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Abstract Flexible robotic cells combine the capabilities of robotic flow shops with those of

flexible manufacturing systems. In an m-machine flexible cell, each part visits each machine

in the same order. However, the m operations can be performed in any order, and each machine

can be configured to perform any operation. We derive the maximum percentage increase in

throughput that can be achieved by changing the assignment of operations to machines and

then keeping that assignment constant throughout a lot’s processing. We find that no increase

can be gained in two-machine cells, and that the gain in three- and four-machine cells each

is at most 14 2
7
%.

Keywords Flexible robotic cells . Robotic open shop . Scheduling . Sequencing

1. Introduction

Robots are used for a wide range of applications in manufacturing companies (Asfahl 1985,

Miller and Walker 1990). One important application of robots in manufacturing is their use

for material handling in robotic cells. In such a cell, the robot is located at the approximate

center of the workcell, and a number of machines (M1, M2, . . . , Mm) and an input/output

(I/O) hopper are arranged around it. A real-world example of a three-machine robotic cell is

given in Asfahl (1985). In this example, a robotic cell processes castings for truck differential
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Fig. 1 A two machine robotic
cell

assemblies. The cell includes a drilling machine (operation: cross pin drill), a boring machine

(operation: bore pinion holes), another drilling machine (operation: ear hole drill), and an

input/output hopper. Although these operations can be done in any order, for operational

convenience and efficiency the cell operates as a flow shop in which the robot moves the

parts from I/O to machines M1, M2, M3, and finally to I/O .

Another example of the many manufacturing environments that can operate as an open

shop (i.e., the order of the operations is immaterial) is at Xerox Corporation, Rochester, NY

(Miller and Walker 1990, pp. 4–21). This system uses three independent robotic cells to pro-

duce a family of products called “duplicator fuser rollers.” Each cell consists of two machine

tools that are both CNC center-driver lathes. The entire system is under the supervision of

a programmable controller. Multiple NC and robot programs facilitate flexible changeover

from one product to another in the family of roller designs.

To generalize these examples, we consider a circularly-configured robotic cell in which

each job (part) visits the machines in the following sequence: (I/O , M1, M2,. . . , Mm ,

I/O). Each job requires m operations which can be performed in any order. Furthermore, an

operation i requiring processing time of pi can be assigned to any of the m machines by a

relatively inexpensive (but not instantaneous) tool change. This capability, called operation
flexibility (Sethi and Sethi 1990), arises from the use of flexible manufacturing machines

which have quick tool-changing capability. These systems, called flexible robotic cells, can

process differing lots with differing processing requirements (differing processing times or

differing operations) efficiently by changing the assignment of operations to machines, i.e.,

reconfiguring machines between lots can improve throughput.

A two-machine robotic cell is illustrated in Figure 1. The machines are served by a central

robot. The robot arm rotates to handle inter-machine movements of parts. A part is picked

up at the hopper (I/O), processed once on each machine, and finally dropped at the hopper

(I/O), i.e., after operations have been assigned to machines, the cell operates as a flow shop.

The processing of any part on a machine is nonpreemptive. Each machine can process at

most one part at a time and has neither an input nor an output buffer. Thus, any part in the cell

is always either on one of the machines, at I/O , or being handled by the robot. Moreover,

even if a part A has completed processing on a machine, no other part can be loaded onto that

machine until the robot has removed part A from the machine (this is a blocking condition).

After loading a part onto a machine, the robot either waits at that machine for the part to
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finish processing, moves to another machine to unload a different part (when that part finishes

processing on that machine), or moves to the I/O hopper to pick up a new part.

The purpose of this paper is to investigate the productivity gains that can be achieved

by using flexible robotic cells. Our goal is to aid practitioners who must decide whether

the marginal benefits of using flexible cells outweigh the marginal costs. We show that for

m ≤ 4 there is an upper bound on the improvement in throughput that can be realized by

using a flexible robotic cell. Our methodology is to compare flexible cells’ throughputs for all

possible assignments of operations to machines and all possible combinations of processing

times for these operations. Since for a given lot the parts produced are identical, for a given

assignment of operations to machines, we need only to examine different sequences of moves

performed by the robot.

2. Literature review

Because detailed reviews of the literature on robotic cells can be found in surveys by Crama

et al. (2000) and Dawande et al. (2005b), we give only a brief summary here. A thorough

survey of the literature concerning flexibility in manufacturing can be found in Sethi and

Sethi (1990).

Many analytic studies of robotic cell scheduling consider cells in which the machines are

arranged linearly. In a seminal paper, Sethi et al. (1992) consider the problem of minimizing

the cycle time in robotic flow shop cells with m = 2 and m = 3. For two-machine cells, the

optimal solution is given by a simple cycle producing one unit. Crama and van de Klundert

(1999) and Brauner and Finke (1999) show that the best one-unit cycle is optimal among the

class of all cyclic solutions in the three-machine case. Brauner and Finke (1997, 2001) show

that in m-machine cells (for m ≥ 4), the best one-unit cycle is not necessarily optimal over

the class of all cyclic solutions.

Circularly-configured cells are common in semiconductor manufacturing (Herrmann et al.

2000, Perkinson et al. 1994, Perkinson et al. 1996, Venkatesh et al. 1997, Wood 1996). Cycle

times for these cells with m = 2 and m = 3 are derived in Sethi et al. (2001). Analysis of such

cells with dual gripper robots can be found in Sriskandarajah et al. (2004) and Drobouchevitch

et al. (2004).

3. Notation

The following notation used to describe a robotic cell is similar to that in Sethi et al.

(1992):

M1, . . . , Mm : the machines in the robotic cell in the processing order.

I/O: the input/output hopper, also called M0 or Mm+1 (and referred to as a machine).

p j : the processing time of operation j .

σ : permutation of operations o1, . . . , om .

vector (σ (1), . . . , σ (m)): order of the processing operations, where σ is the permutation of

operations, σ (i) is the i th operation, and σ (i) is performed on machine Mi .

δ: the time taken by a rotational robot movement when traveling between two consecutive

machines M j−1 and M j , 1 ≤ j ≤ m + 1, where both M0 and Mm+1 mean I/O .

ε: the time taken by the robot to pick up or drop off a part at I/O , or the time taken by the

robot to load or unload a part at any machine.
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Si,m : robot move cycle i for a cell having m machines.

Ti : the cycle time for robot move cycle Si,m (it will be apparent from context how many

machines are in the cell being discussed).

When travelling between two non-adjacent machines, the robot passes each intervening

machine. It may travel in either direction around the cell. Hence, the travel time between

machines Mi and M j is min{| j − i |, m + 1 − | j − i |}δ.

The standard classification scheme for scheduling problems (Graham et al., 1979) as up-

dated for robotic cells by Dawande et al. (2005b) denotes the robotic flow shop scheduling

problem by RFm |(blocking,A,cyclic-1)|μ. The three fields indicate the scheduling environ-

ment (RFm : m-machine robotic flow shop), restrictive requirements (blocking,A,cyclic-1:

the cell has blocking, additive travel-time, and we seek one-unit cyclic solutions), and the

objective function to be minimized (μ : the throughput). The scheduling problem for flexible

robotic cells with circular layouts is denoted by F RC◦
m |(blocking,A,cyclic-1)|μ.

4. Cyclic production

The concept of activity is very useful in the study of robotic cells. Activity Ai , i = 0, . . . , m,

consists of the following sequence:

1. The robot unloads a part from Mi

2. The robot travels from Mi to Mi+1

3. The robot loads this part onto Mi+1.

The activity sequence (Ai , Ak) implies that after completing activity Ai by loading machine

Mi+1, the robot travels to machine k to begin activity Ak .

The study of cyclic production is motivated by its prevalence in industrial implementa-

tions. Additionally, Dawande et al. (2005a) show that it is sufficient to consider only cyclic

solutions in order to maximize throughput. Cyclic production employs a repeatable sequence

of activities:

Definition. A k-unit cycle is the performance of a feasible sequence of robot moves which

loads and unloads each machine exactly k times in a way which leaves the cell in exactly the

same state as its state at the beginning of those moves.

To be feasible, a sequence of activities must satisfy two criteria:

• The robot cannot be instructed to load an occupied machine.

• The robot cannot be instructed to unload an unoccupied machine.

All one-unit cycles are feasible.

Let the function F(Ai , t) represent the time of completion of the t th execution of any

activity Ai , for fixed i .

Definitions (Crama and van de Klundert 1997). A robotic cell repeatedly executing a k-

unit cycle π of robot moves is operating in steady state if there exist constants T (π ) and N
such that for every Ai , i = 0, . . . , m, and for every t ∈ Z+ such that t > N , F(Ai , t + k) −
F(Ai , t) = T (π ). T (π ) is called the cycle time of π .
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The per unit cycle time of a k-unit cycle π is T (π )/k. This is the reciprocal of the

throughput and is easier to calculate directly. Therefore, rather than maximizing throughput,

we minimize per unit cycle time. In this study we consider only one-unit cycles, so the cycle

time equals the per unit cycle time.

Brauner and Finke (2001) show that repeating a k-unit activity sequence will enable the

robotic cell to reach a steady state (or cyclic solution) in finite time. Therefore, since we are

maximizing the long-run average throughput, i.e., assuming that the cells operate in steady

state for an infinite time, there is no contribution from the initial transient phase. Hence, there

is no loss of generality by studying only the steady state behavior.

4.1. Two-machine robotic cells

It has been proven (Sethi et al. 1992) that in an m machine robotic cell there are m! one-unit

cycles, corresponding to the m! permutations of {A1, . . . , Am}. Thus, the two robot move

cycles in a two-machine robotic cell are S1,2 = (A0, A1, A2) and S2,2 = (A0, A2, A1). Sethi

et al. (2001) show that the cycle times in a circularly-configured cell are

T1 = 3δ + 6ε + p1 + p2 (1)

T2 = max{6δ + 6ε, p1 + 3δ + 4ε, p2 + 3δ + 4ε}. (2)

The derivation of these formulas can be found in the appendix. They lead to the following

result.

Lemma 1. In RF◦
2 |(blocking,A,cyclic-1)|μ, cycle S1,2 is optimal if δ ≥ (p1 + p2)/3,

whereas cycle S2,2 is optimal if δ ≤ (p1 + p2)/3.

Proof: Follows from equations (1) and (2). See also Sethi et al. (1992). �

4.2. Three-machine robotic cells

In a three-machine robotic cell, the six one-unit cycles are

S1,3 = (A0, A1, A2, A3), S2,3 = (A0, A2, A1, A3),

S3,3 = (A0, A1, A3, A2), S4,3 = (A0, A3, A1, A2),

S5,3 = (A0, A2, A3, A1), S6,3 = (A0, A3, A2, A1).

Their cycle times are presented in the following lemma.

Lemma 2. For problem RF◦
3 |(blocking,A,cyclic-1)|μ, the cycle times of the six one-unit

cycles (S1,3, . . . , S6,3) are given by:

T1 = 4δ + 8ε + p1 + p2 + p3,

T2 = max
{
8δ + 8ε, 4δ + 6ε + p1, 4δ + 4ε + p2, 4δ + 6ε + p3, 2δ + 4ε + p1 + p2 + p3

2

}
,

T3 = max{8δ + 8ε + p1, 4δ + 6ε + p1 + p2, 4δ + 4ε + p3},
T4 = max{8δ + 8ε + p2, 4δ + 6ε + p2 + p3, 4δ + 6ε + p1 + p2},
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T5 = max{8δ + 8ε + p3, 4δ + 6ε + p2 + p3, 4δ + 4ε + p1},
T6 = max{12δ + 8ε, 4δ + 4ε + p1, 4δ + 4ε + p2, 4δ + 4ε + p3}.

Proof: Similar to the derivation of equations (1) and (2) and Sethi et al. (1992). �

4.3. Four-machine robotic cells

In a four-machine robotic cell, the twenty-four one-unit cycles are

S1,4 = (A0, A1, A2, A3, A4), S2,4 = (A0, A1, A3, A2, A4),

S3,4 = (A0, A2, A1, A3, A4), S4,4 = (A0, A2, A3, A1, A4),

S5,4 = (A0, A3, A1, A2, A4), S6,4 = (A0, A3, A2, A1, A4),

S7,4 = (A0, A2, A3, A4, A1), S8,4 = (A0, A3, A2, A4, A1),

S9,4 = (A0, A3, A4, A1, A2), S10,4 = (A0, A4, A1, A2, A3),

S11,4 = (A0, A2, A4, A1, A3), S12,4 = (A0, A4, A1, A3, A2),

S13,4 = (A0, A1, A3, A4, A2), S14,4 = (A0, A3, A1, A4, A2),

S15,4 = (A0, A3, A4, A2, A1), S16,4 = (A0, A4, A2, A1, A3),

S17,4 = (A0, A1, A4, A2, A3), S18,4 = (A0, A4, A2, A3, A1),

S19,4 = (A0, A1, A2, A4, A3), S20,4 = (A0, A2, A1, A4, A3),

S21,4 = (A0, A2, A4, A3, A1), S22,4 = (A0, A4, A3, A1, A2),

S23,4 = (A0, A1, A4, A3, A2), S24,4 = (A0, A4, A3, A2, A1).

The cycle times for these cycles are presented in the following lemma. Note that in a

four-machine cell, when the robot moves from M4 to M1 (or vice versa), it travels via I/O
(requiring time 2δ) rather than via M2 and M3 (which would require time 3δ).

Lemma 3. For problem RF◦
4 |(blocking,A,cyclic-1)|μ, the cycle times of the twenty-four one-

unit cycles are given by:

T1 = 5δ + 10ε + p1 + p2 + p3 + p4

T2 = max{9δ + 10ε + p1, 4δ + 4ε + p3, 5δ + 8ε + p2 + p1, 5δ + 8ε + p4 + p1,

(5δ + 10ε + p1 + p2 + p3 + p4)/2}
T3 = max{9δ + 10ε + p4, 4δ + 4ε + p2, 5δ + 8ε + p1 + p4, 5δ + 8ε + p3 + p4,

(5δ + 10ε + p1 + p2 + p3 + p4)/2}
T4 = max{10δ + 10ε + p3, 5δ + 6ε + p2 + p3, 5δ + 6ε + p1, 5δ + 8ε + p4 + p3,

(5δ + 10ε + p1 + p2 + p3 + p4)/2}
T5 = max{10δ + 10ε + p2, 5δ + 6ε + p3 + p2, 5δ + 8ε + p1 + p2, 5δ + 6ε + p4,

(5δ + 10ε + p1 + p2 + p3 + p4)/2}
Springer
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T6 = max{13δ + 10ε, 4δ + 4ε + p3, 4δ + 4ε + p2, 5δ + 6ε + p1, 5δ + 6ε + p4,

(5δ + 10ε + p1 + p2 + p3 + p4)/3}
T7 = max{9δ + 10ε + p3 + p4, 5δ + 8ε + p2 + p3 + p4, 4δ + 4ε + p1}
T8 = max{13δ + 10ε, 4δ + 4ε + p3, 5δ + 6ε + p2, 9δ + 8ε + p4, 4δ + 4ε + p1}
T9 = max{10δ + 10ε + p4 + p2, 5δ + 8ε + p3 + p4 + p2, 5δ + 6ε + p1 + p2}

T10 = max{9δ + 10ε + p2 + p3, 5δ + 8ε + p4 + p2 + p3, 5δ + 8ε + p1 + p2 + p3}
T11 = max{10δ + 10ε, 5δ + 6ε + p2, 5δ + 6ε + p4, 5δ + 6ε + p1, 5δ + 6ε + p3}
T12 = max{13δ + 10ε, 5δ + 6ε + p4, 9δ + 8ε + p1, 4δ + 4ε + p3, 9δ + 8ε + p2,

5δ + 6ε + p1 + p2}
T13 = max{10δ + 10ε + p1 + p4, 5δ + 6ε + p3 + p4, 5δ + 6ε + p2 + p1}
T14 = max{15δ + 10ε, 10δ + 8ε + p3, 10δ + 8ε + p1, 10δ + 8ε + p4, 10δ + 8ε + p2,

5δ + 6ε + p3 + p4, 5δ + 6ε + p3 + p2, 5δ + 6ε + p1 + p2}
T15 = max{13δ + 10ε + p4, 5δ + 6ε + p3 + p4, 4δ + 4ε + p2, 4δ + 4ε + p1}
T16 = max{13δ + 10ε, 9δ + 8ε + p4, 4δ + 4ε + p2, 5δ + 6ε + p1, 9δ + 8ε + p3,

5δ + 6ε + p4 + p3}
T17 = max{10δ + 10ε + p1 + p3, 5δ + 6ε + p4 + p3, 5δ + 8ε + p2 + p1 + p3}
T18 = max{13δ + 10ε + p3, 5δ + 6ε + p4 + p3, 5δ + 6ε + p2 + p3, 4δ + 4ε + p1}
T19 = max{9δ + 10ε + p1 + p2, 4δ + 4ε + p4, 5δ + 8ε + p3 + p1 + p2}
T20 = max{13δ + 10ε, 4δ + 4ε + p2, 9δ + 8ε + p1, 4δ + 4ε + p4, 5δ + 6ε + p3}
T21 = max{13δ + 10ε, 9δ + 8ε + p2, 4δ + 4ε + p4, 9δ + 8ε + p3, 4δ + 4ε + p1,

5δ + 6ε + p2 + p3}
T22 = max{13δ + 10ε + p2, 4δ + 4ε + p4, 5δ + 6ε + p3 + p2, 5δ + 6ε + p1 + p2}
T23 = max{13δ + 10ε + p1, 4δ + 4ε + p4, 4δ + 4ε + p3, 5δ + 6ε + p2 + p1}
T24 = max{15δ + 10ε, 4δ + 4ε + p4, 4δ + 4ε + p3, 4δ + 4ε + p2, 4δ + 4ε + p1}

Proof: Similar to the derivation of equations (1) and (2) and Sethi et al. (1992). �

5. Flexible robotic cells: throughput comparison

We examine the throughput gains in flexible robotic cells for all possible assignments of

operations to machines. The analysis of this problem (F RC◦
m |(blocking,A,cyclic-1)|μ for

m = 2, 3, 4) is based on two assumptions:

1. Any of the m! processing orders for the operations of a part in an m-machine cell is

feasible.
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2. The machines are converted to conform with to the specified order of operations. For

example, if m = 3 and the operations are processed in the order (3, 1, 2), then operation 3

is processed for p3 time on M1, operation 1 is processed for p1 time on M2, and operation 2

is processed for p2 time on M3.

5.1. Comparison of performance: two-machine robotic cells

We now show that in problem F RC◦
2 |(blocking,A,cyclic-1)|μ the flexibility to assign opera-

tions to machines does not allow for an increase in throughput.

Lemma 4. The flexibility to assign operations to machines in a two-machine flexible robotic
cell (F RC◦

2 |(blocking,A,cyclic-1)|μ) provides no increase in throughput.

Proof: That the two permutations (i, j) and ( j, i) will have the same time performance can

be seen by interchanging values of p1 and p2 in equations (1) and (2). �

5.2. Comparison of performance: three-machine robotic cells

In linearly-configured three-machine cells, the optimal cyclic solution is given by a one-unit

cycle (Brauner and Finke 1999). No such result has been proven for circularly-configured

cells. However, we limit our analysis to only one-unit cycles (F RC◦
3 |(blocking,A,cyclic-1)|μ)

because of their prevalence in practice (Dawande et al. 2002) and their simplicity. Of course,

the methodology we describe here could be used to check whether multi-unit cycles could

provide an improvement in cycle time. However, because the number of multi-unit cycles

is large (e.g., there are 20 two-unit cycles for m = 3 and 260 two-unit cycles for m = 4

(Geismar et al. 2004)), such an analysis is beyond the scope of this note.

Additionally, in circularly-configured cells, pyramidal cycles do not dominate, as they do

for linearly-configured cells (Crama and van de Klundert 1997). For example, if δ = 1.0,

ε = 0.5, p1 = 5, p2 = 3, p3 = 5, then non-pyramidal cycle S2,3 is uniquely optimal among

one-unit cycles: T1 = 21, T2 = 12, T3 = 17, T4 = 15, T5 = 17, T6 = 16.

As a result of the two assumptions stated at the start of Section 5, the formulas for Ti (1 ≤
i ≤ 6) stated in Lemma 2 may be applied to any of the six permutations of the operations.

For any order α = (i, j, k) of operations, let Ti (α), 1 ≤ i ≤ 6, denote the corresponding

value of the i th cycle time measure from Lemma 2 if the operations are processed in the

order α. For example, if α = (2, 1, 3) then p1 and p2 are simply interchanged in each of

the formulas, e.g., T3(α) = max{8δ + 8ε + p2, 4δ + 6ε + p1 + p2, 4δ + 4ε + p3}. For the

sake of efficiency in the remainder of this section, Ti will denote the cycle time value when

the order of operations is (1, 2, 3).

Let OPT(α) = min{Ti (α) | 1 ≤ i ≤ 6}. Let Ti, j (α) be the j th term in the maximization

expression which gives the value of Ti (α), where the terms are ordered as in the formulas

for Ti given in Lemma 2. For example, T2,4(1, 2, 3) = 4δ + 6ε + p3 and T2,4(2, 3, 1) =
4δ + 6ε + p1. The following theorem states that at most a 14 2

7
% decrease in OPT can be

obtained by changing the order of operations.

Theorem 1. Let α and β be two different orders of the operations for a three-machine flexible
robotic cell. Then OPT(β) ≤ (7/6)OPT(α), and this bound is tight.

Proof : The proof will be presented in the form of six lemmas. The basic approach is to

assume that an overall optimal solution (over all orders of operations (i, j, k)) is obtained
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using the order (1, 2, 3). This leaves six possibilities as to which of the six expressions

Ti , 1 ≤ i ≤ 6, yields the optimal value OPT. For each i = 1, . . . , 6, we assume Ti = OPT
and then show that for any order of operations β �= (1, 2, 3), there exists at least one j such

that Tj (β) ≤ (7/6)OPT = (7/6)Ti .

Lemma 5. T2 ≤ T4.

Proof : Clearly, T2,1 ≤ T4,1, T2,2 ≤ T4,3, T2,3 ≤ T4,3, and T2,4 ≤ T4,2. Finally,

T2,5 = 2δ + 4ε +
∑ pi

2
≤ 1

2
(T4,2 + T4,3),

Proof: which implies that either T2,5 ≤ T4,2 or T2,5 ≤ T4,3. Hence, for j = 1, . . . , 5, T2, j is

less than or equal to at least one of the T4,k’s. �

As a result of Lemma 5, we need not analyze the case in which T4 = OPT. Theorem 1

can be easily proven for two other cycles:

Lemma 6. If T1 = OPT or T6 = OPT, then Theorem 1 holds.

T1(α) is the same for all permutations α, and T6(β) is the same for all permutations β.

Therefore, if T1 = OPT, then OPT(α) ≤ T1(α) = T1 = OPT; if T6 = OPT, then OPT(β) ≤
T6(β) = T6 = OPT.

Lemma 7. T1(α) = OPT, ∀α, if p1 + p2 + p3 ≤ 4δ. T6(α) = OPT, ∀α, if δ = 0.

Proof: Easy and omitted. �

Hence, we may assume for the remainder of the proof that 0 < 4δ < p1 + p2 + p3.

Lemma 8. If 0 < 4δ < p1 + p2 + p3, then T2 = OPT implies that Theorem 1 holds.

Proof:

T2 = max
{

8δ + 8ε, 4δ + 6ε + p1, 4δ + 4ε + p2, 4δ + 6ε + p3, 2δ + 4ε +
(∑

pi/2
)}

.

Suppose that for some permutation β and some number ω > 1, we have

OPT(β) = min{T1(β), T2(β), T3(β), T5(β), T6(β)}
≥ ω · OPT = ωT2. (3)

First, note that relation (3) implies T2(β) > T2. Necessary conditions for T2(β) > T2 are

p2 > max{p1, p3} and that operation 2 is processed first or last among the operations of β,

in which case T2(β) = 4δ + 6ε + p2.

Relation (3) also implies many other inequalities, some of which will be used to prove

that ω ≤ 7/6. First, we need to prove that ω < 5/4. Suppose ω ≥ 5/4. Then,

T2(β) = 4δ + 6ε + p2 ≥ 5

4
T2

≥ 5

4
max{T2,1, T2,3}.
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Thus,

4δ + 6ε + p2 ≥ 5

4
T2,1 = 10δ + 10ε

(4)
⇐⇒ p2 ≥ 6δ + 4ε,

and

4δ + 6ε + p2 ≥ 5

4
T2,3 = 5δ + 5ε + 5

4
p2

(5)
⇐⇒ p2 ≤ −4δ + 4ε.

Since δ > 0, (4) and (5) contradict each other, and we may conclude that ω < 5/4.

We now apply three other inequalities:

T2(β) ≥ ωT2 ≥ ωT2,1

4δ + 6ε + p2 ≥ ω(8δ + 8ε)
(6)

⇐⇒ p2 ≥ (8ω − 4)δ + (8ω − 6)ε

⇐⇒ (ω − 1)p2 ≥ (8ω2 − 12ω + 4)δ + (8ω2 − 14ω + 6)ε,

and

T2(β) ≥ ωT2,3

4δ + 6ε + p2 ≥ ω(4δ + 4ε + p2) (7)

⇐⇒ (ω − 1)p2 ≤ (4 − 4ω)δ + (6 − 4ω)ε.

Combining (6) and (7) yields

(8ω2 − 12ω + 4)δ + (8ω2 − 14ω + 6)ε ≤ (ω − 1)p2

≤ (4 − 4ω)δ + (6 − 4ω)ε
(8)

⇐⇒ (8ω − 8)δ + (8ω − 10)ε ≤ 0.

Since 1 < ω, we have (8ω − 8) > 0 and
δ

ε
≤ 10 − 8ω

8ω − 8
.

Note that

T6 ≥ ωT2,3 ⇒ T6 = 12δ + 8ε. Thus,

T6(β) = T6 ≥ ωT2,1 implies

12δ + 8ε ≥ ω(8δ + 8ε) (9)

⇐⇒ (12 − 8ω)δ + (8 − 8ω)ε ≥ 0.

Since ω < 5/4, we have (12 − 8ω) > 0 and
δ

ε
≥ 8ω − 8

12 − 8ω
.
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Combining (8) with (9) yields

8ω − 8

12 − 8ω
≤ 10 − 8ω

8ω − 8
,

which when solved yields ω ≤ 7/6. �

Lemma 9. The bound of (7/6) in Lemma 8 (and therefore in Theorem 1) is tight.

Proof: Use δ = 1, ε = 2, p1 = p3 = 8, and p2 = 12 with β = (2, 1, 3). �

Consider the two orders of operations α = (i, j, k) and β = (k, j, i). It is easy to prove

that Ti (α) = Ti (β) for i = 1, 2, 4, 6, and that

T3(α) = T5(β) and T5(α) = T3(β).

Hence,

OPT(α) = T3(α) ⇐⇒ OPT(β) = T5(β),

and OPT(α) = T5(α) ⇐⇒ OPT(β) = T3(β).

From these symmetries, it follows that we need to consider only one of the two cases

T3 = OPT and T5 = OPT. We complete the proof of Theorem 1 by considering T5 = OPT.

Lemma 10. If 0 < 4δ < p1 + p2 + p3, then T5 = OPT implies that Theorem 1 holds.

Proof: Either T2 is also optimal, i.e., T2 = T5 = OPT, in which case Lemma 8 applies, or

T2 > T5. We therefore assume T2 > T5.

We use the same approach as in Lemma 8. First note that

T2,1 ≤ T5,1, T2,3 ≤ T5,2, T2,4 ≤ T5,2,

and T2,5 ≤ 1
2
(T5,2 + T5,3), which implies that

either T2,5 ≤ T5,2 or T2,5 ≤ T5,3.

⎫⎪⎪⎬⎪⎪⎭ (10)

Since we are assuming that T2 > T5, relations (10) imply T2,2 = T2 > T5 = OPT. Thus,

T2,2 = 4δ + 6ε + p1 > T5,2 = 4δ + 6ε + p2 + p3, so p1 > p2 + p3.

It follows that for any β,

T2(β) ≤ 4δ + 6ε + p1 = T2. (11)

Assume that ω > 7/6 is achievable using some permutation β. Then T6(β) = T6 > (7/6)T5.

If T6 = 4δ + 4ε + p1, then 4δ + 4ε + p1 > (7/6)T5,3 = (7/6)(4δ + 4ε + p1), which is a

contradiction. If T6 = 12δ + 8ε, then we have

T6 >
7

6
T5,1,

12δ + 8ε >
7

6
(8δ + 8ε + p3) ≥ 7

6
(8δ + 8ε) (12)

⇐⇒ 2δ > ε,
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and

T2 ≥ T2(β) >
7

6
T5,3,

4δ + 6ε + p1 >
7

6
(4δ + 4ε + p1) (13)

⇐⇒ −4δ + 8ε > p1,

and

T2 ≥ T2(β) >
7

6
T5,1,

4δ + 6ε + p1 >
7

6
(8δ + 8ε), (14)

6p1 > 32δ + 20ε.

(13) and (14) imply

32δ + 20ε < −24δ + 48ε,
(15)

⇐⇒ 2δ < ε.

Since (12) contradicts (15), the assumption that ω > 7
6

is achievable must be wrong. This

completes the proof of Lemma 10 and of Theorem 1. �

5.3. Comparison of performance: four-machine robotic cells

Although the optimal cycle may not be a one-unit cycle if m = 4, we limit our analysis to

only one-unit cycles (F RC◦
4 |(blocking,A,cyclic-1)|μ) for the same reasons mentioned for

m = 3 in Section 5.2.

The formulas for one-unit cycle times were developed in Lemma 3. For m = 4, we define

Ti (α), OPT(α), Ti, j (α), and Ti , as natural extensions of their definitions for m = 3. We now

show that for m = 4, at most a 14 2
7
% increase in throughput can be obtained by changing

the order of operations.

Theorem 2. Let α and β be two different orders of the operations for a four-machine flexible
robotic cell. Then OPT(β) ≤ (7/6)OPT(α), and this bound is tight.

Proof: The proof will be presented in a structure similar to that of Theorem 1: we use eight

lemmas and consider cases that are defined by the value of i , where Ti = OPT. We first

disqualify eight cycles because they are dominated by other cycles.

Lemma 11. For a given assignment of operations to machines, we have the following dom-
inance relationships: Cycles S4,4, S5,4, S9,4, S13,4, and S17,4 are dominated by Cycle S11,4.
Cycles S12,4, S14,4, and S16,4 are dominated by Cycle S6,4.

Proof: For cycles S4,4 and S11,4, T11,1 ≤ T4,1, T11,2 ≤ T4,2, T11,3 ≤ T4,4, T11,4 ≤ T4,3, and

T11,5 ≤ T4,2. The proofs for the other pairs are similar. �
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We now show symmetry for five pairs of cycles. These results imply that for each pair we

need only to consider cases in which one of them is optimal.

Lemma 12. Regarding Theorem 2, we have the following equivalences:� Theorem 2 holds for T2 = OPT if and only if it holds for T3 = OPT.� Theorem 2 holds for T7 = OPT if and only if it holds for T19 = OPT.� Theorem 2 holds for T8 = OPT if and only if it holds for T20 = OPT.� Theorem 2 holds for T15 = OPT if and only if it holds for T23 = OPT.� Theorem 2 holds for T18 = OPT if and only if it holds for T22 = OPT.

Proof: It is straightforward to verify that min{Th(i, j, k, l)|1 ≤ h ≤ 24} =
min{Th(l, k, j, i)|1 ≤ h ≤ 24}. That result along with the following equalities yields

the result:

T3(i, j, k, l) = T2(l, k, j, i), T19(i, j, k, l) = T7(l, k, j, i),

T20(i, j, k, l) = T8(l, k, j, i), T22(i, j, k, l) = T18(l, k, j, i),

T23(i, j, k, l) = T15(l, k, j, i). �

Hence, we need not consider cases in which cycles S3,4, S19,4, S20,4, S22,4, or S23,4, are optimal.

Lemma 13. Theorem 2 holds if T1 = OPT, T11 = OPT, or T24 = OPT.

Proof: T1, T11, and T24 are each independent of the assignment of operations to machines.

Hence, Ti (β) = Ti < (7/6)Ti , ∀β, for i ∈ {1, 11, 24}. �

Lemma 14. Regarding Theorem 2, we have the following implications:� If Theorem 2 holds for T2 = OPT, then it holds for T7 = OPT.� If Theorem 2 holds for T6 = OPT, then it holds for T8 = OPT.� If Theorem 2 holds for T2 = OPT, then it holds for T10 = OPT.� If Theorem 2 holds for T6 = OPT, then it holds for T15 = OPT.� If Theorem 2 holds for T6 = OPT, then it holds for T18 = OPT.� If Theorem 2 holds for T6 = OPT, then it holds for T21 = OPT.

Proof:

T2(k, j, i, l) ≤ T7(i, j, k, l), T6( j, i, k, l) ≤ T8(i, j, k, l),

T2(k, j, i, l) ≤ T10(i, j, k, l), T6(k, j, i, l) ≤ T15(i, j, k, l),

T6(l, j, k, i) ≤ T18(i, j, k, l), T6( j, i, l, k) ≤ T21(i, j, k, l). �

Lemma 15. T1(α) = OPT, ∀α, if p1 + p2 + p3 + p4 ≤ 4δ. T24(α) = OPT, ∀α, if δ = 0.

Proof: Trivial. �

Our task now is to show that Theorem 2 holds for cells in which 0 < 4δ <
∑

pi and either

OPT = T2 or OPT = T6.
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Lemma 16. If 0 < 4δ <
∑

pi , then T6 = OPT implies that Theorem 2 holds.

Proof:

Case 1. T24(β) = 15δ + 10ε, ∀β. T6 ≥ 13δ + 10ε, ∀β, implies

T24(β)

T6

≤ 15δ + 10ε

13δ + 10ε
≤ 15

13
<

7

6
.

Case 2. T24(β) = 4δ + 4ε + max pi , ∀β. T6 ≥ 4δ + 4ε + max pi , ∀β, implies

T24(β)

T6

≤ 4δ + 4ε + max pi

4δ + 4ε + max pi
≤ 1 <

7

6
. �

Lemma 17. If 0 < 4δ <
∑

pi , then T2 = OPT implies that Theorem 2 holds.

Proof:

Case 1. T11 = 10δ + 10ε. T2 ≥ p1 + 9δ + 10ε implies that

T11(β)

T2

≤ 10δ + 10ε

p1 + 9δ + 10ε
≤ 10

9
<

7

6
.

Case 2. T11 = 5δ + 6ε + max pi . First, it is easy to see that T11 > T2 implies that T11(β) =
5δ + 6ε + p3, ∀β. Furthermore, T6 > T2 implies that T6(β) = 13δ + 10ε, ∀β.

(a) T2 = 9δ + 10ε + p1. This implies that p3 ≤ 5δ + 6ε + p1, so

OPT(β) ≤ min{T6(β), T11(β)} ≤ min{13δ + 10ε, 10δ + 12ε + p1}

Therefore,

OPT(β)

T2

≤ min

{
13δ + 10ε

9δ + 10ε + p1

,
10δ + 12ε + p1

9δ + 10ε + p1

}
≤ min

{
13δ + 10ε

9δ + 10ε
,

10δ + 12ε

9δ + 10ε

}
.

Now assume that the result does not hold. This would imply that both terms in the

minimization exceed 7/6:

13δ + 10ε

9δ + 10ε
> 7/6 ⇒ ε <

3

2
δ and

10δ + 12ε

9δ + 10ε
> 7/6 ⇒ ε >

3

2
δ.

This contradiction implies that at least one of these two terms must be less than 7/6.

(b) T2 = 4δ + 4ε + p3. This implies that p3 ≥ 5δ + 6ε. Hence,

OPT(β)

T2

≤ min

{
13δ + 10ε

4δ + 4ε + p3

,
5δ + 6ε + p3

4δ + 4ε + p3

}
≤ min

{
13δ + 10ε

9δ + 10ε
,

10δ + 12ε

9δ + 10ε

}
≤ 7

6
,

as in a) above.
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(c) T2 = 5δ + 8ε + p1 + p2. This implies that p2 ≥ 4δ + 2ε and that p3 ≤ δ + 4ε + p1 +
p2, so T11 ≤ 6δ + 10ε + p1 + p2. Hence,

OPT(β)

T2

≤ min

{
13δ + 10ε

5δ + 8ε + p1 + p2

,
6δ + 10ε + p1 + p2

5δ + 8ε + p1 + p2

}

≤ min

{
13δ + 10ε

9δ + 10ε
,

10δ + 12ε

9δ + 10ε

}
≤ 7

6
,

as in a) above. This argument applies to T2 = 5δ + 8ε + p1 + p4, too.

(d) T2 = (5δ + 10ε + ∑
pi )/2. This implies that p3 < −(3/2)δ + ε + ∑

pi/2. Therefore,

T11 <
7δ + 14ε + ∑

pi

2
.

T2 > p1 + 9δ + 10ε implies
∑

pi > 2p1 + 13δ + 10ε ≥ 13δ + 10ε. Hence,

OPT(β)

T2

≤ min

{
26δ + 20ε

5δ + 10ε + ∑
pi

,
7δ + 14ε + ∑

pi

5δ + 10ε + ∑
pi

}

≤ min

{
26δ + 20ε

18δ + 20ε
,

20δ + 24ε

18δ + 20ε

}
= min

{
13δ + 10ε

9δ + 10ε
,

10δ + 12ε

9δ + 10ε

}
≤ 7

6
,

as in a) above. �

Lemma 18. The bound of (7/6) in Lemma 17 (and therefore in Theorem 2) is tight.

Proof: Let δ = 2, ε = 3, p1 = 0, p2 = p4 = 8, p3 = 28, and β = (2, 3, 1, 4). OPT = T2 =
48. OPT(β) = T3(β) = T4(β) = T6(β) = T8(β) = T11(β) = T16(β) = T18(β) = T20(β) =
56. Therefore, OPT(β)/OPT = 7/6.

This completes the proof of Theorem 2. �

6. Conclusions and recommendations for future study

We have examined the productivity gains that can be achieved in flexible robotic cells by

changing the assignment of operations to machines. We found that flexibility provides no

throughput increase for a two-machine cell. For both three- and four-machine cells, the maxi-

mum productivity increase is 14 2
7
%. These results should be very useful to those considering

the purchase of a robotic cell, because flexible robotic cells are more expensive than robotic

flow shops.

It is curious that the results of Section 5 show that the maximum throughput increase in

a flexible robotic cell is 14 2
7
% for both m = 3 and m = 4. It is not clear whether this trend

would continue for m ≥ 5. Examining this trend would be a challenging and useful question

for future research. Another interesting line of inquiry would be to quantify the overall

productivity gains for cells having m ≥ 3, since the question of whether the best one-unit

cycle is optimal among the class of all cyclic solutions remains open for circularly-configured

cells. Furthermore, there is at present no algorithm to find an optimal cyclic solution in a

circularly-configured cell.
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Another direction for future research is towards finding similar results for cells that produce

different part-types. Foundational work for such cells can be found in Hall et al. (1997), Hall

et al. (1998), Kamoun et al. (1999), and Sriskandarajah et al. (1998). Dual gripper robotic

cells, too, may prove to be a profitable field for the examination of flexible robotic cells.

Cyclic solutions for dual gripper robotic cells have been studied in Su and Chen (1996),

Sethi et al. (2001), Sriskandarajah et al. (2004), and Geismar et al. (2005).

A more sophisticated type of flexible robotic cell has machine flexibility: the change in a

machine’s operation can be done so quickly that a particular machine can perform different

operations on successive parts without causing a delay (Browne et al. 1984, Sethi and Sethi

1990). Future research may quantify the productivity gains that can be realized by varying the

order in which the processes are performed. As before, this would assist a manager deciding

on which type of cell is most economical for his company.

Appendix

We derive the cycle times for producing parts in a circularly-configured robotic flow

shop (RF◦
2 |(blocking,A,cyclic-1)|μ) using the two cycles S1,2 = (A0, A1, A2) and S2,2 =

(A0, A2, A1). This technique is directly applicable to larger cells and to flexible robotic cells.

For S1,2, if we start from the initial state in which the robot has just loaded part Pi onto

M2 and M1 is free, the robot move cycle includes the following activities: wait until Pi is

processed: (p2), unload Pi from M2: (ε) move to I/O: (δ), drop Pi at I/O: (ε), pick up Pi+1

at I/O: (ε), move to M1: (δ), load Pi+1 on M1: (ε), wait until Pi+1 is processed: (p1), unload

Pi+1 from M1: (ε), move to M2: (δ), and load Pi+1 on M2: (ε). Thus,

T1 = 3δ + 6ε + p1 + p2.

For S2,2, if we start from the initial state in which the robot has just loaded part Pi+1 onto

M1 and M2 is occupied by part Pi , the robot move sequence includes the following activities:

move to M2: (δ), if necessary wait until Pi is processed at M2: (w2), unload Pi from M2:

(ε), move to I/O: (δ), drop Pi at I/O: (ε), move to M1: (δ), if necessary wait until Pi+1 is

processed at M1: (w1), unload Pi+1 from M1: (ε), move to M2: (δ), load Pi+1 on M2: (ε), move

to I/O: (δ), pick up part Pi+2 at I/O: (ε), move to M1: (δ), load Pi+2 on M1: (ε). Therefore,

T2 = 6δ + 6ε + w1 + w2, where

w1 = max{0, p1 − w2 − 3δ − 2ε}, and

w2 = max{0, p2 − 3δ − 2ε}.
By combining the expressions for w1 and w2, we obtain

T2 = max{6δ + 6ε, p1 + 3δ + 4ε, p2 + 3δ + 4ε}.
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