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Abstract Many real world situations exist where job scheduling is required. This is the
case of some entities, machines, or workers who have to execute certain jobs as soon as
possible. Frequently what happens is that several workers or machines are not available
to perform their activities during some time periods, due to different circumstances.
This paper deals with these situations, and considers stochastic scheduling models
to study these problems. When scheduling models are used in practice, they have to
take into account that some machines may not be working. That temporal lack of
machine availability is known as breakdowns, which happen randomly at any time.
The times required to repair those machines are also random variables. The jobs have
operations with stochastic processing times, their own release times, and there is no
precedence between them. Each job is divided into operations and each operation is
performed on the corresponding specialized machine. In addition, in the problems
considered, the order in which the operations of each job are done is irrelevant. We
develop a heuristic approach to solve these stochastic open-shop scheduling problems
where random machine breakdowns can happen. The proposed approach is general
and it does not depend on the distribution types of the considered random input data. It
provides solutions to minimize the expected makespan. Computational experiences are
also reported. The results show that the proposed approach gives a solid performance,
finding suitable solutions with short CPU times.

D. Alcaide (P<)) - A. Rodriguez-Gonzalez - J. Sicilia

Departamento de Estadistica, Investigacién Operativa y Computacion
Universidad de La Laguna, Tenerife, Canary Islands, Spain

e-mail: dalcaide @ull.es

A. Rodriguez-Gonzalez
e-mail: arguezg@ull.es
J. Sicilia

e-mail: jsicilia@ull.es

@ Springer



202 D. Alcaide et al.

Keywords Stochastic open-shop scheduling - Expected makespan - Random
breakdowns - Random repair times

1. Introduction

Open-shop scheduling problems are characterized by a set of parts of different types,
which have to be executed by a set of specialized machines. Each part is divided into
different operations. Each of these operations is performed on its corresponding spe-
cialized machine. The order in which the operations of each job are done is irrelevant.
In stochastic open-shop scheduling problems, some input data are not fixed but are
random variables. Also, times where breakdowns happen are not known in advance.
Usually these problems appear in industrial processes, good manufacturing systems,
management and scheduling of people assistance services, information services with
several specialized servers, timetable scheduling problems, applicants or candidate se-
lection processes, customer attendance in bank or postal offices, and people attendance
in public offices (tourism information offices, town information offices, government
information offices, town management offices, and government management offices).

There are many of these practical situations where it might be sufficient to outline
and solve these problems using deterministic models. In the literature we find several
references concerning these deterministic open-shop scheduling problems. Among
them, are the books of Baker (1974), French (1982), Blazewicz et al. (2001), and
Brucker (2001), and the papers of Lawler et al. (1993) and Anderson et al. (1997). An
important well-known algorithm to solve these deterministic models is the algorithm
of Gonzalez and Sahni (1976). This algorithm solves optimally with O(n) complexity
the 2-machine deterministic open-shop scheduling problem, where the objective is
to minimize makespan, namely O2 || Cp.x. However, the general case with three or
more machines is NP-hard (Gonzalez et al., 1976); Lawler et al. (1981, 1982, 1993).

Nevertheless, many other problems require stochastic models for their study. For
example, in management and scheduling of people attention and/or information ser-
vices, the following problems are contemplated. The people attention unit could be,
for example, a bank branch, a department store, a town information office, a candidate
selection committee. This people attention unit has m specialized attendants/servers.
Those specialized attendants/servers could be, for example, bank clerks, shop assis-
tants and/or department store managers, connoisseurs or experts in different kinds of
specific town information, qualified and professional specialist committee members.
These specialized attendants/servers are devoted to attending/serving n users. These
users are, for example, business-persons and/or clients, customers, tourists, citizens,
companies, employers, job applicants and/or grant applicants or other kinds of ap-
plicants or candidates. Each user (job) has its own release time and demands several
specialized and specific information/services (the operations of the job). These oper-
ations have stochastic processing times. Thus, these problems could be studied using
stochastic open-shop scheduling models.

The stochastic open-shop problems are usually difficult. They belong to the NP-
hard computational complexity problems class. As far as we know, in the schedul-
ing literature, several authors have studied stochastic scheduling problems. Pinedo’s
book (2002) focuses on both the theory and the applications of scheduling including
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stochastic scheduling problems. Different general aspects about stochastic schedul-
ing problems, together with models and algorithms to solve them, can also be found
in, among others, the papers of Pinedo and Schrage (1982) and Weiss (1982, 1995).
Moreover, Pinedo and Rammouz (1988) and Li and Cao (1995) analyze single machine
stochastic scheduling problems subject to random breakdowns. Scheduling problems
on non-specialized parallel machines, where breakdowns are allowed, are contem-
plated by Cai and Zhou (1999) and Allahverdi and Mittenthal (1994b). Pinedo (1981)
deals with stochastic job-shop problems. Stochastic flow-shop and job-shop problems
without random breakdowns are analyzed by Pinedo and Wie (1986). Several papers by
Allahverdi and collaborators are devoted to flow-shop problems with random break-
downs. Some of them consider two-machine flow-shop problems (see Allahverdi,
1995, 1996, 1997, 1999; Allahverdi and Mittenthal, 1994a, 1995, 1998). Other papers
study proportionate flow-shop problems (Allahverdi, 1996; Allahverdi and Savsar
2001). Flow-shop problems, where random breakdowns are considered and process-
ing times are assumed known and constant (non-random variables), are studied by
Allahverdi (1995, 1996, 1997, 1999) and Allahverdi and Mittenthal (1994a, 1995,
1998). General stochastic flow-shop scheduling problems subject to breakdowns are
studied by Alcaide et al. (2002), where a general procedure to convert problems with
breakdowns into problems without breakdowns is proposed. Pinedo and Ross (1982)
consider stochastic open-shop scheduling problems without breakdowns. They pro-
vide an optimal algorithm to minimize the expected makespan in the two-machine
case, when all jobs are available at time zero, and the processing times of the opera-
tions follow exponential random distributions, which do not depend on the machines.

In contrast to previous papers, the present paper deals with stochastic open-shop
scheduling problems subject to random breakdowns. The aim in these problems is
to minimize the expected makespan. In addition, the problems analyzed are not con-
strained to a limited number of machines or certain processing time distributions, i.e.,
the proposed approach depends on neither the number of machines nor the processing
time distributions.

The paper is organized as follows: Section 2 introduces notation and formulates the
problem. Section 3 studies the computational complexity, calculates the distribution
function of the remaining processing times, and analyzes the computation of the
expected makespan. These results are general and applicable for any processing time
random distributions. Section 4 provides a heuristic algorithm to solve the considered
problem. A numerical example is presented in Section 5. Computational experience is
shown in Section 6. Finally, conclusions are given and further research is commented
on.

2. Problem formulation

It is well known that the makespan open-shop deterministic scheduling problem can
be defined in the following terms. There are n jobs to be executed by m machines. The
machines are specialized in such a way that any job J;, j = 1, ..., nis divided into m
operations O;j,i =1, ..., m, and each operation is performed on its corresponding
specialized machine. The order in which the operations of a job are done on the ma-
chines is irrelevant. Then, without loss of generality, it is possible to number machines
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and operations in such a way that operation O;; is the operation of job J; to be per-
formed on machine M;, with processing time p;;,i =1,...,m, j=1,...,n.Job J;
is available at its release time r;, j = 1, ..., n. Jobs are independent and the aim is to
minimize the makespan.

In the case of some problem data being random variables, we have stochastic open-
shop scheduling problems. This paper studies these situations considering, in addition,
the fact that random breakdowns happen and job preemption is technically possible
to deal with these random breakdowns. In these preemption situations, preemption-
resume mode is considered, i.e., the performance of the preempted job can be continued
at the point where the job was preempted, without repeating any part of it (see Baker,
1974, page 81, for details about preemption modes). More precisely, let X;; be the
processing time of operation O;; of job J; performed on machine M;. That time is a
random variable with distribution function Fy,;. Such operation O;; can be preempted
after T processed time units. In this case, and taking into account preemption resume
mode, the remaining processing time of the operation O;; is the random variable
X;‘j(T) = (X;; — T)|{X;; = T}, with distribution function FX;«f(T). Note that X;*j(O) =
X;;. We will denote the random variable ij(T) by Xl*J when there is no confusion.
Other random variables involved in the stochastic problems considered in this paper
are described in the following paragraphs.

The time period length when machine M; is available, that is, the time between two
consecutive breakdowns on M; is measured with the random variable Y;, Fy, being
its distribution function, i = 1, ..., m. For machine M;, the random variable Y; could
change in the course of time due to causes such as the age or aging of machine M; or,
even, due to improvements and updates done on machine M;. For these situations we
can consider in the model several random variables Y., i =1,...,m,t=1,2,...,
where the random variable Y;,, with distribution function Fy, , measures the time
between (t — 1)-th and 7-th breakdowns of machine M,;.

In the same way, the length of the repair time intervals could be evaluated using
random variables. The required time to repair machine M; is measured with the random
variable Z;, Fz being its distribution function, i = 1, ..., m. Also in this case, for
machine M;, itis possible that the random variable Z; changes in the course of time due
to the age or aging of machine M;, the improvements and updates done on machine M;
or, even, due to developments, updates and improvements in the used technical repair
procedures. These situations are considered in the model with the random variables
Zie,i=1,...,m, t=1,2,..., where the random variable Z;,, with distribution
function Fz,_, measures the necessary time to repair the 7-th breakdown on machine
M; . In this way, we model the fact that, as time goes on, the distribution of the necessary
repair times also changes.

Note that,if Y;, = Y;,,t =1,2,...,and/orif Z;; = Z;, T = 1, 2, ..., we have sev-
eral particular cases where the length of the available or without-breakdowns periods
of machines and/or the required repair times, respectively, always follow the same
probability distribution.

Let X be the set of feasible solutions. That is, for any schedule o € X, o satisfies
therelease timesr;, j = 1, ..., n, and the basic conditions of the scheduling problems
are also verified. These basic conditions are: the impossibility of performing the same
job simultaneously in two or more machines, and the prohibition of two or more jobs
being performed on the same machine at the same time.
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Given o € %, Cj(0) is the random variable which measures the completion time
of job J; in schedule o. Thus, we are interested in finding a schedule o* € ¥ with a
minimum expected completion time for all the jobs, that is, with the minimum expected
makespan. Therefore, we must schedule jobs on machines in such a way that we can
expect to finish all jobs as soon as possible. Thus, our problem is

min{E[Cmax(G)]/a € 2} €))
where, for each schedule o € X, the random variable which assess the makespan is

Co(0) = max (Ci(0)} ()

AAAAA

Therefore, we deal with stochastic open-shop scheduling problems subject to random
breakdowns and with random repair times, where the objective is to minimize the
expected completion time of all the jobs. The paper considers problems where all
jobs are available at time zero (r; = 0, Vj, static problems) and problems with differ-
ent release times (dynamic problems). Both problems have maximum computational
complexity as is analyzed in the following section.

3. Problem analysis and theoretical results

To study stochastic open-shop scheduling problems subject to random breakdowns
we use a general approach or performing guide, given in Alcaide et al. (2002), that
allows us to decide dynamically during the course of time. This general procedure
converts any scheduling problem with m machines (m > 1) subject to breakdowns
into a set of scheduling problems with several machines which are not subject to
breakdowns. The sets of machines in the corresponding free-breakdowns scheduling
problems are subsets of the set of machines associated with the original problem
subject to breakdowns. The mentioned conversion is applicable to both specialized
machines problems and non specialized machines problems. The conversion can be
used whether all jobs are available at time zero or if the release times of the jobs are
different. It is also valid when the problem is stochastic or deterministic, and for any
problem with one or several machines.

The aforementioned general procedure studies the problem subject to breakdowns
by solving a sequence of problems without breakdowns. In fact, the general procedure
decides in each time, taking into account all the available information up to such
instant, and without information about the next decision time. The approach keeps its
decision until a new decision instance arises.

So, this procedure is a dynamic procedure that makes decisions in the course of time.
In each time 7, let m(¢) be the number of working or non-broken down machines, with
0 < m(t) < m. The set S(¢) of non-broken machines at time ¢ and its cardinal m(¢) is
the information that determines the system status at time . During the course of time,
the status of the system can be modified at time #; > ¢ if at least one of the following
situations occurs: new breakdowns happen, or new release times r; are achieved, or
the repair of some broken down machine finishes. In this way, in the course of time,
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to, t1, ..., t, ... will arise where breakdowns occur, new release times are achieved,
or new repaired machines come back. These times will identify the different inter-
vals or scheduling periods I}, =11y, 111, I, =1t1, 21, ..., Iy =1tx—1, %] ... . In each
one of these intervals, m(¢) has a constant value that is usually, but not necessarily,
different from the m(¢)-value in the previous and successive intervals (i.e. m(t) = my
constant V¢ € I, and usually, but not necessarily, my # my4+1,k = 1,2, ...). More-
over, the set S; of working or non-broken down machines is constant in each of these
intervals [y, but it changes from one interval to the consecutive interval (Sx # Sk1,
k=1,2,...). Due to the way they are defined, within the intervals I, it is possible
that neither new breakdowns occur nor the repairs of broken down machines are fin-
ished. That is, each period I}, k = 1,2, ... is a free-breakdowns period and no repair
finishes inside period .

In this way the original problem with breakdowns is converted into a sequence
of problems without breakdowns. These without-breakdown problems are solved in
the intervals 7, I, . .. making decisions at the decision instances f, 1, f2, . ... These
decision times are the lower extremes of the above mentioned intervals. The decisions
are chosen at the starting of each time interval without any information about the end
of the interval. The decision is kept during the interval until such interval ends. In any
interval I, the associated without-breakdowns problem is characterized by the set Sy
of non-broken machines (remember this set is unchangeable in the period I;), and by
the set U of uncompleted jobs at the starting time of interval I, with ny = card(Uy).
Each job j € Uy is characterized by those operations O;; which have not been finished
in previous intervals. These scheduling problems without breakdowns must be solved
using the available methods in the literature, when these methods exist.

It is important to perceive that, at the beginning of each free-breakdown scheduling
period Iy =161, 5], k = 1,2, ..., we know the value #,_; that marks the starting
time of the period I;, but we do not know when #; will appear. This # will mark the
end of the period I; when either the current working machines set S; changes, or
when new release times r; are achieved. However, at time #_;, we know the set of
working machines Sy for the period I. Thus, at #;_;, we must solve the associated
without-breakdowns scheduling problem using only the available information at #,_;.
That is, we have to schedule the uncompleted jobs without knowing #;. Consequently,
we keep the decided schedule for the period [; while there are more jobs to schedule
and while the system status does not change.

The study of the computational complexity of the stochastic open-shop scheduling
problems is reduced to the study of the computational complexity of the corresponding
without-breakdowns problems. This analysis is done in the following subsection. The
other two subsections are devoted to providing a theoretical formula to compute the
distribution functions of the remaining processing times, and to commenting on several
aspects for computing the expected makespan.

3.1. Problem complexity

This subsection analyzes the computational complexity of the stochastic open-shop
scheduling problems. Both problems where all jobs are available at time zero (r; = 0,
j =1,...,n) and problems where jobs have different release times are analyzed.
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When all jobs are available at time zero, the original problem (1) with random
breakdowns is reduced to stochastic open-shop scheduling problems but without break-
downs. Ateach time 1, it is necessary to solve only one of these without-breakdowns
problems, characterized by the set Sy of m; working machines, m; = card(Sy), and
the set U}, of uncompleted jobs (or jobs parts) at such instant #;_;.

If the number m; of available machines is 1, then any schedule without idle time
minimizes the expected makespan and solves the corresponding without-breakdowns
problem in scheduling period I =]y, ] (with #; unknown). If m; = 2, Pinedo and
Ross (1982) found an optimal schedule with minimum expected makespan for this
stochastic without-breakdowns static open-shop scheduling problem when processing
times are drawn from exponential distributions. The optimal schedule requires that
these distributions do not depend on machines, i.e., the problem solved by Pinedo and
Ross is O2]X;; ~ exp(A;)| E[Cmax] according to an extended notation of the three
parameters classification initially proposed by Graham et al. (1979). However, when
my = 2, it appears to be very difficult to generalize the Pinedo and Ross’ method for
any class of distributions for processing times (see Pinedo, 2002). Finally, if m; > 3,
as far we know, there are no optimal efficient algorithms to solve this stochastic open-
shop scheduling problem. Furthermore, the following theorem can be established.

Theorem 1. The stochastic open-shop scheduling problem (1) without breakdowns,
with release timesr; =0, j =1, ..., n, considering general distributions of process-
ing times X;;, and any number m of machines, is NP-hard.

Proof: Using an extended notation of the three parameters classification initially
proposed by Graham et al. (1979), we are going to prove that the problem denoted
by O|X;; ~ G;;|E[Cnax], in the cases of general distributions of processing times
X;; and any number m of machines, is NP-hard. It is known that the deterministic
problem O||Cpax, in the general case, is already NP-hard (Gonzalez and Sahni, 1976,
1978). Also, due to the deterministic problem being a particular case of the problem
O|X;j ~ Gij|E[Cmax] when the distributions G;; are degenerated in the constants
distributions G;; ~ p;;, and taking into account that the deterministic problem is NP-
hard, it follows that O|X;; ~ G;;| E[Cnax] is NP-hard. Il

Corollary 1. The stochastic open-shop scheduling problem (1) with breakdowns, with
release times rj =0, j =1, ..., n, considering general distributions of processing
times X;j, and any number m of machines, is NP-hard.

Proof: Trivial by Theorem 1 and because any scheduling problem with breakdowns
can be converted into problems without breakdowns. g

Next, let us consider the case where release times r;, j = 1, ..., n are distinct. It is
clear that scheduling problems with different release times are always more difficult
than the corresponding scheduling problems with all jobs available at time zero. Then,
it follows that

Corollary 2. The stochastic open-shop scheduling problem (1) without breakdowns,
where release times are distinct, considering general distributions of processing times
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X;j, and any number m of machines, is NP-hard. In addition, if random breakdowns
happen, the problem is also NP-hard.

Proof: The proof in the free-breakdowns case is obvious taking into account
Theorem 1, and due to scheduling problems with different release times being more
difficult than those corresponding to all jobs available at time zero (see also Graham
et al., 1979; Lawler et al., 1982).

When random breakdowns happen, the proof is also trivial due to Corollary 1 and
the same reasonings for release times. g

The next subsection provides a theoretical formula to compute the distribution
functions of the remaining processing times of the operations of the uncompleted
jobs.

3.2. Distribution functions of the remaining processing times

The processing time of the operation O;; of job J; performed on machine M; is
measured by the random variable X;; with distribution function Fy,,. Such operation
could be preempted after T processing time units are performed. Following preemption
resume mode, the remaining processing time of such operation is the random variable
X;"j(T). If there is no confusion, we can denote this random variable by X,*j The
theoretical formula to compute the distribution functions of these random variables is:

Fx:r)(x™) = P(X}; < x7)
=P(Xi;j —T <x*|X;; > T)
_PXy —T=x"X;;>2T)
B P(X;; > T)
P(T <X <x*+T)
1-— P(Xl‘j < T)
Fx,(x* +T) = Fx (T)
- Fy (D)

With this formula it is possible to compute the distribution function of the remaining
processing times X}; for any distribution of the processing times X;;. So, for example,
if the processing time X;; follows the exponential distribution X;; ~ exp(A), then
Fx,(x) =1 — e . Thus, using the above formula (3), we have Fx;(») =1~ e
and the remaining processing time X}; also follows the exponential distribution X;; ~
exp(1). If the processing time X;; follows the uniform distribution X;; ~ Ula, b], then
Fx,;(x) = 3=5. Thus, by (3), Fx;(r)(y) = ;27 and the remaining processing time X,
also follows the uniform distribution X l*j ~ U[0, b — T]. The computation in the case
of any other distribution will be done in a similar way using the formula (3).

In the next subsection theoretical aspects for computing the expected makespan are
commented on.
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3.3. Expected makespan

Taking into account that random breakdowns can happen, the non-broken machines
set changes as time goes on. These changes determine the different free-breakdown
scheduling periods Iy =1t—1, ], kK = 1,2, ... . In addition, at the beginning of each
scheduling period Iy = #—1, #] we know #;_; which marks the starting time of the
period I, but we do not know when #;, will appear. This #, will mark the end of the
period [; with a change in the current working machines set Si. This fact implies
that it is impossible to calculate directly from the initial instant #y = O the expected
makespan E[Cpax(0)], witho € X.

Note that we know neither how many breakdowns will happen in a feasible solution
o € X nor when these breakdowns will appear. Thus, given o € X, the mean of the
random variable Cp,,x(0), defined in (2), i.e. the expected makespan, E[Cpax(0)], will
not be directly calculable from the initial instant #, = 0.

However, at #,_; we know the set of non-broken machines S; for the period I;.
Thus, at #;,_;, we must solve the associated without-breakdowns scheduling problem
using only the available information at that time. We can know the distribution of
the random variables: remaining processing times (X ;kj) (using Eq. (3)), working time
intervals (Y;;), and breakdowns repair times (Z;;). Nevertheless, we have to schedule
without knowing #. So, we have to keep the decided schedule for the period /; while
there are jobs to schedule, while new release times r; are not achieved, and while
the non-broken machines set does not change. The system status will change at #;,
which marks the final of the period I. So, the beginning and ending of the different
scheduling periods I are detected during the course of time. Also, the free-breakdown
schedules in these periods are found, and the expected makespan will be the expected
value of the ending time of the last scheduling period.

4. A heuristic approach

In this section, we present a heuristic approach to solve open-shop stochastic schedul-
ing problems subject to random breakdowns. Note that, at the beginning, we have a set
S| of non-broken machines. This set changes as time goes on due to breakdowns hap-
pening, newly repaired machines coming back, or new release times r; being achieved
because new jobs appear. The machines are specialized and it is necessary to perform

n jobs Ji, ..., J, on them. We distinguish the problems where all jobs are available
at time zero (r; =0, j =1, ..., n) from problems where jobs have different release
times.

4.1. The case where all jobs are available at time zero

‘We have to decide at any instance #;,_1, k = 1, 2, ... a schedule for the corresponding
open-shop stochastic scheduling problem without breakdowns. Then, we have to keep
this schedule during the period I; = ]#;—1, #], that is, while there are jobs to complete
and until the working machines set changes. Note that #; is unknown. Time #;, will
be known only when the current non-broken machines set S; changes, due to new
breakdowns happening or new available machines coming.
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Nevertheless, at time #;_;, we know the set S; of current non-broken machines, the
value my = card(Sy), the set Uy of jobs and/or jobs parts which are not completed
at time #;_, and the value n; = card(U;). We have to solve an open-shop stochastic
scheduling problem without breakdowns with m; machines and n jobs. This par-
tial problem could be denoted as Omy || E[Cax]. In this way, the original open-shop
stochastic scheduling problem subject to random breakdowns is converted into a se-
quence of open-shop stochastic scheduling problems without breakdowns. At the end
of the general procedure, when U, = {, in the last scheduling period I, the final
solution o is built merging the solutions found in the different scheduling periods.

It is important to remark that the known algorithms for solving, in an exact way,
these stochastic open-shop without-breakdowns problems (which appear in the time
intervals I, k = 1,2, ...), are usually limited to a determined number of machines,
or these algorithms consider certain processing time distributions of the jobs (see
Pinedo, 2002; Pinedo and Ross, 1982). So, if the number of working machines in the
current free-breakdowns period I is m; = 1, any feasible solution without idle-time is
optimal. If m; = 2 and the remaining processing times follow exponential distributions
which do not depend on the machines, we can use Pinedo and Ross’ algorithm (Pinedo
and Ross, 1982) to solve optimally the corresponding without-breakdowns stochastic
open-shop scheduling problem in period /.

However, many stochastic open-shop scheduling problems without breakdowns
are still open, i.e., there is no efficient optimal algorithms to solve them. When these
problems appear, while we are solving the original stochastic open-shop problem
with breakdowns, we need to use alternative ways to solve it. One way is to obtain
approximate solutions by solving the deterministic open-shop scheduling problem
considering the processing times p;; = E[X;]. These deterministic problems are of
the form O||Cpax. When there are m = 2 machines, this deterministic problem could
be solved in O(n) time by Gonzalez and Sahni algorithm (Gonzalez et al., 1976).
Nevertheless, when the number of machines is m > 3, this deterministic problem
is NP-hard (Gonzalez et al., 1976; Lawler et al., 1981; 1982; 1993) and heuristic
approaches are necessary to solve it. In this case the chosen heuristic approach is the
tabu search algorithm given in Alcaide, Sicilia, and Vigo, (1997).

The next subsection concerns the case where jobs have different release times.

4.2. The case where jobs have different release times

When there are different release times, we have to take into account that the problems
to solve in the successive scheduling periods I, are different and more complicated.
In period I, an open-shop stochastic scheduling problem without breakdowns, with
my machines, and where jobs have different release times, must be solved. This partial
problem could be denoted as Omy|r;| E[Cmax]. As far as we know, there is no way of
solving optimally these stochastic problems in polynomial time. Even if the remaining
processing times X7, follow exponential distributions, the problem is very difficult.
Taking into account these difficulties to solve open-shop stochastic problems with
random breakdowns and different release times, we propose an approach based on
the transformation of the original problem with random breakdowns and different
release times into a sequence of stochastic open-shop problems without breakdowns.
The corresponding free-breakdowns scheduling periods Iy = ]tx_1, #] are shortened
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Approximate Algorithm
/* Initialization */
Putto=0,k=1;
Let Sk be the set of non-broken machines at time tx_1;
Let Uy, be the set of available jobs (or jobs parts) still uncompleted at time tx_1;
/* (at to = 0, Uy = { jobs J; with r; = 0}) */
Let my = card(Sk);
while Uy, # 0 {
/* Schedule at time ti—1 (with ty unknown) */
if (mk = 1) {
Choose any schedule without idle-time, because that schedule minimizes the expected makespan;

if (my = 2 and X}; ~ exp();)) {
Use Pinedo and Ross algorithm (1982) to find an optimal solution;

if (my = 2 and X}; follow other distributions) {
Consider p;; = E[X}];
Apply Gonzalez and Sahni algorithm (1976) to solve the corresponding deterministic problem;
/* (it provides an approximate solution to the stochastic problem) */

if (my, > 3) {
Consider p;; = E[X}];
Apply tabu search algorithm of Alcaide et al. (1997)
to solve the corresponding deterministic problem;
/* (it provides an approximate solution to the stochastic problem) */

Keep the proposed solution at time 1 until:
(a) any breakdown happens in one (or more) of the current working machine(s), or
(b) newly repaired machine(s) comes back, or
(¢) new times r; are achieved, i.e., new jobs appear to be performed;

Let tj, be the first time when (a) or (b) or (c) happens;

/* Scheduling period I, =]tg_1,tx] finishes and starts a new one */

Put k =k+1;

Update Sk and my = card(Sk);

Update the set U}, of available jobs (or jobs parts) still uncompleted at t—1;

Put ng = card(Us);

}
sTop

Fig. 1 Approximate algorithm structure

to avoid different release times inside ;. In each scheduling period I;, a without-
breakdown problem with all jobs available at time zero is solved in the same way
already described in Section 4.1.

The structure of this approximate algorithm is shown in Fig. 1. The problem to
solve at time #;,_; is @ Omy|| E[Cyax] scheduling problem, i.e., considering the set
Sk of non-broken machines and the set U/, of available jobs or job parts. Note that,
at the end of the algorithm, when U/ = @, in the last scheduling period I, the final
solution o is formed by combining the solutions found in the different scheduling
periods.

To end this section, it is important to remark that both procedures (either the case
when all jobs are available at time zero or the case when jobs have different re-
lease times) must dynamically decide during the course of time. That is done us-
ing all the available information at each decision instance #;_;, with #; unknown.
The decision is kept until #; arises (cases (a) or (b) or (c) in algorithm showed
in Fig. 1). In any case, in each instance #;_; (with 7 unknown) the algorithm
chooses the most suitable possible decision with the available information at such
time.
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To illustrate the algorithm, a numerical example is presented in the next section. In
this example we solve the problem for both cases: considering r; = 0, Vj, and when
different release times exist for the jobs.

5. An open-shop scheduling example

Letus consider an open-shop scheduling example where n = 5 jobs must be performed
onm = 3 machines. First, we consider the static case, i.e., all jobs are available at time
zero (r; =0, j =1, ..., n), and later, we will analyze the same example considering
different release times.

Note that the proposed approach decides in accordance with the evolution of the
system. The approach keeps its decision until changes arise in the system. These
changes are described in the approximate algorithm structure (see Fig. 1). We do not
know the evolution of the system, and we need to decide taking into account this
evolution. Hence, we have to simulate the random variables which characterize that
evolution.

With these remarks, the input data of this stochastic problem are the following
@=1,2,3and j =1,2,3,4,5):

1. Processing times X;; have exponential distributions of parameters A; independent
of the machines, i.e., E[X;;] = 1/A; are taken randomly from uniform distribution
in [10, 20]. Thus, after simulation, we have the mean vector

(E[X;j]) = (1/A;) = (10.44, 11.34, 15.05, 10.54, 19.36).

2. Working time interval lengths Y; have exponential distributions, where the means
E[Y;] are taken randomly from uniform distribution in [20, 50]. Thus, after simu-
lation, we have the mean vector

(E[Y:]) = (25.16, 32.40, 45.54).

3. Repair times Z; have exponential distributions, where the means E[Z;] are taken
randomly from uniform distribution in [10, 20]. Thus, after simulation, we have the
mean vector

(E[Z;]) = (12.63, 18.15, 16.44).

Using the approximate algorithm given in Section 4, we provide an approximate
solution for this stochastic open-shop scheduling problem subject to random break-
downs. The algorithm has to decide dynamically at the start of each scheduling period.
Then, the algorithm keeps its decision until (a) all the jobs have been completed or
(b) the current scheduling period finishes. To see when (a) or (b) happen, we have
to observe the evolution of the real system. If we do not know the evolution of the
system, we have to simulate it.

So, the evolution of the system in this example has been simulated taking into
account the previous random distributions of processing times, the availability times
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and the repair times. Processing times obtained by simulation are:

1511 1197 1830 227 2951
X;)=|1373 3726 7.18 1659 4.18
425 531 4763 11.04 13.84

and the sequences of working and repair times are:

1.

2.

Machine 1: Y11 = 2355, Zn = 696, Y12 = 38.86, le = 13.93, Y13 = 26.87,
Ziz="7.12,...

Machine 2: Y21 = 599, ZZ[ = 1026, Y22 = 3999, ZZQ = 802, Y23 = 40.14,
Zy;3 =2591, ...

. Machine 3: Y31 = 7250, Zg] = 510, Y32 = 2563, Z32 = 2325, Y33 = 5026,

Z33 =18.29, ...

Note that different events of the evolution of the system are not known until they

effectively happen. So, the first time that machine 1 breaks down is at 23.55 time units,
next, it is 6.96 time units being repaired, and so on.

Thus, the development of the algorithm is as follows:

First scheduling period: Wehave k = 1,1ty = 0, I =0, ;], with #; unknown. Sched-

ule at #p = O with the available information at that instance: S; = {M;, M,, M3},
Uy ={1,...,5}). We have a O3|X;; ~ exp(i;)| E[Cnax] scheduling problem. It
is heuristically solved by considering p;; = E[X;;] and solving the correspond-
ing deterministic problem with the tabu search algorithm provided by Alcaide
et al. (1997). This solution is kept during this scheduling period. In this case,
on M, the jobs must follow the sequence {4, 3,2, 1, 5}, on M, the sequence of
jobs is {5,4,3,2,1} and on Mj the sequence is {1, 2, 5, 4, 3}. Taking into ac-
count the evolution (simulated) of the system the scheduling period I; finishes
attime t{ = min{Y;; = 23.55, Y»1 = 5.99, Y3; = 72.50} = 5.99. At that time, ma-
chine M, breaks down, scheduling period /; finishes, and a new scheduling period
starts.

We have scheduled, in this period, on machine M; jobs 4 and 3, on machine
M, jobs 5 and 4, and on machine M3 jobs 1 and 2 up to the time 5.99 (see Fig. 2).
At t; = 5.99 the machine M, breaks down while it performs job 4. This job is
unfinished on M; and its remaining part is sent to the next scheduling period. Note
that we can calculate the distribution of the remaining processing times Xi5, X3,
and X3, of the operations of the jobs 3,4, and 2 on machines 1, 2, and 3, respectively,
using the formula (3). As processing times follow exponential distributions, then,
the remaining part of job 4 on machine M is sent to the next scheduling period as
a new job with exponential processing time. These considerations are the same for
job 3 on machine M, and for job 2 on machine M3. Note that, at #; = 5.99, the
corresponding operations of job 4 on machine M, of job 5 on machine M, and of
job 1 on machine M3 are already completed.

Second scheduling period: Now, we have k =2, t; = 5.99, I, =15.99, 1,], with t,

unknown. We have to schedule the remaining jobs at #; = 5.99 using the available
information at that instance: S, = {M, M3},U, = {1, 2, 3, 4, 5} (note that the cor-
responding operations of job 4 on machine M|, of job 5 on machine M5, and of job
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Fig. 2 Open-shop numerical example when all jobs are available at time zero

1 on machine M3 are already completed). We have a O2|X z*, ~ exp(A )| E[Crax]
scheduling problem and we can apply the Pinedo and Ross’ algorithm (Pinedo
and Ross, 1982) to find an optimal solution in the current scheduling period
I, =15.99, 1,]. Pinedo and Ross’ algorithm uses the list of jobs in a non-increasing
order of expected processing times, in this case {5, 3, 2, 4, 1}, to assign successively
the jobs to the first available and free machine, i.e., job 5 is assigned to machine
M, and job 3 to M3 and so on. This solution is kept until the ending time #, of
such scheduling period arises. This happens att, = min{Y; = 23.55, Y, + Z»; =
5.99 4+ 10.26, Y3; = 72.50} = 16.25 (see Fig. 2.)

Third scheduling period: In this period we have k = 3, t, = 16.25, Iy =]16.25, t3],
with 73 unknown. We have to schedule at #, = 16.25 using the available infor-
mation at that instance: S3 = {M;, M>, M3}, U3z = {1, 2, 3, 4, 5}. Notice that the
corresponding operations of job 4 on machine M, of job 5 on machine M, and of
job 1 on machine M3 are already completed. We have a 03|X;"j ~ exp(A )| E[Cmax]
scheduling problem. By considering p;; = E[X l*J] and solving the corresponding
deterministic problem by applying the tabu search algorithm of Alcaide etal. (1997),
we have the following schedule: on M, the jobs follow the sequence {3, 2, 5, 1},
on M, the sequence of jobs is {4, 3, 1, 2}, and on M3 the sequence is {2, 5, 4, 3}.
Following the evolution of the system, this scheduling period 5 finishes at time
t3 = 23.55 when machine M breaks down.

Continuing in this way, at the end of eleventh period, I;;, we have a final solution
with makespan 98.08 (see Fig. 2.)

Let us consider the same numerical example above, but with the only difference
being that jobs have different release times. Then, the input data are the same and, in
addition, we have the following vector of release times (r;) = (10, 0, 0, 20, 30).
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Thus, the development of the algorithm is as follows:

First scheduling period: Wehave k = 1,1ty = 0, I; =]0, #;], with #; unknown. Sched-
ule at fy = 0 with the available information at that instance: S; = {M;, M, M3}, U,
= {2, 3}. Wehave a O3|X;; ~ exp(A ;)| E[Cmax] scheduling problem. It is heuristi-
cally solved by considering p;; = E[X;;] and solving the corresponding determin-
istic problem with the tabu search algorithm provided by Alcaide et al. (1997). This
solution is kept during this scheduling period. In this case, on M; the jobs must fol-
low the sequence {3, 2}, on M, the sequence of jobs is {3, 2} and on M3 the sequence
is {2, 3}. Taking into account the evolution (simulated) of the system the scheduling
period [, finishes attime #; = min{Y;; = 23.55, Y»; = 5.99, Y3, = 72.50} = 5.99.
At this instance, machine M, breaks down, and scheduling period I; finishes.

In that period I; =10, 5.99] we should schedule job 3 on machine M, job 3
on machine M, job 2 on machine M3. However, due to job 3 being performed
on M, and job 2 being performed on machine M3, no jobs are performed on
machine M, until some of them finish. As job 2 finishes on M3 at time 5.31, then,
at this instant job 2 can start its processing on machine M, and it continues up
to time 5.99 (see Fig. 3). At #; = 5.99 the machine M, breaks down. Job 3 is
unfinished on M, and job 2 is unfinished on M;. Then, the remaining parts of
these jobs are sent to the next scheduling period. Using the formula (3), we can
calculate the remaining processing times X7; and X73,. As processing times follow
exponential distributions, then, the remaining parts of jobs 3 and 2 are sent to
the next scheduling period as new jobs with exponential processing times. Note
that, at #; = 5.99, the corresponding operation of job 2 on machine M3 is already
completed.

Te=10 Te=20 Te30
M 3 ltﬁH@S
My ;@z 3 1.l 4 ﬂz 2 1

T
]
— -
i1 i ; ~u|
My 2 E H 3 g>| 3 % 3
P 11 ! T |
[ l\ i ' ! Pt 'k Can=102.53
Ti=599 T=23.55 TeS6.2 ITHFE?.S’? Tn='??.6\

Tel625 T=3051 T=64.26 Tu=725 Ti=8333

Repair periods

Fig. 3 Open-shop numerical example when jobs have different release times
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Second scheduling period: Now, we have k =2, t; = 5.99, I, =15.99, 1,], with t,
unknown. We have to schedule the remaining jobs at #; = 5.99 using the available
information at that instantce: S, = {M;, M3}, U, = {2, 3}. Note that the corre-
sponding operation of job 2 on machine M3 is already completed. We have a
02|1X l*, ~ exp(A ;)| E[Cpax] scheduling problem and we can apply the Pinedo and
Ross’ algorithm (Pinedo and Ross, 1982) to find an optimal solution from the start-
ingtime #; = 5.99 in the current scheduling period I, =15.99, #,]. Pinedo and Ross’
algorithm uses the list of jobs in a non-increasing order of expected processing times
(in this case the ordered list is {3, 2}). The jobs are successively assigned to the first
available working machine, i.e., job 3 is assigned to machine M, and no job is as-
signed to M3 (because job 3 is being processed on M| and job 2 is already finished on
M3). This solution is kept until the ending time #, of such scheduling period arises.
This happens att, = min{r; = 10, Y| = 23.55, Y21 + Z»; = 5.99 + 10.26, Y3, =
72.50} = 10 (see Fig. 3).

Third scheduling period: In this period, k = 3,1, = 10, I; =]10, 3], with t3 unknown.
We have to schedule at t;, = 10 using the available information at that instantce:
S3 = {M;, M3}, U; = {1, 2, 3}. Notice that the corresponding operation of job
2 on machine Mj is already completed. We have a 02|X;*j ~ exp(A )| E[Cmax]
scheduling problem and we apply the Pinedo and Ross’ algorithm (Pinedo and
Ross, 1982) to find an optimal solution from the starting time , = 10 in the current
scheduling period I3 =110, #3]. The Pinedo and Ross algorithm uses the list of jobs
{3, 2, 1} to assign the jobs successively to the first working and available machine,
i.e., job 3 is assigned to machine M|, and job 1 is assigned to M3 (remember job
2 is already finished on M3). This solution is kept until the ending time #3 of such
scheduling period arises. This happens at 3 = min{ry = 20, Y| = 23.55, Y5, +
Zy1 =5.99 4+ 10.26, Y3; = 72.50} = 16.25 (see Fig. 3).

Fourth scheduling period: We have k = 4, t; = 16.25, I, =]116.25, 4], with #4 un-
known. It is necessary to schedule at #3 = 16.25 using the available information
at that instance: Sy = {M, M, M3}, U4 = {1, 2, 3}. Notice that the correspond-
ing operations of jobs 1 and 2 on machine M3 are already completed. We have a
03|X}; ~ exp(% ;)| E[Cmax] scheduling problem. It is heuristically solved by con-
sidering p;; = E[X};] and solving the corresponding deterministic problem with
the tabu search algorithm of Alcaide et al. (1997). This solution is kept during this
scheduling period. In this case, on M, the jobs must follow the sequence {1, 2, 3},
on M, the sequence of jobs is {1, 2, 3}, and on M; the sequence is {2, 3, 1}. So,
job 1 is assigned to machine M, job 2 to machine M, (because job 1 is being
processed on M), and job 3 is assigned to M3 (because job 2 is already finished on
M3). This solution is kept until the ending time 7,4 of such scheduling period arises.
This happens at ¢4 = min{ry = 20, Y;; = 23.55,13 + Y2, = 16.25 +39.99, V3, =
72.50} = 20 (see Fig. 3).

Continuing in this way, at the end of fourteenth period, /14, we have a final solution
with makespan 102.53 (see Fig. 3).
In the next section a computational experience is described.
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6. Computational experience

We have employed a AMD Athlon XP 1.7 computer (1.40 GHz and 512 Mb RAM) to
analyze the computational performance of the heuristic approach. The C programming
language has been used to program the algorithm.

This experience is done through simulations of the evolution of the real system. In
these simulations we have considered that the number m of machines is 3, 5 and 10,
the number 7 of jobs is 5, 10, 25, 50 and 100, and, for simplicity, the release times are
ry = ov ] .

For each simulation the test instances set is divided into 27 classes according to the
possibility of considering the variables X (processing times), Y (length of working
intervals), Z (repair times) as short (S), medium (M) or long (L). The classification
of the random variables X, Y, Z into the classes S, M, L depends on the mean of the
random variable. Table 1 shows the correspondences.

Asanexample, SM L is a XY Z-selection in which processing times are short, times
where the machines are working, are medium and repair times are long. SLL and SLS
are two XY Z-selections that differ only because SLL has long repair times and SLS
has short repair times. In the same way, SLM and SSM are two XY Z-selections that
differ only because SL M has long working times and SSM has short working times.

The heuristic algorithm given in Section 4 does not depend on the distribution types
of the random input data. The proposed approach decides dynamically in accordance
with the evolution of the system, and it keeps its decision until changes arise in the
system. These changes are due to new breakdown(s) happening, or new repaired
machines coming back, or new jobs appearing. Also note that we do not know the
evolution of the system, and we need to decide taking into account this evolution. This
is the reason for simulating the random variables which characterize the unknown
evolution in our computational experience.

With these remarks, and for simplicity, in our computational experience we have
considered processing times X;; from the exponential distribution, X;; ~ exp(};),
where the means 1/ ; are taken from the uniform distribution in the intervals specified
in Table 1. In this way, we can apply the optimal algorithm of Pinedo and Ross
(1982) in the free-breakdowns scheduling periods I, k = 1,2, ... when the number
of non-broken machines in such periods is m; = 2. Also, length Y; of working time
intervals and the repair times Z; have exponential distributions, where the respective
means E[Y;] and E[Z;] are taken randomly from uniform distributions in the intervals
provided by Table 1.

Note that the generated data could be likened to a real-life situation, for example, the
management and scheduling problems of people attention and/or information services
commented on in Section 1. Also, it is known that exponential distributions play
an important role in the analysis of the reliability of equipment, in manufacturing

Table 1 Intervals for the means

of the random variables X, Y, Z S M L

X [1,10] [10,20] [20,50]
[10,20] [20,50] [50, 100]
Z [1,10] [10,20]  [20, 50]

~
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processes and other industrial models (see, for example, Fabrycky et al. 1972; Grant
and Leavenworth, 1996).

In each simulation, we generate s instances for any combination m, n and XY Z-
selection. The number of instances s considered is 10, 20, 50, 100 and 200. These
instances are analyzed using the general procedure proposed in Section 3. In each
period I, the partial without-breakdowns problems are solved using different algo-
rithms depending on the number m;, of available machines. This is done in accordance
with the approximate algorithm structure summarized in Fig. 1. So, if m; = 1, any
schedule without idle-time is optimal. If m; = 2, and taking into account the distribu-
tions of processing times X;;, we use the Pinedo and Ross’ algorithm (1982) to find
an optimal solution. Finally, if m; > 3, we use the algorithm provided by Alcaide et
al. (1997) to find an approximate solution. The results collected in Tables 2—4 corre-
spond to the sample size s = 50, i.e., we have 50 instances for each combination m, n
and XY Z-selection. In addition, Fig. 4 shows the standard deviation of the makespan
for different sample sizes in several combinations of the parameters m, n, and XY Z-
selection. Varying the sample size s in the set 10, 20, 50, 100, 200, 500, the results
show us that, for all the m, n, and XY Z-selections, the standard deviation decreases
when the sample size increases. Several of these cases are illustrated in Fig. 4.

The values in these tables are average results for the 50 instances solved for each
combination m, n and XY Z-selection. The columns are respectively, the number of
jobs, the XY Z-selection, the expected makespan, the standard deviation of the random
variable Cpx, the stages or scheduling periods, and CPU times in seconds.

We observe that CPU-times are insignificant in a lot of cases. In fact, for instances
with m = 3 machines, in only one combination of the input parameters (selection
(m,n,X,Y,Z)= (3,100, L, S, S)) the average CPU time of the 50 solved instances
is greater than 8 CPU seconds, and there is no combination in which its average time
is greater than 11 CPU seconds. For m = 5, only seven selections need more than 60
CPU seconds and, among them, only one selection uses more than three minutes CPU
time. For m = 10, the algorithm is also fast, in fact, for 103 of the 135 selections, i.e.,
the 76, 29%, take less than one minute, and nearly 83, 70% of the selections take less
than two minutes. Only one of the 135 selections takes more than four CPU minutes.

We can also compare the results among different X Y Z-selections to see the expected
makespan variation. As an example, when the results for X SZ are compared with the
corresponding X L Z results, we observe that the expected makespan decreases. This
reduction is more significative for some m and n combinations than others. Thus, we
can affirm that, in all cases, but in some more than others, it could be advantageous
for the decision-maker to invest in renewing his/her machines in such a way that the
working times change from short (S) to long (L). The manager will make the decision
taking into account the investment cost and the advantages that he/she will get due to
the expected reduction of the makespan.

The experience allows us to obtain similar conclusions comparing the results among
XYL and XY S selections. So, it provides valid information to decide if it is prof-
itable or not to invest in improving the technical methods and tools destined to repair
breakdowns.

Also, note that this kind of computational experience could be useful for studying
the sensibility of the expected makespan not only with respect to the X, Y and Z
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Standard deviation of makespan
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Fig. 4 Standard deviation of makespan

random variables characteristics, as mentioned above, but also with respect to the
number m of machines and/or the number n of jobs.

7. Conclusions and further research

In this paper, we consider a general dynamic procedure that addresses any stochas-
tic open-shop scheduling problem subject to random breakdowns as a sequence of
stochastic problems without breakdowns. Taking into account that, at any time, the
algorithm provides good solutions by considering the available information up to that
time, we can say that the final solution is an appropriate and interesting schedule. The
procedure solves stochastic open-shop problems by considering the minimization of
the expected makespan. An illustrative example and computational experience are also
reported. Further research could be directed to apply this approach to general stochas-
tic job-shop scheduling problems subject to random breakdowns. Other research could
be focused on bicriteria and multicriteria stochastic open-shop scheduling problems.
Also, it would be interesting to study stochastic open-shop scheduling problems where
precedence relations among jobs are known.
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