs1 \ 1 at the NE, we finish the prove. h
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