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Abstract The work presented in this paper proposes hybridized genetic algorithm

architecture for the Flexible Job Shop Scheduling Problem (FJSP). The efficiency of

the genetic algorithm is enhanced by integrating it with an initial population gen-

eration algorithm and a local search method. The usefulness of the proposed

methodology is illustrated with the aid of an extensive computational study on 184

benchmark problems with the objective of minimizing the makespan. Results

highlight the ability of the proposed algorithm to first obtain optimal or near-optimal

solutions, and second to outperform or produce comparable results with these

obtained by other best-known approaches in literature.

Keywords Flexible job shop � Scheduling problems � Genetic algorithms �
Local search � Meta heuristic approaches

1 Introduction

Scheduling is concerned with allocating number of tasks to limited resources in

order to optimize a certain performance criteria. Depending on the problem size,

represented by the number of tasks and resources, the scheduling task may turn out

to be the most time consuming and challenging activity within an enterprise.

Flexible job shop scheduling problem (FJSP) is a generalization of the classical

job shop scheduling problem (JSP). It takes shape when alternative production

routing is allowed in the classical job shop. Here, the scheduling problem becomes
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more difficult to deal with as it introduces a further machine assignment decision

level beside the operations’ sequencing level. In manufacturing systems, most

scheduling problems are very complex in nature and very complicated to be solved

by conventional optimization techniques to obtain a global optimal schedule. For

example, determining an efficient schedule for a flexible job shop (FJS) with n jobs

and m machines will have (n!)m possible sequences (Mellor 1966). Hence,

scheduling problems are considered as combinatorial optimization problems and

classified as NP-hard problems (Garey et al. 1976). Nevertheless, modelling and

solving the more complex FJSP is increasingly attracting the interest of many

researchers. This is can be recognized by the increase in the number of research

papers addressing this problem.

Due to the NP-hard nature of the FJSP, using a pure mathematical optimization

approach to determine an optimal solution may not be efficient in practice.

Similarly, heuristics, which can be efficient for some problem instances do not have

a guaranteed distance from the optimal solution. Recently, using a high-level

strategy to guide other heuristics, known as meta-heuristics, led to better and more

appreciated results in a relatively short period. Therefore, a number of meta-

heuristics were proposed in literature for the past two decades to deal with FJSP

such as simulated annealing (SA), ant colony (AC), genetic algorithm (GA), etc.

The main advantage of using GA approaches in contrast of local search

techniques, is the fact that GA utilizes a population of solutions in its search, giving

it more resistance to premature convergence on local minima. Our approach to solve

the FJSP is based on hybridising GA with an initial schedule generation heuristic

and then combing it with a local search method. The current method modifies some

of the already known techniques in literature and combines them to produce

efficient hybridized GA architecture.

The remainder of this paper is organized as follows: Sect. 2 describes the FJSP

definition. Previous research work in this area is summarized in Sect. 3. Section 4

introduces the proposed GA architecture and the local search method, respectively.

The computational results are presented and discussed in Sect. 5. Finally, the research

summary and possible directions for future work in this area are covered in Sect. 6.

2 Problem definition

FJSP is strongly NP-hard due to (a) assignment decisions of operations to a subset of

machines and (b) sequencing decisions of operations on each machine (Tay and

Wibowo 2004). The FJSP can be formulated as follows:

• There are n independent jobs of each other and indexed by i.
• All jobs are ready to start at time zero.

• Each job i has Qi operations and the operations’ sequence is given by Oij for

j = 1, …, Qi.

• There are m machines indexed by k.

• Machines never breakdown and are always available.

• For each operation Oij, there is a set of machines capable of performing it

represented by Mkij;Mkij � f1; . . .;mg.
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• The processing time of an operation Oij on machine k is predefined and given by tijk.
• The setup time of any operation is independent of the schedule, fixed, and

included in the corresponding processing time.

• A started operation cannot be interrupted (non-preemption condition).

• Each machine can process at most one operation at any time (resource

constraints).

• The precedence constraints of the operations in a job can be defined for any pair

of operations.

The objective is to find a schedule that has lowest possible value of makespan,

where the makespan is the time required for all jobs to be processed according to a

given schedule.

3 Literature review

Generally, used approaches to solve the complex FJSP can be categorized into two

main basic approaches: concurrent approaches and hierarchical approaches.

Hierarchical approaches are based on decomposing the problem to reduce its

complexity. This complexity reduction is achieved by separating the assignment

decisions level (or flexible routing) from the sequencing decisions of operations into

two sub-problems. It is worth mentioning here that the sequencing decisions sub-

problem is in fact a classical job shop scheduling problem. Thus, this approach had

gained the interest of researchers at earlier stages like Brandimarte (1993) and Paulli

(1995) both of whom solved the assignment problem using some heuristic

dispatching rules and then used tabu search to solve the remaining sequencing

problem. Similarly, Bona et al. (1990) followed a similar heuristic approach to

handle the machine assignment part and then used simulated annealing heuristic.

On the other hand, concurrent approaches (also known as integrated approaches)

integrate both problem levels and solve them simultaneously. Although this

approach was attempted at early stages like in Lee and Mirchandani (1988) and in

Mirchandani et al. (1988), hierarchical approach was favoured over it for sometime

due to the simplifications associated with the later. However, the high quality results

obtained using concurrent approach shifted the interest towards this approach to

deal with the FJSP. For example, the concurrent approaches developed using tabu

search methodologies as in Hurink et al. (1994), Brucker and Neyer (1998),

Dauzére-Pérés and Paulli (1997), and Mastrolilli and Gambardella (2000); and

simulated annealing as in Najid et al. (2002).

Among different meta-heuristic algorithms, GA is considered to be a very successful

to tackle the FJSP and this can be noticed by the growing number of papers discussing

this topic. Falkenauer and Bouffouix (1991) were among the first to propose a machine

parallel representation to solve JSP. They encoded the chromosomes using list of

machines operating in parallel. Their work was then extended by other researchers like

Mesghouni et al. (1997) who proposed parallel job representation and Chen et al. (1999)

who divided the chromosome into two strings; A and B; where the first is defining the

routing policy and the second defines the sequence of operations on each machine.
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Similarly, Ho and Tay (2004) proposed a new GA structure called GENACE. Their

chromosome consists of two parts, one dedicated to define the operation order and the

second for machine selection. GENACE was then combined with a learning knowledge

procedure and converted to another GA structure called LEGA by Ho et al. (2007). A

similar chromosome representation was adapted by Gao et al. (2008) who developed a

GA hybridized with variable neighborhood descent local search procedures for the

flexible job shop problem.

Kacem et al. (2002a, b) suggested using an assignment table representation of

chromosomes. In the assignment table, a machine is mapped to a consequent

operation. This work was recently modified by Pezzella et al. (2008) by integrating

more strategies in the genetic framework that led to better results. Kacem (2003) used

a task sequencing representation of chromosomes where each cell represents an

operation on a machine. Giovanni and Pezzella (2010) proposed an improved genetic

algorithm for the distributed and flexible job shop scheduling problem. Wei and

Qiaoyun (2009) offered an adaptive genetic algorithm that considers the processing

time, the completion time of previous operation and the idle time of current machine

to select a suitable machine in the decoding process when solving the FJSP.

Hussain and Joshi (1998) proposed a two pass GA for the job shop scheduling

problem with alternate routing. Yang (2001) offered GA-based discrete dynamic

programming approach. Jia et al. (2003) proposed a modified GA to solve distributed

scheduling problems. Chan et al. (2006) introduced the idea of dominant genes, which

is based on the principle of Automata introduced by White and Oppacher (1994).

Zribi et al. (2007) used a hierarchical GA approach to solve the machine assignment

and scheduling of FJSP. Girish and Jawahar (2008) proposed two concurrent meta-

heuristic approaches, genetic algorithm (JSSGA) and ant colony (JSSANT) to solve

job shops with multiple routings. Xu et al. (2009), Xing et al. (2010) and Ling et al.

(2010) presented an ant colony optimization algorithm for the FJSP.

Xia and Wu (2005) combined particle swarm optimization algorithm with

simulated annealing to form hybrid approach for the multi-objective FJSP. Girish

and Jawahar (2009) offered particle swarm algorithm to solve FJSP. Also, Zhang

et al. (2009) proposed a hybridized particle swarm optimization algorithm with tabu

search to solve multi-objective FJSP. Liu et al. (2009) formulated a multi-particle

swarm approach to solve multi-objective FJSP. Xing et al. (2009) addressed a local

search method based on empirical knowledge for the multi-objective FJSP. Another

local search method that adapts the concept of climbing discrepancy search method

is proposed by Hmida et al. (2010).

4 GA structure

4.1 Chromosome coding

A proper chromosome representation has a great impact on the success of the used

GA. Cheng et al. (1996) gave a detailed tutorial survey on papers using different GA

chromosome representations to solve classical JSP. It can be concluded from their

work (and others like Ho et al. 2007; Mattfeld 1996; and Tay and Wibowo 2004)
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that the search space of an operation-based representation covers the whole solution

space and any permutation of operators can correspond to a feasible schedule. For a

recent overview discussing these aspects readers are referred to Hart et al. (2005). In

light of the above, the current work uses a similar effective permutation-based

chromosome representation used in Kacem et al. (2002a, b), Kacem (2003) and

Chan et al. (2006). The used representation composes of a string consisting of triples

(k, i, j) for each operation forms the chromosome, where

• k is machine assigned to the operation;

• i is current job number;

• j is the progressive number of that operation within job i.

This chromosome representation integrates the machine assignment decision

level and sequence decision level in one simple gene representation. Such a

representation reduces the memory usage and permits more efficient genetic

operators to be considered (see Sect. 4.5).

Another advantage of this representation is its ability to model alternative routing

of the problem by changing the index k. The length of the chromosome is equal to

the total number of operations (tot_noper) to be scheduled. Figure 1 shows a sample

encoding of a chromosome for FJSP with three jobs and three machines according

to the processing times given in Table 1. In Fig. 1a, the first gene (221)

characterizes that operation 1 of job 2 is assigned to machine 2. Since this

operation can be carried out on another machine, machine 1, then the gene can be

modified to (121) as shown in Fig. 1b. The scheduling priority of operations is set to

be from left to right. Based on this priority, a chromosome is decoded to produce an

active schedule (see Sect. 4.2). Furthermore, both FJSP sub-problems known as total

FJSP (T-FJSP) and partial FJSP (P-FJSP) can be represented with this represen-

tation without any modification (T-FJSP and P-FJSP are addressed in Sect. 5).

4.2 Chromosome decoding

Even though the used chromosome representation or genotype corresponds to

feasible solution (schedule), mapping it to a proper phenotype is essential to reduce

the very large feasible solution-space. Feasible schedules are categorized into semi-

active schedules, active schedules and non-delay schedules. French (1982) and

Pinedo (2002) demonstrated that the set of non-delay schedules is a sub-set of the

active schedules which is a sub-set of the semi-active schedules. They also verified

that for regular performance measures an optimal solution exists within the set of

active schedules. Accordingly, our decoding algorithm minimizes the solution-

space by constructing active schedules, while still ensuring that an optimal solution

can be found. The decoding algorithm to produce active schedule is shown in

Algorithm Decode.

Fig. 1 a Chromosome coding; b alternative routing
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Algorithm Decode (decoding a chromosome to an active schedule)

1. Initialize Gantt chart structure
2. For each gene reading from left to right do
3. Identify the operation Oi,j

4. Identify the machine Mk which processes Oi,j from the first gene’s digit and its 
processing time ti,j,k

5. If Oi,j is the first operation Then
Set t0 to 0

6. Else
Set t0 to be stop time of the predecessor operation Oi,j-1

7. End If
8. If Mk did not process any operation Then

Set t1 to 0
9. Else

Set t1 to be the stop time of the last operation on Mk

10. End If
11. If t1 t0 Then

Add Oi,j to Mk starting at t0

12. Else If it exist between t0 to t1 (time interval between two consecutive operations on
Mk) ti,j,k Then

Add Oi,j to Mk starting at the end of the finished processing time of the 
operation to the left

13. Else
Add Oi,j to Mk starting at t1

14. End if
15. End for

4.3 Initial population

The efficiency of meta-heuristic algorithms that use initial solutions as a starting

point can be improved by generating proper solutions at promising points on the

solution-space. However, if all initial solutions are generated and tuned to satisfy the

objective function, then the risk of the algorithm being trapped at local minima

increases. To satisfy these two conflicting requirements, our genetic search process

adopts two tactics to generate the initial population.

The first procedure is to randomly generate a certain percentage of chromosomes.

Each chromosome’s gene is generated first by randomly selecting a progressive operation

Table 1 Processing times for a

FJSP with 3 jobs and 3 machines
J O M1 M2 M3

J1 O11 2 – 4

O12 – 3 –

J2 O21 2 3 –

O22 4 3 5

O23 – 1 –

J3 O31 2 3 1

O32 1 2 3
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number of an unscheduled operation and then by randomly assigning that operation to an

appropriate machine. This procedure is repeated until all operations are coded.

The second procedure uses a heuristic approach to construct a Gantt chart which is

used to generate a chromosome. The procedure considers the processing time as well

as the work load on the machine while assigning an operation. Thus, an operation may

not necessarily be assigned to the machine with minimum processing time, but it will

be assigned to the machine that will finish it sooner than other appropriate machines.

The pseudo-code of the developed heuristic is shown in Algorithm Ini-PopGen. It

should be emphasized that this algorithm generates active schedules.
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Figure 2 demonstrates how Ini-PopGen algorithm creates an active schedule for

the data given in Table 1. Suppose the randomly created jobs priority is [3, 1, 2]

(step 2). Therefore, the first operations of jobs 3, 1, and then 2 will be scheduled in

the Gantt chart as shown in Fig. 2a, respectively (steps 4–34). Fig. 2b shows the

scheduling of the second operations of the jobs. If we consider for example O22,

then it can be noted that the operation was assigned to M1 even though the

processing time on machine M2 is the smallest among the other machines. However,

M1 is selected as it is the machine that can finish processing this operation before

others (Step 29). The final Gantt chart is shown in Fig. 2c, which indicates that it is

the optimal schedule for this machines’ assignment as the operations of job 2 falls

on the critical path of this schedule and they cannot be finished sooner without

violating the precedence constraints. This emphasizes the strength of this algorithm

in obtaining good initial schedules or chromosomes.

4.4 Selection

Selection is an important element in GA. The task is to select individuals for

reproduction by moving them into a mating pool. Our selection method of

individuals for mating is divided into two phases:

1. Phase 1 (forming the donors’ mating-pool): Roulette wheel technique is chosen

to be the main driving motor in selecting the donor chromosomes and form

what we wish to term as, ‘the donors’ mating-pool’. The donors’ mating-pool is

formed at the beginning of each evolution process before the crossover stage

starts. Two procedures were tested in this phase. The first procedure starts by

first linearly ranking the individuals and sorting them according to their fitness

values. Then, roulette wheel is used to select ranked individuals based on a

selection probability given by the equation:

Ps ¼
Find

Ftot
; ind ¼ 1; . . .;N ð1Þ

M1

M2

M3

1221

31

M1

M2

M3

11

21

31

11 32 22

M1

M2

M3

1221

31

11 32 22

23

(a) (b)

(c)

Fig. 2 A few steps of the Ini-PopGen algorithm
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where, Ps is the probability of choosing the indth individual; N is the population

size; Find is the indth individual fitness; and Ftot is the total fitness of all

individuals in the current generation.

The second procedure is to apply roulette wheel to form the donors’ mating-

pool using Eq. 1 without ranking the individuals. After comparing the two

methods, our results show that the second procedure performs better than the

first one. This could be related to the population diversity that results from both

procedures. When individuals are ranked according to their fitness values this

gives individuals with better fitness values higher chances to be selected to form

the mating pool and have higher chances to reproduce. Though such outcome is

preferred to enhance the exploration around promising areas of the solution-

space, at a certain stage of the evolution process, this causes the algorithm to

converge prematurely to a local optimum. This is avoided in the second

procedure by giving individuals with less fitness values the chance to be part of

the evolution process and reduce the chances of the algorithm being trapped in

local minima.

2. Phase 2 (forming the receivers’ mating-sub-pool): After the donor’s mating-

pool has been formed and at the beginning of each crossover process, individual

in the donors’ mating-pool are subjected to a crossover probability Pc. If the

individual satisfies this probability, then Phase 2 in the selection procedure

starts by forming what we term as ‘receivers’ mating sub-pool’ using an n-Size

tournament method, otherwise the donor will form a child. Phase 2 procedure

starts by selecting n different random number of chromosomes from the

population and moves them to the receivers’ mating-sub-pool. Following on,

the individuals within the sub-pool are ranked according to the fitness and the

best is chosen for reproduction. It is worth mentioning here that the donor is

prevented from being reselected in this procedure.

4.5 Genetic operators

The performance of genetic algorithms to a great extent depends on the performance

of the genetic operators used (Gen and Cheng 2000). Therefore, designing the right

genetic operators is very essential for the success of any GA. Furthermore, when

applying genetic operators; crossover and/or mutation; there is a high chance of

forming infeasible chromosomes by, for example, violating the precedence

constraints among operations of the same job. In such cases, a repair or correction

mechanism has to be implemented on the infeasible offspring. Such repair procedure

is time-consuming. Therefore, it is more practical to design the operators to respect

such precedence constraints. Ho et al. (2007) and Gao et al. (2008) satisfied this by

dividing their chromosome into two parts where the first defines the operation order

and the second defines the machine selection. Their genetic operators were separately

applied to each part. Therefore, they were able to avoid producing infeasible

chromosomes. However, such chromosome representation complicates the GA

architecture and requires that the genetic operators to independently be applied to

each part, which in turn increases the required computational time.
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Since our algorithm implements a chromosome representation that integrates

both FJSP levels by adopting a gene of three triples (machine, job, operation), a

genetic operator which satisfies the previous requirement has to be carefully

designed otherwise a repairing technique will be a necessity. In order to satisfy this,

Precedence Preserving Order-based Crossover (POX) (Kacem et al. 2002a) and a

modified Position Based Mutation (PBM) (Mattfeld 1996) as well as Machine
Based Mutation (MBM) are selected as the genetic operators.

4.5.1 Crossover operator

The idea in POX is to transfer the selected operations in the donor to the same

position in the offspring. Furthermore, we have modified the POX operator so that it

does not treat the parents symmetrically. This modification assists the algorithm to

control the spread of the genetic information and keep the genetic drift to minimum.

The crossover is implemented in two steps. In step 1, a gene is randomly selected

from the donor and all genes containing operations belonging to the job found in

that gene are copied to the offspring. Meanwhile, the corresponding operations in

the receiver are located and deleted. In step 2, the remaining offspring’s genes are

completed by moving the remaining operations from the receiver and inserting them

in the offspring’s empty genes in the same order. Figure 3 exemplifies this

procedure for two randomly created chromosomes representing the 3 9 3 problem

given in Sect. 4.1. The selected genes from the donor have been pointed to by an

arrow, and the corresponding deleted operations in the receiver are marked by (9).

It can be observed from Fig. 3 that POX includes an implicit mutation. For example,

consider the relative position of operation 2 of job 2 to operation 2 of job 1. In both

parents, operation 2 of job 1 precedes operation 2 of job 2. However, this is not the

case in the offspring. Therefore, if both operations are to be processed on the same

machine, then unlike the parents, operation 2 of job 2 will be scheduled before

operation 2 of job 1 in the offspring. Moreover, when implementing POX the

operations belonging to the same job are moved from the parent to the offspring in

the same order. Consequently, the precedence constraints of jobs are not violated

and hence no infeasible chromosome is produced. Thus, no repairing mechanism is

required.

4.5.2 Mutation operator

After creating a number of children equal to the number of parents using crossover

according to a crossover probability Pc, children are subjected to mutation

Fig. 3 POX example
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according to a mutation probability Pm. This is done to maintain the diversity of the

chromosomes and to introduce some extra variability into the population. Two

strategies were followed during the mutation process:

1. The first strategy called Machine Based Mutation (MBM), where a random

number of operations (denoted as nrand) are selected and reassigned to another

machine. As introduced earlier, the purpose of mutation is to increase the

diversity of the population. However, if a drastic change is imposed in the

chromosomes’ structure, then the genetic search will turn to be a random

search. Therefore, the resultant chromosome from mutation should not be

significantly different from the original chromosome. Number of experiments

were conducted to select the appropriate values of nrand that satisfy the

previous condition. Hence, nrand is limited between [1, 3]. After nrand is

uniformly selected from that range, nrand operations are randomly selected

within the child’s chromosome. The selected operations are then reassigned to

another machine if applicable to form a child’. In order to reduce the

computational time, a local memory is linked to each operation. This local

memory contains information about the machines that can process this specific

operation and their number. This mutation procedure is illustrated in Fig. 4,

where it is assumed that the generated nrand = 2 and the randomly selected

genes are pointed to by an arrows. Figure 4a expresses that only one of the two

operations can reassigned to another machine.

2. The second strategy called modified Position Based Mutation (PBM) (Mattfeld

1996). PBM was originally designed for JSP using single triple permutation-

based chromosomes representation. Thus, the PBM is modified so that no

infeasible chromosomes are produced. This mutation starts by randomly

selecting an operation from child’ and reinserting it at another position in the

new child. Then, the remaining operations are copied from child’ to the new

child taking care of the precedence constraints of the moved operation.

Figure 4b demonstrates this mutation procedure, where the selected gene is

underlined and the new position is pointed to by an arrow.

After crossover and mutation is implemented, the children are taken to form the

new generation. The algorithm terminates after reaching a maximal number of

generations.

Fig. 4 a Sample procedure of
MBM; b sample procedure of
modified PBM

74 N. Al-Hinai, T. Y. ElMekkawy

123



4.6 Local search

The use of local search techniques has been proven to be useful in solving

combinatorial problems. Local search methods are applied to a neighborhood of a

current solution. In the case of JSP, a neighborhood is achieved by moving and

inserting an operation in a machine sequence. Therefore, when designing a local

search method that works on neighborhood of solutions, two main issues have to be

considered. The first issue is that the size of the neighborhood has to be limited. The

second issue is the feasibility of solutions.

Generally, there are two scenarios to deal with the feasibility issue. The first

scenario is to design a local search that only considers feasible moves as in the two

neighborhood functions proposed by Mastrolilli and Gambardella (2000). The

second scenario is to design a local search that accepts all moves and then either

rejects the infeasible moves or implement a repairing procedure like the proposed

repairing technique presented by Murovec and Šuhel (2004).

Brandimarte (1993) suggested the following neighborhood structures:

1. Neighborhood N 1 where a sample size is set to randomly sampling the

potential exchanges within the neighborhood.

2. Neighborhood N 2 where a job is randomly selected and it is exchanged on each

machine with the adjacent jobs in each machine sequence.

3. Neighborhood N 3 where a machine is randomly selected and the complete set

of job exchanges on that machine is considered.

4. Neighborhood N 4 where operations on the critical path are considered for the

exchange.

The second and third neighborhood structures limit the search space by confining

it to either focus on a specific arrangement, whereas the first gives some degree of

random exploration. Several researchers have verified that when the makespan is the

considered objective function, then neighborhoodN 4 is very useful since operations

not laying on the critical path do not affect the makespan (see for example

Brandimarte 1993; Mastrolilli and Gambardella 2000; Murovec and Šuhel 2004).

However, a local search that is solely devoted to work on critical path heads directly

toward deterministically predictable local minima. On the other hand, a local search

that is based on random search helps preserving the diversification of the

population. Hence, a local search that combines both approaches by introducing

randomness in a local search that is related to the critical path may be more

desirable. Therefore, we propose using a local search method that combines

neighborhoods N 1 and N 3 while defining hill climbing heuristic that works on

blocks of moves that contain a critical block as subset (for more details about

critical blocks, readers are referred to Mattfeld 1996).

The proposed local search starts with a feasible schedule S as an input. The input

schedule is set to Sbest which stands for the best found solution. Then, a

neighborhood consisting of blocks containing feasible moves on each machine is

constructed. A feasible move is defined by two consecutive operations on the same

machine that can be interchanged without violating the precedence constraint.
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Therefore, each block will contain at least two consecutive operations which

correspond to one move. To that, an ordinary hill climbing heuristic is applied to

bring the new schedule S’ to the local optimum with respect to the used

neighborhood. The hill climbing heuristic works by interchanging or swapping two

consecutive operations within one block at a time. Every time a move is done, the

new makespan of S’ is estimated. If the new S’ is better (i.e. has a lower makespan)

than Sbest, then Sbest is replaced by S’. The procedure is repeated until a maximal

number of iterations (loc_iter) without improving moves is reached. The pseudo-

code of the local search heuristic is shown in Algorithm LS.

To illustrate how the local search works, consider the Gantt charts shown in

Fig. 5. Assuming that Fig. 5a represents an input schedule Sbest to the local search,

blocks; which may or may not include critical operations; containing feasible

moves are in machine 1 (O32, O22, O11), and in machine 2 (O23, O12). It can be

seen that O21 is not included in the second block as if it is to be swapped with O23;

it will result in an infeasible schedule. Since machine 3 does not process any

operation other than O31, then no block is formed. The first move is done by

swapping O32 and O22. However, since in our algorithm we consider active

scheduling this move does not change the schedule. The second move is done by

interchanging O22 and O11. This produces a better schedule S’ as shown in Fig. 5b

and hence, Sbest is replaced by S’. In the same time, the blocks are automatically

updated with the new changes in the schedule and the modified blocks become in

machine 1 (O32, O11, O22), and in machine 2 (O12, O23). Since an improvement

was found in the previous move, the algorithm continues by moving operations on

the second block (O12, O23). Again, since active schedules are considered, this

move will result in no improvement of the makespan of the current schedule.

Assuming that the maximum number of allowed moves without improvement is

not reached, the algorithm continues the search by considering moves within block

(O32, O11, O22). Interchanging O32 and O11 results in an improved schedule as

shown in Fig. 5c and again Sbest is replaced by S’. The algorithm iterates until the

termination criterion is met.

In order to reduce the computation time, loc_iter is limited and rather kept small.

However, this is compensated for by combining the local search with the GA many
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times during the optimization process and every time the local search is called there

is a different starting solution. Hence, it is designed for exploitation purposes

whereas GA takes care of the exploration of the solution space. Furthermore, unlike

other memetic algorithms, the local search is only applied at every dth generations

of the evolution process. This is to allow the population to have some diversity and

enhancing the chances of preventing the solution from being trapped on local

minima.

4.7 Elitism strategy

To prevent the loss of the genetic information of the current best chromosome

during the evolutions, a global memory containing the elitism is generated. During

the evolution process (crossover or mutation) both best and worst chromosomes are

identified and recorded. At the end of each generation, the best chromosome is

compared with the elitism. If the best chromosome has a better fitness value than the

elitism, then the global memory is updated by replacing the elitism with this new

chromosome. On the other hand, the global memory does not interfere with the

genetic evolution except if the fitness value of the best chromosome is worse than

that of the elitism. In such case, the elitism is used to replace the worst chromosome

in the population. However, this replacement procedure takes place every kth

generation. This strategy enables chromosomes to naturally evolve in almost all

generations and hence, allowing an acceptable level of diversity on the population.

Meanwhile, the knowledge gained from all generations is accumulated and only

used to guide the evolution process when necessary.

5 Computational results

FJSP are classified into two sub-problems known as total flexible job shop problems

(T-FJSP) and partial flexible job shop problems (P-FJSP). In T-FJSP each operation

can be processed on any machine of M. On the other hand, in P-FJSP each operation

M1

M2

M3

1132 22

21 1223

31

M1

M2

M3

1132 22

21 12 23

31

M1

M2

M3

11 32 22

21 12 23

31

(a)

(c)

(b)

Fig. 5 Gantt charts of three neighborhoods
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can be processed on at least one machine of a subset of M. Therefore, several sets of

problem instances have been considered.

1. The first set (KMData) consists of 6 instances, 3 T-FJSP taken from Kacem

et al. (2002b); 1 T-FJSP taken Mesghouni et al. (1997), 1 P-FJSP taken from

Lee and DiCesare (1994); and 1 P-FJSP taken Kacem et al. (2002a).

2. The second set (BRData) consists of 10 P-FJSP instances taken from

Brandimarte (1993).

3. The third set (BCData) consists of 21 P-FJSP instances taken from Barnes and

Chambers (1996).

4. The fourth set (DPData) consists of 18 P-FJSP instances taken from Dauzére-

Pérés and Paulli (1997).

5. The fifth set (HUData) consists of 129 P-FJSP instances created from 43

classical job shop instances divided into three subsets, EData, RData and VData

taken from Hurink et al. (1994).

The performance of the different components of the proposed hybrid algorithm is

analysed using all sets.

For the hGA, experiments were conducted on an Intel� Pentium� D CPU

2.8 GHz with 2 GB RAM. For each test problem, a set of 5 runs were performed. A

number of experiments were conducted for the same test problem in order to

determine the hGA parameters. Due to space limitation these experiments cannot be

fully detailed. However, we adopted the following procedure to identifying the

values for each parameter. First, we randomly selected number of test cases from

each of the five set instances. For each selected problem we fixed the values of all

hGA parameters and only varied the value of the parameter under consideration. For

example, to determine the value of the crossover probability, the parameters for the

evolution were fixed to: mutation probability = 0.3, number of maximal genera-

tions = 1,000; maximum number of moves without improvement in the local search

loc_iter = min [tot_noper, 175]; the worst chromosome is replaced by the elite

chromosome every k = 3 generations; number of parents in the receivers’ mating

sub-pool = 4; number of generations to perform local search (d value) 10, and the

population size = 200. Then crossover probability of 0.9, 0.7, and 0.5 were

investigated by solving the test problem 5 times. After solving all randomly selected

test problems, the crossover probability that performed better in terms of solution

quality is selected for the remaining instances. A similar procedure is followed in

determining the values of remaining other parameters. In conclusion of the previous

analyses, the following parameter values are common in all test cases: crossover

probability 0.7; mutation probability 0.3; number of maximal generations 1,000;

maximum number of moves without improvement in the local search loc_iter =

min [tot_noper, 175]; the worst chromosome is replace by the elite chromosome

every k = 3 generations; number of parents in the receivers’ mating sub-pool 4 for

the KMData and BRData sets, and 6 for the rest; and number of generations to

perform local search (d value) as well as the population size are reported in Table 2.

The first two sets are solved by using initial population generation heuristic

(Ini-PopGen), initial population generation heuristic with local search procedure

(Ini-PopGen ? LS), and finally using the full hybridised algorithm (hGA). In each
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instance of these sets, 60 instance schedules are created using the Ini-PopGen and

another 60 schedules are created using Ini-PopGen ? LS. The best and the average

makespan of 5 runs are compared. Table 3 shows the results obtained for KMData

set and compares them with these obtained by Ho et al. (2007) and Gao et al. (2008).

The values in bold-face identify the best values obtained for each instance using all

algorithms. The values between braces are the average results. It can be seen from

Table 3 that our proposed algorithms are very efficient in solving all instances. Ho

et al. (2007) solved these instances using two methods. Firstly they used composite

dispatching rules population generation (CDR-PopGen), and in the second they used

LEarnable Genetic Architecture (LEGA). Our proposed Ini-PopGen is able to obtain

the minimum known results for all instances except for Ex4. It even outperformed

the best and the average results obtained by CDR-PopGen in Ex3 and Ex6; and the

average results obtained by LEGA in Ex3 and Ex4. In Ex3 proposed by Mesghouni

et al. (1997); Ini-PopGen was able to obtain the optimal results of 7 time units. The

optimal result was also obtained by Mesghouni et al. (1997) using GA, but after

1500 generations. Furthermore, results in Table 3 indicate that Ini-PopGen can

handle small and medium T-FJSP instances. The P-FJSP instance Ex5 consists of 5

jobs, 3 machines and 4 operations in each job with a lot size of 10. This problem

was solved by Lee and DiCesare (1994) using Petri Nets combined with heuristic

search and obtained an average makespan of 439; Kumar et al. (2003) using Ant

Colony approach and obtained an average makespan of 420; and by Chan et al.

(2006) using GA with dominant genes (DGA) and obtained minimum makespan of

360 with an average of 374. It can be noticed from Table 3 that the proposed

algorithms outperformed the previous results in both minimum and average

makespans. Figure 6 shows the Gantt chart for the production scheduling of this

example. For Ex6 taken from Kacem et al. (2002a), our algorithms outperform that

Table 2 d Value and population size used in test sets

Test set Instance d Value Population size

KMData All 10 200

BRData MK1/6/7/10 30 1,200

All remaining 10 200

BCData All 30 1,500

DPData All 30 1,200

HUData EData mt6/10 20 200

mt20 30 800

la01–la13 20 400

la14–la25 20 500

la26–la40 30 1,200

RData mt6/10/20 20 300

la01–la25 20 400

la26–40 30 1,000

VData mt6/10/20 10 200

la01–la40 10 300
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proposed by Ho et al. (2007) as the Ini-PopGen is able to obtain the best known

minimum makespan. Moreover, the best results obtained by hGA for Ex3, Ex4 and

Ex6 are the same as these obtained by Gao et al. (2008).

In Table 4 we compare our results on the BRData set with these obtained by Ho

et al. (2007) using CDR-PopGen and LEGA; and these obtained by Girish and

Jawahar (2008) who solved them using Ant Colony Optimization (JSSANT) and

Genetic algorithms (JSSGA). Table 4 shows that the proposed hGA either

outperforms other algorithms or obtain the same minimum makespan in all cases.

Furthermore, Table 4 also highlights that the proposed Ini-PopGen has a very

acceptable efficiency in solving P-FJSP as it is able to produce comparative results

with these obtained by other best methods of JSSANT and LEGA. For example, Ini-

PopGen is outperforming JSSGA in seven out of ten MK instances; and JSSANT in

instances MK06, MK09 and MK10. Moreover, the noticeably close values of the

obtained results between the minimum and the average makespan in both

benchmark sets (T-FJSP, and P-FJSP) highlights the repeatability of the proposed

hGA and its consistency in obtaining optimal or near optimal result.

When comparing the performance of Ini-PopGen algorithm with the performance

of Ini-PopGen combined with LS (Ini-PopGen ? LS) in Tables 3 and 4, it can be

observed that no improvements are achieved in all T-FJSP and, in general,

Table 3 Comparison with other meta-heuristics on KMData

Reference Problem

size

G, S and

G (2008)

Ho et al. (2007) Proposed methods

CDR-PopGen LEGA Ini-PopGen Ini-PopGen

? LS

hGA

Kacem et al.

(2002b)

Ex1 4 9 5 – 11(11) 11(11) 11(11) 11(11) 11(11)

Ex2 10 9 7 – 11(11) 11(11) 11(11) 11(11) 11(11)

Mesghouni

et al. (1997)

Ex3 10 9 10 7(7) 8(8) 7(7.56) 7(7) 7(7) 7(7)

Kacem et al.

(2002b)

Ex4 15 9 10 11(11) 12(12.24) 12(12.04) 12(12) 12(12) 11(11.2)

Lee and DiCesare

(1994)

Ex5 5 9 3 – – – 350(352.5) 350(351) 350(350)

Kacem et al.

2002a

Ex6 8 9 8 14(14) 16(16) 14(14) 14(14.5) 14(14.2) 14(14)

Values written in bold are the best values

Fig. 6 Diagram of Gantt chart for the production scheduling of Ex5
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improvements in P-FJSP instances are small. This can be related to two main

reasons. The first reason can be related to the possibility that the obtained solution

using Ini-PopGen algorithm is the minimum or near minimum feasible solution.

This reason can be supported by considering results obtained using different

algorithms in Table 4, where different algorithms obtained the same minimum

solutions. The second reason may be related to the nature of FJSP where it consists

of two decision levels. Here, it is possible that solutions produced using Ini-PopGen

are optimized to a near optimal local solution for that machines’ assignment

decision level. In such case, expected improvements using any local search method

that only works on the sequencing decision level, like the proposed LS, are small.

This conclusion can be sustained by the obtained results of instances MK08 and

MK09 where the LS has much improved the results obtained by Ini-PopGen and it

even brought the solution of MK08 to optimality.

Table 5 compares the best results obtained by our hGA to the best results of the

particle swarm algorithm proposed by Girish and Jawahar (2009); and GA

algorithms proposed by Zribi et al. (2007); Pezzella et al. (2008); and Gao et al.

(2008), on the BRData set instances. The first column reports the instance name, the

second reports the best-known lower bound and the third reports our best obtained

results. The remaining columns report the best results of the three algorithms with

the relative deviation with the respect to our algorithm defined as follows:

dev ¼ ½ðMScomp �MShGAÞ=MShGA� � 100 ð2Þ

where MScomp is the makespan we compare to and MShGA is the makespan obtained

by our algorithm. The results show that our results are either outperforming other

methods or of comparable quality.

In Table 6 we compare the relative error of our computational results over the

last four sets BRData, BCData, DPData, and HUData and the relative error of the

results obtained by Zribi et al. (2007); Pezzella et al. (2008); and Gao et al.

Table 4 Comparison with other meta-heuristics on MKData

Problem

size

Girish and Jawahar

(2008)

Ho et al. (2007) Proposed methods

JSSANT JSSGA CDR-

PopGen

LEGA Ini-PopGen PopGen

?LS

hGA

MK01 10 9 6 40(40) 40(41.2) 42(42) 40(41.5) 42(42) 42(42) 40(40)

MK02 10 9 6 26(26.8) 26(29.6) 30(30) 29(29.1) 28(28.88) 28(28.8) 26(27.10)

MK03 15 9 8 204(204) 212(215.2) – – 204(204) 204(204) 204(204)

MK04 15 9 8 66(66.8) 71(74) 68(68) 67(68.82) 74(74.75) 73(74) 61(62.83)

MK05 15 9 4 174(176.4) 188(191.2) 179(179.3) 176(178.1) 179(179.63) 177(179.4) 173(174.67)

MK06 10 9 15 77(78.4) 81(83) 69(69.2) 67(68.82) 70(70.63) 69(70) 62(64.83)

MK07 20 9 5 143(143.8) 152(154) 153(153.88) 147(152.9) 150(153.75) 150(153.4) 141(143)

MK08 20 9 10 523(523) 533(545) 527(528.44) 523(523.34) 544(544.25) 523(524.2) 523(523)

MK09 20 9 10 328(341.2) 378(382) 326(328.78) 320(327.74) 326(326) 319(323.2) 307(307)

MK10 20 9 15 247(254.8) 265(281.4) 234(236.12) 229(235.72) 233(234) 233(234) 214(218.33)

Values written in bold are the best values
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(2008); with respect to the best-known lower bound. The relative error (RE) is

defined as:

RE ¼ ½ðMS� LBÞ=LB� � 100 ð3Þ

where MS is the best makespan obtained by the reported algorithm and LB is the

best-known lower bound. The first column reports the data set, the second column

reports the number of instances in each set, the third column reports the average

number of alternative machines per operations. The last three columns report the RE

of the results obtained by our algorithm; Zribi et al. (2007); Pezzella et al. (2008);

and Gao et al. (2008); respectively. The results support the conclusion drawn from

Table 3 above that our algorithm is stronger with high degree of flexibility. Also, it

shows that our algorithm outperforms the GA proposed by Zribi et al. (2007) and by

Pezzella et al. (2008); and produces a comparable quality to the algorithm proposed

by Gao et al. (2008). It may worth to mention here that our algorithm has obtained

these results with less number of chromosomes than the other two algorithms. For

example, Pezzella et al. (2008) used 5,000 chromosomes in all their experiments;

and Gao et al. (2008) used on average ?2,000 chromosomes, however, our

algorithm used on average 700 chromosomes to solve the test cases. Furthermore,

the advantage of our approach is that it can work for instances with different

Table 5 Comparison with algorithms proposed by Zribi et al. (2007), Girish and Jawahar (2009),

Pezzella et al. (2008); and Gao et al. (2008) on BRData

Name LB hGA Z.K.K. dev (%) G.J. dev (%) P.M.C. dev (%) G.S.G. dev (%)

MK01 36 40 41 ?2.5 40 0 40 0 40 0

MK02 24 26 28 ?7.69 27 ?3.85 26 0 26 0

MK03 (204) 204 204 0 204 0 204 0 204 0

MK04 48 61 67 ?9.84 62 ?1.64 60 -1.64 60 -1.64

MK05 168 173 177 ?2.31 178 ?2.89 173 0 172 -0.58

MK06 33 62 61 -1.61 78 ?25.81 63 ?1.61 58 -6.45

MK07 133 141 154 ?9.22 147 ?4.26 139 -1.42 139 -1.42

MK08 (523) 523 523 0 523 0 523 0 523 0

MK09 299 307 321 ?4.56 341 ?11.07 311 ?1.3 307 0

MK10 165 214 219 ?2.34 252 ?17.76 212 -0.93 197 -7.94

Table 6 Mean relative error over the best-known lower bound

Data set Num. of ins Alter. hGA Z.K.K. P.M.C. G.S.G.

BRData 10 2.59 17.58 21.62 17.53 14.92

BCData 21 1.18 24.74 – 29.56 22.61

DPData 18 2.49 6.83 8.27 7.63 2.12

HUData

EData 43 1.15 3.92 – 6.00 2.51

RData 43 2 3.68 – 4.42 1.21

VData 43 4.31 0.80 – 2.04 0.09
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flexibility. Also, it can be adapted to deal with other criteria than the makespan. This

is because the local search algorithm is designed to work in combined neighbor-

hoods N 1 and N 3, rather than only considering neighborhood N 4.

6 Conclusions

In this paper, a hybridized genetic algorithm for the flexible job shop scheduling

problem is proposed. The hybrid architecture consists of three main parts, initial

population generation heuristic, a local search method, and a genetic algorithm. The

experimental results advocate the good performance of the proposed Ini-PopGen

heuristic by outperforming some of the existing approaches in the literature. The

performance of Ini-PopGen is improved when combining it with the proposed LS.

This performance indicates that Ini-PopGen with LS can be used as a stand-alone

tool for small to medium sized T-FJSP and P-FJSP. The proposed hGA has the

ability to further improve the quality of results obtained by using Ini-PopGen with

LS. Thus, the hGA structure is very effective and has a good potential of obtaining

optimal or near optimal results. A very strong advantage of the proposed hGA

architecture is that the genetic operators of crossover and mutation do not require a

repair process to obtain a feasible schedule. Furthermore, the current work

maintains the diversity of population by implementing different techniques like the

individuals selection method, the mutation techniques, the elitism strategy, and by

applying the local search every d generations. This allows the GA to explore more

solution space whereas Ini-PopGen and LS does the exploitation part.

A future research work would be to extend the proposed hGA to handle more

realistic circumstances by including the presence of disturbances and other

stochastic measures such as machines breakdown and uncertainties of processing

times. Authors are currently studying this direction and initial results are promising.
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