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Abstract. As manufacturing systems have grown in size and complexity, material flow control has become one
of the key issues for system efficiency, and determination of the number of vehicles required is an important issue
in the design of the AGV (automatic guided vehicle) systems for automated material flow control. In an AGV
system, a part issues a delivery request for its transportation, and then an empty vehicle is assigned based on a
pre-determined vehicle selection rule and provides delivery service.

This research presents a fleet sizing procedure for an AGV system with multiple pickup and delivery stations. A
queueing model is used to estimate part waiting times. The fleet sizing procedure estimates the minimum number
of vehicles needed to ensure a predefined part waiting time limit. While most stochastic models assume first-
come-first-served or random vehicle selection rules for the selection of an empty vehicle, this model considers
such additional rules as the nearest vehicle selection rule, which is the most popular among all vehicle selection
rules. The performance of the proposed model is examined through computational experiments.
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1. Introduction

Automated guided vehicles (AGVs) are currently widely used in manufacturing and service
industries, including flexible manufacturing systems (FMSs), semiconductor fabrication
shops, automobile production plants, and seaport container terminals. AGVs offer many
advantages over traditional transporters in terms of flexibility, better space utilization, shop
floor safety, and easier interface with other automated systems. Because of the randomness
and the large number of variables involved, the design and evaluation of AGV systems is
very complex, typically including determination of the vehicle guidepath layout, the traffic
flow pattern, the number of vehicles required, the buffer capacity for the vehicles, and
the location of pickup/delivery stations (Mahadevan and Narendran, 1990; Ganesharajah,
Hall, and Sriskandarajah, 1998). Among these issues, the number of vehicles required is a
fundamental decision to be made after a traffic network is determined.
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This paper presents an analytical procedure to determine the number of vehicles required,
or fleet size, in AGV systems. In the AGV systems under consideration, the specific times
and places of the delivery requests are not known in advance, while the total delivery
requirements during a planning horizon are known. When a load calls for a vehicle for
delivery service, one of the available vehicles is selected in real time based on a pre-defined
vehicle dispatching policy. This research considers such dynamic vehicle selection rules
as the nearest vehicle selection, which considers the current state of a system. If there is
no empty vehicle at the time of delivery requests, the delivery service is provided when
a vehicle becomes idle. The determination of the fleet size starts with estimating the total
vehicle travel time required in the planning horizon. The total vehicle travel time includes
empty vehicle travel time, loading time, loaded vehicle travel time, and unloading time.
Among these, loading time, loaded vehicle travel time, and unloading time are often easily
estimated when total delivery requirements are known in advance. However, empty vehicle
travel time is often difficult to estimate because it is a function of the vehicle dispatching
rules. Vehicle dispatching decisions are concerned with assigning vehicles and delivery
requests to each other in real time based on the state of the system. Such rules as random
vehicle selection, longest idle vehicle selection, least utilized vehicle selection, and nearest
vehicle selection are a few examples.

From the viewpoint of a queueing system, AGVs can be considered as resources and the
delivery requests (from the parts which need to be delivered from a station to another) as
customer arrivals. The number of servers required (fleet size) depends on the parameters
related to customer arrivals (delivery requests) and service time (vehicle travel time). In
Figure 1, the part waiting time consists of assignment waiting time and empty vehicle travel
time. The assignment waiting time is the time delay that a part has to wait until a vehicle
becomes available before its delivery request can be assigned to this vehicle. If there is an
idle vehicle at the time of the delivery request, the assignment waiting time is zero. The
assignment waiting time is estimated based on queueing theory. Two parameters, mean and
variance, of the vehicle travel time are used to estimate the expected assignment waiting
time. For estimating empty vehicle travel time for various vehicle dispatching rules, an
analytical model presented in Koo and Jang (2002) is adopted. Once assignment waiting

Figure 1. Part waiting time in a pickup-delivery system.
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Figure 2. Fleet sizing procedure.

time and empty travel time are calculated, the expected part waiting time for vehicle service
can be estimated, which is then used for fleet sizing. Figure 2 shows the overall fleet sizing
procedure.

Section 2 reviews the literature and Section 3 introduces the new fleet sizing procedure.
Section 4 shows a numerical example, and Section 5 tests the accuracy of the model by
simulation experiments. Section 6 gives a summary.

2. Previous work and problem description

The work on fleet size estimation can be classified into deterministic and stochastic studies
(Ganesharajah et al., 1998). In a deterministic system, all parts to be moved are known in
advance and ready for delivery at the beginning of a planning time horizon. In a stochastic
system, delivery requests are issued at random points of time and served by vehicles selected
in real-time.

For deterministic systems, Maxwell and Muckstadt (1982) propose a mathematical model
to determine the minimum number of AGVs for a given number of delivery requests during
a time window. Each location is associated with a net flow of vehicles that is defined as
the difference between the numbers of incoming and outgoing deliveries. The net flow
represents the trip frequencies of empty vehicles into or out of the station. Flow balances of
locations have to be achieved by empty vehicle movements: the stations with positive net
flows have empty vehicles available to be assigned to other stations with negative net flows.
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The model gives the lower bound on the number of vehicles needed in the system. This work
is extended by Leung, Khator, and Kimbler (1997) who additionally consider vehicle types
of different load carrying capacity and speed, and Rajotia, Shanker, and Batra (1998) who
impose one more constraint that only a small portion of delivery requests from a location can
be served by vehicles idle at the same location due to the randomness of the delivery request.
Egbelu (1987) proposes an analytical procedure to estimate vehicle requirements when
vehicle requests are served by randomly selected vehicles. Sinriech and Tanchoco (1992a)
develop a multi-criteria optimization model considering cost and throughput to determine
the AGV fleet size. Egbelu (1993) presents a model to simultaneously specify unit load
sizes, vehicle size, and fleet size in an AGV-based production system. The model solves the
combined problem by using a combination of numerical search, computer simulation, and
statistical approaches. Malmborg (1990) provides a scheme for computing empty vehicle
travel time which is the opposite of the approach taken by Maxwell and Muckstadt (1982).
The frequency of empty travels is based on the total number of delivery loads rather than
net flow. Each vehicle, after having completed a load transfer, is routed to the farthest
station. The model provides the upper bound on the total empty vehicle travel time, which
may be later used in determining fleet size. He argues that the actual empty travel will be
a weighted average of the upper bound and the lower bound of Maxwell and Muckstadt
(1982). Malmborg (1991) later extends his work by developing tightened analytical bounds
on the total volume of empty vehicle travel.

Beaujon and Turnquist (1991) present a nonlinear mathematical model to optimize the
fleet size and vehicle allocation under a multi-period transportation planning environment.
The model is transformed to a minimum cost network flow problem with a nonlinear ob-
jective function that can be solved using yet another proposed solution procedure based
on the Frank-Wolfe algorithm. Du and Hall (1997) address fleet sizing and empty vehicle
redistribution for systems with a one-to-many (or hub-and-spoke) transportation structure.
Terminals are classified into surplus and shortage terminals based on the balance of the
incoming and outgoing transportation requirements. A proper fleet size is determined based
on inventory control theory with operating costs for excessive number of vehicles and short-
age costs for insufficient number of vehicles. Mahadevan and Narendran (1990) present an
analytical model to estimate the fleet size in a flexible manufacturing system with alterna-
tive part routing. The model does not consider the timing of transportation requirement and
empty vehicle travel. Mahadevan and Narendran (1993) extend their previous work by addi-
tionally considering limited buffer capacity and central buffer. Vis, de Koster, Roodbergen,
and Peeters (2001) present an algorithm to determine the necessary number of AGVs at
an automated container terminal. A network flow based model and a polynomial time al-
gorithm are developed to solve the problem in which containers are available for transport
at known time instants. Koo, Lee, and Jang (2004) present a fleet management procedure
in a container transportation system. The two-phase procedure is aimed at simultaneously
finding the minimum fleet size and travel route for each vehicle to satisfy all the trans-
portation requirements within a planning horizon. In phase one, an optimization model is
developed to obtain a fleet planning with minimum vehicle travel time and to provide a lower
bound on the fleet size, and in phase two, a tabu search procedure is used to construct a
vehicle routing with the least number of vehicles. In the deterministic systems, the number
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of vehicles required is estimated without consideration of the waiting time for delivery
requests.

Some research works provide stochastic models for fleet sizing. Tanchoco, Egbelu, and
Taghaboni (1987) model a transportation system as a closed queueing network to analyze
the performance of vehicles and determine a fleet size. They use CAN-Q (computerized
analysis of network of queues) developed by Solberg (1979) to handle stochastic features.
The model assumes Poisson arrivals of AGV requests, exponential loaded travel time be-
tween two locations, first-call-first-served dispatching rule, and no empty travel time. An
iterative sequential search procedure is used in determining the economic fleet size: the
number of vehicles is increased until no significant improvements in system performance
(machine utilization, throughput rate, and flow time) are observed. Through simulation stud-
ies, they found that CAN-Q underestimates the number of vehicles required. They point
out that the underestimation occurs because CAN-Q assumes a zero travel time for empty
vehicle movements. Ozden (1988) conducts a simulation study to investigate the effect of
several key factors related to AGVs such as traffic pattern, the number of vehicles, carrying
capacity of each AGV, and input/output queue capacity of machines on the overall per-
formance of a flexible manufacturing system. Bozer, Cho, and Shrinivasan (1994) present
a queueing model to estimate the expected waiting time for delivery requests that occur
in a manufacturing system with one vehicle, under the assumption that empty vehicles are
dispatched according to a modified FCFS (first-come-first-served) policy. Kobza, Shen, and
Reasor (1998) present a discrete-time Markov chain model to find moments and cumulative
probabilities of the empty vehicle travel time. They ignore the vehicle-initiated dispatching
condition and only consider two workcenter-initiated dispatching rules: the nearest vehicle
selection rule and farthest vehicle selection rule. Since the model assumes that vehicles are
always available when a load delivery request is, it tends to under-estimate empty travel time,
especially when vehicles are heavily loaded. Under the same material handling environ-
ment as in Kobza et al. (1998) and Shen and Kobza (1998) provide a dispatching-rule-based
algorithm (DRBA) to determine the minimum number of vehicles in an AGV system. The
DRBA consists of three steps. Step one finds an upper bound for the required number of
vehicles by assuming that the empty vehicle travel time is estimated to be twice the loaded
travel time. This upper bound is used in the second step with a queueing model to determine
the probability that a load must wait. If the probability is smaller than the specified value,
the algorithm decreases the number of vehicles by one and repeats this step. Step three
calculates the expected load waiting time by using an M/G/M queueing model. The DRBA
considers only the workcenter-initiated dispatching conditions so the waiting time for de-
livery is underestimated. They argue that the DRBA can be used as a lower bound on the
expected load waiting time. Chevalier, Pochet, and Talbot (2002) address a design problem
for a two-station AGV system. The AGV system consists of a number of vehicles trans-
porting products between two stations (i.e., workstation and warehouse). They propose a
combined procedure to determine the dispatching rules and the minimal number of vehicles
needed to guarantee certain product mean waiting time. Reorder point inventory policy is
applied to determine the dispatching rules, while queueing theory and stochastic processes
are used to estimate the minimum number of vehicles needed to guarantee predetermined
product mean waiting time.
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The stochastic delivery problems are likely to be more common in the future due to the
advances in information and communication technologies (Psaraftis, 1995). The distinctive
characteristics of this paper are that the stochastic aspect of the system and different AGV
dispatching policies are take into account. While most stochastic models assume first-
come-first-served or random vehicle selection rules for the selection of an empty vehicle,
this model considers additional rules such as the nearest vehicle selection rule, which is the
most popular among all vehicle selection rules. The fleet sizing model in this paper can be
used for both highly and lightly loaded AGV systems, unlike the work of Kobza, Shen, and
Reasor (1998). Different from the work of Chevalier et al. (2002) where only two stations
are considered, this paper deals with an AGV system with multiple pickup and delivery
stations. The assumptions made in this paper are as follows:

1. Travel time between pickup and delivery stations is unique and deterministic.
2. Average delivery request rates between locations are known. However, the exact time

between delivery requests is known only probabilistically.
3. If there is no delivery request waiting for a vehicle, the vehicle stays at its current position

waiting for the next request.
4. One vehicle can serve only one delivery request at a time.
5. If there are multiple idle vehicles at the time of a delivery request, one empty vehicle

is selected by a predefined vehicle dispatching policy. If multiple delivery requests are
waiting for an idle vehicle, the requests are serviced by a first-come-first-served basis.

Note that the times that an AGV travels for different delivery requests are different from
each other because the source, destination, and the current location of AGVs for delivery
requests are given randomly. In addition, the delivery request is issued at random points of
time, and the AGV system is modeled in a stochastic way in the research.

3. Fleet sizing

This section introduces an approximated stochastic modeling of an AGV system for fleet
sizing. First, means and variances of empty travel time and loaded travel time are estimated,
and then the expected part waiting time for delivery service is estimated. The following
notation is used in the model.

n: number of pick-up/drop-off locations
m: number of vehicles
ρ: vehicle utilization (= total AGV travel time/total vehicle time available)
fi j : delivery request rate from location i to location j
ti j : vehicle travel time from location i to location j
lu: sum of loading and unloading time
F : delivery request rate between all locations (F = ∑n

i=1

∑n
j=1 fi j )
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3.1. Loaded travel time

Given transportation requirements and travel times between all pairs of locations, the mean
and variance of loaded travel time including loading and unloading time (tl) are calculated
as follows:

E(tl) =
n∑

i=1

[
n∑

j=1

{
( fi j/F)(ti j + lu)

}
]

. (1)

V (tl) =
n∑

i=1

[
n∑

j=1

{
( fi j/F)(ti j + lu)2

}
]

− E2(tl). (2)

The expected value of tl is a weighted average of the possible values that tl can take on,
each value being weighted by the possibility that tl assumes that value. Equations (1) and
(2) are independent of the empty vehicle selection rules to be discussed below.

3.2. Empty vehicle travel time

To keep the model manageable, let us assume that the probabilities for vehicles to be idle
are mutually stochastically independent. (The effect of this assumption is examined in
Section 5.) Then the number of idle vehicles, Z , at the time of a delivery request follows a
binomial distribution,

b(m, 1 − ρ), i.e., P(z) = Pr (Z = z) = mCz(1 − ρ)zρm−z, where mCz = m!

(m − z)!z!
.

Empty vehicle travel time depends on the locations of delivery requests and the empty
vehicles assigned to the requests. If there are no idle vehicles at the time of delivery requests
(case I), the request joins a queue for delivery service. This case happens with probability
ρm , or P(0). In this case, when a vehicle becomes idle, it takes a request from the queue
based on first-call-first-served policy. If there is at least one idle vehicle at the time of a
delivery request (case II), an idle vehicle is assigned to it based on an empty vehicle selection
rule. The probability that a delivery request sees at least one idle vehicle is (1 − ρm), or∑m

z=1 P(z).
Now, we estimate empty travel time of vehicles under various empty vehicle selection

rules: random vehicle selection (RV), longest idle vehicle selection (LIV), least utilized
vehicle selection (LUV), nearest vehicle selection (NV), and farthest vehicle selection
(FV).

3.2.1. Random vehicle selection. Under this rule, the probability that a vehicle completes
a delivery service at location k and is assigned to a delivery request from location i is a
product of (1) the proportion of the delivery requirements to location k( f dk) and (2) the
proportion of delivery requirements from location i( f si ). Let te be the empty travel time.
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Then the mean and variance of te are as follows:

E(te) =
n∑

i=1

[

f si

n∑

k=1

( f dktki )

]

. (3)

V (te) =
n∑

i=1

[

f si

n∑

k=1

(
f dkt2

ki

)
]

− E2(te), (4)

where

f dk = 1

F

n∑

i=1

fik, and f si = 1

F

n∑

j=1

fi j .

Equations (3) and (4) are valid for both cases I and II.

3.2.2. Longest idle vehicle selection and least utilized vehicle selection. In this case, ve-
hicles are selected by vehicle idleness or vehicle utilization, not by location-related factors
such as distances between delivery request locations and idle vehicles. Since the vehicle se-
lection criteria are not related to the locations of delivery request and idle vehicles, the results
from the random vehicle selection, equations (3) and (4), can be also used to estimate empty
vehicle travel time for these cases. This assumption is evaluated by simulation in Section 5.

3.2.3. Nearest vehicle selection. When there are multiple idle vehicles, this rule assigns an
idle vehicle closest to the delivery request station. This popular rule reduces vehicles’ empty
travel time. Let us suppose that there is a delivery request from location i to somewhere
else. We arrange all loading and unloading locations in the system in ascending order of
distance from location i as shown in Figure 3. Let S(k, i) be the set of all locations that are
closer to location i than location k is. Under the nearest vehicle selection rule, in order for
an idle vehicle at location k to be selected for the request from location i , no idle vehicles
should be at S(k, i) and at least one idle vehicle should be at location k. Now, let q(k, i) be
the probability that an idle vehicle at location k is selected (that is, the nearest idle vehicle
is at location k) when a delivery request is issued at location i . Then the probability that no
idle vehicles are located at S(k, i) is 1 − ∑

r∈S(k,i) q(r, i).
Now, let us first consider the cases in which we have z idle vehicles (z > 0) at the time of

delivery request (case II). Let us assume that the idle vehicles and delivery requests see the

Figure 3. Arrangement of location in ascending order of distance from location i .
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time average of the system, i.e., the PASTA (Poisson Arrivals See Time Averages) property
(Wolff, 1982; Melamed and Whitt, 1990). Then we can approximate the probability that
no idle vehicle is located at location k to be (1 − f dk)z . This approximation is true for
random vehicle selection and is approximately true for other empty vehicle selection rules
if the vehicles are utilized relatively evenly. Given that no idle vehicles are at S(k, i), the
probability that at least one idle vehicle is at location k, A(k, i), is as follows:

A(k, i) = 1 −
(

1 − f dk
∑

r /∈S(k,i) f dr

)z

. i, k = 1, 2, . . . , n

For all z > 0 and for all pairs of locations i and k, we calculate q(k, i) in ascending order
of the distance from location i to location k as follows:

q(k, i) =
[

1 −
∑

r∈S(k,i)

q(r, i)

]

A(k, i). i, k = 1, 2, . . . , n

In case of z > 0, the probability that a delivery request is issued from location i and is
satisfied by an idle vehicle at location k is f si × q(k, i). On the other hand, if we have no
idle vehicle at the time of delivery request (case I), then the probability that a vehicle at
location k is assigned to the request is the same as the probability that the first idle vehicle
is from location k. With the assumption of the PASTA property, the probability is f dk .

Now we have the mean and variance of the empty vehicle travel time (te) under the nearest
vehicle selection averaging cases I and II:

E(te) =
n∑

z=1

[

P(z)
m∑

i=1

[

f si

n∑

k=1

{q(k, i)tki }
]]

+ P(0)
n∑

i=1

[

f si

n∑

k=1

( f dktki )

]

. (5)

V (te) =
n∑

z=1

[

P(z)
m∑

i=1

[

f si

n∑

k=1

{q(k, i)t2
ki }

]]

+ P(0)
n∑

i=1

[

f si

n∑

k=1

( f dkt2
ki )

]

− E2(te). (6)

The empty vehicle travel times in equations (5) and (6) depend on P(z), which is affected
by the vehicle utilization, ρ, which in turn depends on the empty vehicle travel time.
So we need to calculate the empty travel time iteratively. We first calculate the vehicle
utilization using the empty vehicle travel time under the random vehicle selection rule,
and use this utilization to calculate the empty vehicle travel time for the nearest vehicle
selection case. With this new empty travel time, the vehicle utilization is recalculated. This
iterative procedure converges because the vehicle utilization and empty vehicle travel time
are bounded below and the values decrease after each iteration. This procedure is iterated
until a very small change of vehicle utilization is observed over iterations. The procedure
is summarized in Figure 4.
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Figure 4. Calculation procedure for empty travel time under the nearest vehicle selection rule.

3.2.4. Farthest vehicle selection. Although this rule is not popular, the empty travel time
for this selection rule can be obtained by a similar procedure as that of the nearest vehicle
selection rule by redefining S(k, i) as the set of locations that are farther from location i
than location k is, and by recalculating q(k, i) with the new definition of S(k, i). Using
equations (5) and (6) and a similar iterative procedure as that of nearest vehicle selection,
the first and second moments of the empty travel time can be calculated for farthest vehicle
selection.

3.3. Total vehicle travel time

Assuming that the loaded travel time and empty travel time are independent of each other,
we obtain the mean and variance of total vehicle travel time (tv) per vehicle request as
follows:

E(tv) = E(tl) + E(te), (7)

V (tv) = V (tl) + V (te). (8)
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3.4. Assignment waiting time

If there are idle vehicles at the time of service request, an idle vehicle is assigned to the
request; otherwise, the request has to wait. By using the mean and variance of vehicle travel
times obtained by equations (7) and (8), the assignment waiting time can be estimated based
on queueing theory.

To estimate the assignment waiting time for general inter-arrival time (or inter-delivery-
request time) and general service time (or vehicle travel time), the formula presented by
Kimura (1991) for a G/G/m queueing system can be used. According to Kimura, the
assignment waiting time (Wq ) is:

Wq = Wo
(
c2

a + c2
v

)
gw/2, (9)

where

g =






Exp
[−2(1 − ρ)

(
1 − c2

a

)2

3ρ
(
c2

a + c2
s

)
]
, if ca < 1;

1, if ca ≥ 1.

w =






[
c2

a + c2
v − 1 + (

1 − c2
a

)
/(1 − 4γ ) + (

1 − c2
v

)
/(1 + γ )

]−1
,

if ca < 1;
[
2
(
c2

a + c2
v − 1

) + (
1 − c2

a

)
(1 − 4γ ) + (

1 − c2
v

)
(1 + γ )

]/(
c2

a + c2
v

)
,

if ca ≥ 1.

γ = min[(1 − ρ)(m − 1)(
√

4 + 5m − 2)/(16mρ), 0.25(1 − 10−6)].

Here, W0 is the waiting time for an exponential inter-arrival time and exponential service
time with m servers (M/M/m system), and is an exact value. Also, ca and cv are coefficients
of variation of inter-arrival time and service time, respectively, e.g., c2

v = V (tv)/E2(tv). Here
we assume that ca is known or can be estimated by experience.

3.5. Determination of the number of vehicles

Now we determine the fleet size so as not to have excessively long part waiting time. The
initial number of vehicles of the decision procedure can be determined by a static analysis:
the initial number can be (Tl/Ta)+, where Tl is total time required by vehicles for loaded
travel, Ta is total effective time a vehicle is available, and (x)+ is the smallest integer greater
than or equal to x . Based on this initial number of vehicles, expected part waiting time is
calculated by adding assignment waiting time and empty travel time. If this is larger than a
certain value, the same procedure is repeated with one more vehicle until the part waiting
time gets smaller than the desired value. Figure 2 shows the procedure.
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Table 1. Delivery request rates between locations during 4800 minutes ( fi j ).

Location 1 2 3 4 5 6 7 8 9 Pickup rate fsi

1 0 15 18 0 50 28 0 65 0 176 0.11

2 0 0 20 30 0 26 0 37 0 113 0.07

3 0 52 0 0 25 52 72 0 0 201 0.13

4 65 0 72 0 30 74 16 0 0 257 0.16

5 0 0 25 54 0 27 18 0 22 146 0.09

6 0 65 0 12 52 0 32 0 54 215 0.14

7 39 0 48 0 0 0 0 41 63 191 0.12

8 0 38 12 37 15 0 0 0 0 102 0.07

9 75 25 0 22 0 44 0 0 0 166 0.11

Drop-off Rate 179 195 195 155 172 251 138 143 139 1567

f d j 0.11 0.12 0.12 0.10 0.11 0.16 0.09 0.09 0.09 1.00

4. Numerical example

Tables 1 and 2 are request rates for delivery and travel time between locations presented
in Mahadevan and Narendran (1993). The system has nine pick-up and drop-off locations
and the total number of delivery requests (F) during a given time horizon (4,800 minutes)
is 1567.

From equation (1), the average loaded travel time is obtained by dividing total loaded
travel time by the number of deliveries: E(tl) = 15740/1567 = 10.045 minutes. The
variance is V (tl) = 172103/1567 − 10.0452 = 8.921 minutes2. These values are the same
for all empty vehicle selection rules and are not dependent on the number of vehicles in the
system.

The mean and variance of empty travel time under random vehicle selection, longest idle
vehicle selection, and least utilized vehicle selection are obtained by equations (3) and (4):

Table 2. Vehicle travel time between locations (minutes).

Location 1 2 3 4 5 6 7 8 9

1 0 4 8 10 12 8 8 6 6

2 8 0 4 6 8 8 8 6 6

3 10 8 0 2 8 8 12 6 10

4 10 6 6 0 6 6 10 4 8

5 12 8 8 2 0 8 12 6 10

6 8 8 8 6 4 0 4 6 6

7 4 8 12 14 16 12 0 10 2

8 6 6 6 8 6 6 6 0 4

9 2 6 10 12 14 10 10 8 0
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E(te) = 6.739 minutes and V (te) = 13.241 minutes2. The mean and variance of empty
travel time under the nearest vehicle selection rule are obtained by equations (5) and (6),
which need an iterative procedure. The vehicle utilization obtained under random vehicle
selection is used as a starting value. If we assume seven vehicles in the system, the mean
empty travel time converges to 6.739 > 5.621 > 5.221 > 5.079 > 5.028 > 5.010 >

5.004 > 5.002 > 5.001 minutes. (The corresponding variance during the procedure also
gets smaller, from 13.241 to 12.559 minutes2.)

The mean and variance of vehicle travel time can be calculated by equations (7) and (8).
The values for random vehicle selection are E(tv) = 10.045+6.739 = 16.784 minutes and
V (tv) = 8.921 + 13.241 = 22.163 minutes2, and the values for nearest vehicle selection
are E(tv) = 10.045 + 5.001 = 15.046 minutes and V (tv) = 8.921 + 12.559 = 21.480
minutes2. The vehicle utilization is 78.3% [= 16.784 ∗ 1567/(7 ∗ 4800)] under the random
vehicle selection rule and is 70.2% under the nearest vehicle selection rule.

The assignment waiting time can be estimated by equation (9). Let us assume that the
service request is Poisson, i.e., c2

a = 1. (In most cases in production, c2
a is expected to be

less than unity, and this assumption gives a conservative result in determining fleet size.)
Under the random vehicle selection rule, c2

v = V (tv)/E2(tv) = 22.163/16.7842 = 0.079,
the expected assignment waiting time is 0.278 minutes, and the expected part waiting
time is 6.739 + 0.278 = 7.017 minutes. Under the nearest vehicle selection rule, c2

v =
V (tv)/E2(tv) = 21.480/15.0462 = 0.095, the expected assignment waiting time is 0.184
minutes, and the expected part waiting time is 5.001 + 0.184 = 5.185 minutes. If the
expected part waiting time is larger than a predetermined value, this procedure is repeated
with one larger number of vehicles until the part waiting time becomes smaller than the
predetermined value.

5. Performance evaluation

Simulation is performed to test the performance of the proposed model by using Visual
SLAM and AweSim based on the information given in Tables 1 and 2. Simulation time is
2500 hours including 500 hours of warm-up period. Table 3 compares the estimated values
of the vehicle times obtained by the new model and simulation. The number of vehicles in
this simulation is seven and the value of c2

a is unity.
Table 3 shows that the random vehicle (RV) selection rule overestimates the part waiting

time by 0.9% and underestimates vehicle utilization by 0.5%, while nearest vehicle (NV)
selection rule overestimates part waiting time by 10.4% and underestimates vehicle utiliza-
tion by 1.7%. The simulation results for random vehicle (RV), least utilized vehicle (LUV),
and longest idle vehicle (LIV) selection cases show that the same model can be used for
these cases. These three rules provide almost the same results in terms of empty vehicle
travel time, assignment waiting time, part waiting time, and vehicle utilization. The results
also positively confirm the minimal effect of the assumption on the independency of idle
vehicles introduced in Section 3.2.

Since the estimation for part waiting time under NV selection gives larger relative estima-
tion error than the other selection rules, the accuracy of the new model has been compared
with that of the other existing models. Figure 5 compares the results from simulation and



224 KOO, JANG, AND SUH

Table 3. Accuracy of the new model (seven vehicle cases).

Empty travel Assignment Part waiting Vehicle

Vehicle dispatching rule Model time waiting time time utilization (%)

Random vehicle New model 6.739 3.111 9.852 78.3

Simulation 6.737 3.024 9.761 78.7

Error (%) 0.0 2.9 0.9 −0.5

Least utilized vehicle New model 6.739 3.111 9.852 78.3

Simulation 6.735 2.827 9.562 78.3

Error (%) 0.1 10.0 3.0 0.0

Longest idle vehicle New model 6.739 3.111 9.852 78.3

Simulation 6.743 2.855 9.598 78.3

Error (%) −0.1 9.0 2.6 0.0

Nearest vehicle New model 5.001 1.516 6.517 70.2

Simulation 5.252 2.025 7.277 71.4

Error (%) −4.8 −25.1 10.4 −1.7

Farthest vehicle New model 7.548 3.488 11.036 82.0

Simulation 7.457 3.288 10.745 81.5

Error (%) 1.2 6.1 2.7 0.6

Figure 5. Estimation for empty vehicle travel time under the nearest vehicle selection rule.

estimates of several estimation models for empty vehicle travel time: (1) a mathematical
model by Rajotia et al. (1998), (2) a Markov Chain model by Kobza et al. (1998), (3) a prob-
abilistic model by Egbelu (1987), (4) an optimization model by Maxwell and Muckstadt
(1982), and the new model proposed in this paper. In the literature, only Kobza et al. (1998)
explicitly consider the nearest vehicle selection rule. Figure 5 shows that the new model
keeps good track of the simulation results compared with other models. Egbelu’s model
shows high accuracy only when the system is heavily loaded. Maxwell and Muckstadt’s
model provides a lower bound of empty vehicle travel time.
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Figure 6. Estimation for part waiting time for various fleet sizes (LIV: longest idle vehicle selection rule, NV:
nearest idle selection rule).

Figure 6 shows the estimation accuracy for part waiting time as the number of vehicles
changes under two vehicle dispatching rules, longest idle vehicle (LIV) selection rule and
nearest vehicle (NV) selection rule. As seen in Table 3, since the LIV selection rule provides
almost the same part waiting time as the RV and LUV selection rules, only LIV and NV
selection rules are examined. The figure positively confirms the estimation accuracy of
the new model for different number of AGVs. In this sample system, to keep the average
part waiting time less than nine minutes, we need to have eight vehicles under longest
idle vehicle selection rule and seven vehicles under nearest vehicle selection rule. The part
waiting time cannot be less than the empty travel time (i.e., 6.739 minutes) under random
vehicle selection regardless of the number of vehicles; however, the part waiting time can be
less than five minutes with eight vehicles in the nearest vehicle selection case. Figure 6 also
shows that the impact of the vehicle utilization on the accuracy of the model is minimal:
The vehicle utilization for the system with 6 AGVs is 88.7% under the NV selection rule
and 91.5% under the LIV selection rule, while the vehicle utilization for the system with 9
AGVs is 49.6% under the NV selection rule and 60.9% under the LIV selection rule. The
figure shows that the proposed model provides good estimation regardless of the vehicle
utilization levels.

The proposed model also can be used for non-Poisson arrivals of the delivery requests.
Simulation experiments have been performed with four different inter-arrival time distri-
butions of k-Erlang, k = 1, 2, 4, 8 for a system with seven AGVs under two vehicle
dispatching rules: the longest idle vehicle (LIV) selection rule and nearest vehicle (NV) se-
lection rule. In k-Erlang distribution, the squared coefficient of variation (c2

a) is 1/k. Figure 7
compares the estimated part waiting time of the proposed model with that from simulation.
The figure shows that the new model gives good estimation even when the arrivals of the
delivery requests have small coefficient of variance up to 1/8.

This model assumes that the travel time between pickup and delivery stations is fixed
and known. In reality, since the AGVs on their routes may encounter traffic congestion and
other blockage, the travel times between two places are not usually deterministic. A set of
simulations was performed to test the impact of the stochastic nature of travel times, where
the travel time between two locations is assumed to follow such distributions as uniform
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Figure 7. Estimation for part waiting time for various inter-arrival time distributions sizes (LIV: longest idle
vehicle selection rule, NV: nearest idle selection rule).

distribution, triangular distribution, and normal distribution. The distributions have the same
mean as what is given in Table 2. The range of the uniform distribution is from 80% of
the mean to 120% of the mean. In the triangular distribution, the mode is the mean and the
range is from 80% of the mean to 120% of the mean. In case of the normal distribution, the
standard deviation is 10% of the mean (cv2 = 0.81). Negative values from the distribution
are truncated. Table 4 shows the estimation errors of the new model for each probabilistic
travel time case. It is seen that the empty travel time is not sensitive to the travel time
distribution. However, assignment waiting time is affected by the travel time distribution.

Table 4. Accuracy of the new model (probabilistic vehicle travel time cases).

Simulation results
Vehicle

dispatching rule Time Estimation Fixed Uniform Triangular Normal

Longest Empty travel 6.739

idle vehicle (%error)

6.735

(0.06)

6.755

(−0.24)

6.740

(−0.01)

6.773

(−0.50)

Assgn. waiting 3.111

(%error)

2.827

(10.05)

2.814

(10.55)

2.994

(3.91)

3.076

(1.14)

Part waiting 9.852

(%error)

9.562

(3.03)

9.569

(2.96)

9.734

(1.21)

9.849

(0.03)

Nearest Empty travel 5.001

vehicle (%error)

5.252

(−4.78)

5.205

(−3.92)

5.252

(−4.78)

5.221

(−4.21)

Assgn. waiting 1.516

(%error)

2.025

(−25.14)

1.981

(−23.47)

2.059

(−26.37)

2.233

(−32.11)

Part waiting 6.517

(%error)

7.277

(−10.44)

7.186

(−9.31)

7.311

(−10.86)

7.454

(−12.57)
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For example, the travel time with normal distribution gives an 8.8% (2.827 → 3.076)
increase in assignment travel time compared with the case of fixed travel time under the
longest idle vehicle selection rule, and 10.3% (2.025 → 2.233) increase under the nearest
vehicle selection rule. For this reason, close attention should be made when travel times
between two locations are not deterministic.

6. Conclusions

This paper presents a fleet sizing model where part waiting time is estimated for various
vehicle dispatching rules based on a queueing approximation, which is then used to de-
termine the proper fleet size. Simulation experiments under various conditions positively
confirmed the accuracy of the new model. The new model retains its estimation accuracy
for different numbers of AGVs in the system and over a wide range of the coefficient of
variance of inter-service request time. However, when the travel time between pick-up and
drop-off locations is probabilistic, the estimation accuracy decreases.

The proposed model may be also used for such systems as the transportation systems
of people in low-density areas, transportation systems of handicapped or elderly people,
parcel pick-up and delivery systems, and container transportation service systems as well
as the AGV systems considered in this paper.

Some modeling assumptions are made in this paper to make the problem manageable,
including deterministic travel time between two locations, PASTA property in delivery
requests, and stochastic independency of vehicle idleness. Although the new model sig-
nificantly increases the accuracy of the estimation for vehicle usage and part waiting time
compared with existing models, more research is needed on these assumptions to further
increase the estimation accuracy. When more time and input information is available, the
fleet size obtained from this analytical model could be used as a starting value for more
detailed analysis such as simulation.
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