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Abstract Early mild stress (EMS) is like prepar-
edness and might help fish deal with stress appro-
priately. This study investigated how EMS and pho-
toperiod changes can impact growth, haematology, 
blood biochemistry, immunological response, anti-
oxidant system, liver enzymes, and stress response of 
oscar (Astronotus ocellatus; 7.29 ± 0.96 g) before and 
after acute confinement stress (AC stress). Ten exper-
imental treatments included five different photoperi-
ods 8L16D (08:16 light to dark), 12L12D (12:12 light 

to dark), 16L8D (16:08 light to dark), 20L4D (20:04 
light to dark), and 24L0D (24:00 light to dark), and 
these five photoperiod schedules were conducted in 
an EMS condition. After 9 weeks, no significant dif-
ferences were found in growth parameters, survival 
rate, and body composition. At the end of the experi-
ment and after AC stress, fish farmed in 24 light 
hours had the lowest haematocrit, white blood cells, 
total protein, blood performance, lysozyme, immuno-
globulin M, complement C3, superoxide dismutase, 
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and catalase. Fish that experienced EMS had sig-
nificantly higher survival rates than those farmed in 
normal conditions (80.67% vs 61.33%). In conclu-
sion, considering all measured parameters, 8-h light 
can be suggested as an optimum photoperiod for this 
fish species. Under 24L0D (no EMS) conditions, 
there were many negative effects apparent. In addi-
tion, a positive effect of EMS was evident in terms 
of survival after AC stress. AC stress decreased some 
health parameters under 24-h light treatment, while 
these results were not observed in EMS-exposed fish. 
Therefore, the EMS schedule can be a useful tool in 
preventing the negative effects of stress.

Keywords Antioxidant response · Blood 
performance · Blood biochemistry · Stress 
physiology · Continuous light

Introduction

Photoperiod has been known since the past century 
as an external factor that affects the growth, repro-
duction, and health of fish (Harrington Jr 1956). 
Therefore, manipulation of photoperiod has been a 
common practice in modern farming systems, like 
indoor systems and aquariums. Aquatic animal spe-
cies responded to a change of photoperiod differ-
ently. Photoperiod manipulation has been success-
fully applied to improve the growth of several finfish 
species. For example, red sea bream (Pagrus major) 
(Biswas et  al. 2006a, b), rainbow trout (Oncorhyn-
chus mykiss) (Valenzuela et  al. 2006), tilapia (Oreo-
chromis niloticus) (Biswas et  al. 2004), gibel carp 
(Carassius auratus) (Wei et  al. 2019), coho salmon 
(Oncorhynchus kisutch) (Fang et al. 2019), zebrafish 
(Danio rerio) (Abdollahpour et al. 2020), and beluga 
(Huso huso) (Bani et al. 2009) grew well under 24-h 
continuous light. However, other fish species expe-
rienced stress, aggressiveness, and reduced growth 
with manipulation of photoperiod, including but 
not limited to African catfish (Clarias gariepinus) 
(Almazán-Rueda et  al. 2005) with increased light, 
blunt snout bream (Megalobrama amblycephala) 
(Tian et  al. 2019), and golden mahseer (Tor puti-
tora) (Akhtar et  al. 2020) with 8L:16D. The effect 
of photoperiod in parameters such as growth (Tian 
et  al. 2019; Abdollahpour et  al. 2020; Akhtar et  al. 
2020), metabolic rate (Hvas 2022), haematological 

parameters, liver and antioxidant enzymes (Biswas 
et  al. 2004; Valenzuela et  al. 2006; Kitagawa et  al. 
2015; Malinovskyi et  al. 2022), maturation (Hansen 
et  al. 1992), and immune system (Ángeles Esteban 
et al. 2006) has been widely investigated.

The market size of ornamental fish species is 
trending upward, and this sector continues to play a 
central role in the aquaculture industry. This market 
is predicted to expand at a compound annual growth 
rate of 8.5% from 2022 to 2030 and to reach more 
than USD 11 billion by 2030 (Ghosi Mobaraki et al. 
2020). However, the increasing production trend 
requires more stock from hatcheries and improve-
ments to productivity. Oscars are popular ornamental 
species of freshwater aquariums known for their large 
size and sociable personalities. Their intensive pro-
duction, which is common in ornamental aquaculture, 
can potentially result in stress (Martos-Sitcha et  al. 
2020).

Stress causes cellular instability and imbalance 
in homeostasis (Adam et  al. 2011) and any factor 
(both internal and external) that disturbs homeosta-
sis can be named stress. Photoperiod can affect the 
stress response of fish in different ways. Melatonin is 
responsible for night and day patterns, and as a result, 
changes in this hormone drive many physiological 
alterations and have key roles in the redistribution 
of energy to maximise fitness and survival (Walton 
et  al. 2011). The molecular and biological functions 
and related pathways to melatonin metabolism were 
reviewed elsewhere (Reiter 2003). Melatonin has 
direct interactions with the immune and antioxidant 
systems, and therefore, photoperiods, which have 
a direct impact on melatonin, can directly affect the 
growth, immune, and antioxidant systems of fish.

Early mild stress can occur positively in early-life 
stages, which means that mild chronic stress in early 
life can potentially shape positive phenotypes later in 
life. EMS is defined as a situation whereby animals do 
not die or suffer significantly from chronic stress, and 
they have a short-term response. In aquatic species, 
studies related to EMS, which can be categorised as 
eustress, are limited to our previous work and other 
investigations that lower hypothalamus catecholamin-
ergic; brainstem serotonergic responses to stress and 
cortisol responsiveness were reported (Auperin and 
Geslin 2008; Madaro et  al. 2015; Pederzoli & Mola 
2016; Vindas et al. 2016). Further, higher brain cat-
echolaminergic signalling and neuronal activity were 
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reported in fish (Vindas et al. 2018). In our works, the 
interaction of EMS with fish meal replacement (Zare 
et al. 2023a), temperature (Esmaeili et al. 2024), and 
different levels of lipid (Esmaeili et al. 2022) and pro-
tein (Zare et  al. 2024) was tested. The relationship 
between the onset of EMS and final acute confine-
ment stress (AC stress) was also investigated (Zare 
et  al. 2023b). The highest survival rate after final 
acute stress in oscar (Astronotus ocellatus) exposed 
to 2 weeks of EMS out of 10 weeks of the trial was 
observed (Esmaeili et al. 2022; Zare et al. 2023a, b). 
These results indicated that 2 weeks of EMS had the 
highest survival rate in oscar regardless of lipid or 
protein contents in diets. To the best of our knowl-
edge, no study has investigated the effect of photo-
period on the physiology of oscar species. Further, 
no research tested how EMS can interact with pho-
toperiod in animals and affect survival rate after an 
acute stress event. Therefore, in follow-up research 
with the same experimental conditions, 2 out of 10 
weeks of scheduled EMS stress and five photoperiods 
were considered to see their effects on growth perfor-
mance, haematology, blood biochemistry, immune 
response, antioxidant activities, stress response, and 
liver enzymes of juvenile oscar. In addition, a final 
AC stress event was carried out for the assessment of 
fish survival rate and biomarkers.

Materials and methods

Animal ethics, fish, and experimental conditions

A National Animal Care and Committee approved 
all experimental protocols (281–1385) (Safavi et  al. 
2019; Tazikeh et  al. 2020; Ahmadi-Noorbakhsh 
et  al. 2021). For this experiment, 621 oscars (ini-
tial weight, 7.29 ± 0.96 g) were obtained from the 
Abzian Center (Mahallat, Markazi, Iran). The accli-
matisation steps to the trial condition were for 2 
weeks and fish was fed with a commercial diet (500 
and 150 g/kg crude protein and lipid, respectively). 
Twenty-two fish were randomly distributed into 30 
rectangular glass tanks (100 L), with three replicate 
aquaria per experimental treatment. The fish were 
provided with their respective diets three times per 
day (09:00 h, 14:00 h, and 19:00 h) for 10 weeks to 
apparent satiety. For the 8L16D group, we fed them 
twice per day (09:00 h, 14:00 h) to apparent satiety. Ta
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The ten experimental treatments were 8L16D (08:16 
light to dark), 12L12D (12:12 light to dark), 16L8D 
(16:08 light to dark), 20L4D (20:04 light to dark), 
and 24L0D (24:00 light to dark), and fish in these five 
photoperiods were farmed with or without an EMS 
schedule (Table  1). To remove faeces and debris, 
approximately 25% of the water in each tank was 
exchanged daily with dechlorinated water during the 
experiment. The water quality parameters (dissolved 
oxygen (6.8 ± 0.8 mg/L), temperature (24.7 ± 0.9 °C), 
ammonia (0.47 ± 0.1 mg/L), nitrite (0.027 ± 0.005 
mg/L), nitrate (22.7 ± 2.0 mg/L), pH (7.3 ± 0.9)) were 
measured regularly and kept in standard levels. Water 
quality was maintained by aeration with compressed 
air and mechanical filtration, which was detailed in 
our earlier experiments from this project (Esmaeili 
et al. 2022; Zare et al. 2023a).

Diet formulation and experimental design

An optimal isonitrogenous (450 crude protein/kg 
feed and 180 g/kg fish meal) and isolipidic (180 g/kg 
lipid) (Zare et al. 2024) diet strategy was used for this 
experiment. The same diet preparation and formula-
tion processes were previously reported (Hossein-
pour Aghaei et  al. 2018; Esmaeili et  al. 2022). Dur-
ing the 9-week feeding experiment, two scheduled 
EMS stress events were conducted in weeks 2 and 8, 
on both Monday and Friday of that week (Table 1). 
This involved dragging an aquarium net around the 
tank for 5 min after a water exchange without actively 
chasing or removing any fish. This stress, for the first 
time, was applied in a previous study (Esmaeili et al. 
2022) and then others (Zare et al. 2023a, 2023b).

Sample collection and growth performance

Prior to final measurements (end of week 9), the fish 
were fasted for 24 h and then anaesthetised using clove 
oil stock solution (50 ppm) before removal from tanks 
(Esmaeili et  al. 2017). Standard methods and rela-
tionships were used to calculate weight gain, specific 
growth rate, feed conversion ratio (FCR), daily feed 
intake, hepatosomatic index (HSI), viscerosomatic 
index, and condition factor at the end of the experiment 
(Zaretabar et al. 2021). Further, four fish were chosen 
at random from each tank, and after collecting blood, 
their liver and viscera were sampled and weighed. The 
dissected fish were returned to a bag (minus the blood) 

and kept frozen until further analysis. The remaining 
fish were returned to their respective tanks for a further 
1-week period of feeding with no EMS event prior to 
the application of AC stress below.

Chemical analysis of diets and fish body composition

The proximate composition of the diets and whole 
body samples was measured by AOAC methods 
(AOAC 2000). Briefly, nitrogen (nitrogen × 6.25) was 
determined using the Kjeldahl method and an auto-
matic Kjeldahl system (Kjeltec Analyser unit 2300, 
Sweden). The Soxhlet extraction method was used 
to examine crude lipids (Soxtec 2050 FOSS Model, 
Switzerland). Moisture was determined gravimetri-
cally by oven drying samples at 105 °C oven for 12 h. 
The ash content was determined using a Nabertherm 
muffle furnace (Model K, Germany) at 550 °C for 4 h.

Blood collection and sample preparation

The serum from four fish from each tank was tested 
for haematology, immune response, blood biochemis-
try, antioxidants, and serum enzymes at the end of the 
experiment (week 9 and week 10). The blood samples 
were quickly collected (within 2 min) via venipunc-
ture of the caudal vein with an 18-G needle connected 
to a sterile 5-mL syringe. Aside from sampling blood 
with anticoagulant (EDTA) for haematology analysis, 
we sampled blood in tubes without anticoagulant for 
serum. Following that, blood was refrigerated for 2 h 
before serum was collected after centrifuging at 3000 
g at 4 °C for 2 min (Esmaeili et  al. 2017) and then 
stored at − 20 °C until further analyses.

Haematology profile

Red blood cells (RBCs) and white blood cells 
(WBCs) were counted in a Neubauer haemocytometer 
and the Neubauer chamber, respectively, as described 
earlier (Kenari et al. 2013; Esmaeili et al. 2022). Fur-
ther, the haemoglobin (Hb) and haematocrit (Ht) were 
determined by cyanmethaemoglobin and the micro-
haematocrit method (Řehulka et  al. 2004; Esmaeili 
et al. 2022). Mean corpuscular volume (MCV), mean 
corpuscular haemoglobin (MCH), mean corpuscu-
lar haemoglobin concentration (MCHC) (Wintrobe 
1929), and blood performance (BP) (Esmaeili 2021) 
were calculated according to the below formulas:
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Mean corpuscular volume (MCV) (fl) = (Ht∕(RBC 106∕mm3)) × 10,

Mean corpuscular haemoglobin (MCH) (pg) = Hb∕RBC106∕mm3 × 10,

MCHC = Hb∕Ht × 100,

Blood performance = Ln Hb(g∕dL) + Ln Ht(%) + Ln RBC(× 105∕mm3)

+ Ln WBC(× 103∕mm3) + Ln total protein (g∕L).

Blood biochemistry, antioxidant enzyme activities, 
serum enzymes, and cortisol

Plasma biochemical parameters, glucose, total pro-
tein (TP), albumin, globulin, high-density lipopro-
teins (HDL), low-density lipoproteins (LDL), cho-
lesterol, triglycerides, lactate, alkaline phosphatase 
(ALP), lactate dehydrogenase (LDH), aspartate 
transaminase (AST), and alanine aminotransferase 
(ALT), were analysed using commercial clinical 
investigation kits (Pars Azmoon Kit, Karaj, Iran). 
The antioxidant enzymes, including superoxide 
dismutase (SOD), catalase, glutathione peroxidase 
(GPx), and malondialdehyde (MDA), were meas-
ured using ELISA kits, according to the kit proto-
col (ZellBio, GmbH, Germany) which were used 
in earlier studies (Esmaeili et  al. 2022; Zare et  al. 
2023a, 2023b). Cortisol levels in serum were meas-
ured using fluorescence immunoassay (FIA) and a 
commercial kit (iCHROMA, South Korea) and the 
protocol provided with the kit. Linearity and paral-
lelism were tested using serial dilutions of samples 
(0, 25, 50, and 75%). An R2 of more than 90% was 
considered to be the threshold to pass the limit for 
the linearity test. For the parallelism test, the coef-
ficient of variation (% CV) between the slope of the 
standard curve and the samples was calculated (val-
ues of ≤ 20% passed the test). The recovery range of 
80–120% CV was considered threshold. Intra‐assay 
and intra‐assay precision thresholds were 20% CV.

Nonspecific immune parameters

To determine serum lysozyme, gram-positive bacte-
ria sensitive to the lysozyme enzyme method were 
used (Micrococcus lysodeikticus) (Clerton et  al. 
2001) as substrate. Alternative complement path-
way hemolytic activity (ACH50) was determined by 
haemolysis of rabbit RBCs (RaABC) (Amar et  al. 
2000). Serum immunoglobulin M, complement C3 
(C3), and complement C4 (C4) levels were meas-
ured by ELISA method using CUSABIO and MyBi-
oSource kit companies (CUSABIO-CSB-E12045Fh 
and CUSABIO, CSB-E09727s) based on the proto-
col available in the kit package. The complete meth-
ods for measuring these parameters were described 
in our previous study (Hosseini et  al. 2022). The 
qualitative and quantitative checks of data were 
done, as previously explained in the “Blood bio-
chemistry, antioxidant enzyme activities, serum 
enzymes, and cortisol” section.

Acute confinement stress (AC stress)

After the 10 weeks of the photoperiod and EMS 
experiment, oscars were exposed to AC stress based 
on our previous studies to test fish’s ability to tackle 
stressful situations (Asgari et  al. 2020; Esmaeili 
et al. 2022). After collecting samples at the end of 
week nine, ten fish per tank were biomass adjusted 
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with three tanks per treatment. Then, the fish were 
fed as usual for 1 week to recover from stress, and 
we applied AC stress at the end of week 10. The 
acute stress was a succession of netting all of the 
fish in each tank followed by a 30-s air exposure 
before being transferred to a plastic mesh bucket at 
a density of 120 g/L in their original tank for 5 h. 
Aeration was maintained to prevent oxygen deple-
tion and minimise any premature death as a result 
of the AC stress. Following the 5 h of confinement 
stress, blood sampling and serum extraction from 
fish that could survive were performed as previ-
ously described on three fish per tank (Esmaeili 
et  al. 2022). The survival rate of fish after 48 h in 
various treatments is shown in Table 2. We needed 
to test the fish’s ability and our hypothesis to deter-
mine whether fish that experienced EMS could 
tolerate AC stress at the end of the experiment bet-
ter or not. To do so, we had to design an AC stress 
severe enough to kill some fish.

Statistical analysis

This study used a completely randomised design with 
nine treatments and three replications. After testing the 
normality and homogeneity of data, two-way ANOVA 
was used to investigate the “photoperiod effect” and 
the “EMS effect”. When the P value of interaction 
was not significant, treatments were compared in dif-
ferent EMS groups and five photoperiod treatments 
in pooled data (Table  4). When the interaction was 
significant, the original data was unpacked, and treat-
ments for each EMS group and photoperiod level 
were compared (figures). Further, data were compared 
before and after AC stress to see which parameter was 
changed with the AC stress in each treatment (Hos-
seini et al. 2022; Zare et al. 2024). In all analyses, a 
significant difference between treatments was defined 
as a difference of 5% or less. SPSS (version 21.0 for 
Windows) was used to analyse the data.

Results and discussion

It has been nearly half a century since the effect of 
photoperiod on fish growth, reproduction physiology, 
and health was investigated. As time passes, more fish 
species are farmed in controlled environmental con-
ditions such as recirculation aquaculture systems and 

aquariums. It means that photoperiod manipulation 
to increase the growth of fish is possible and practi-
cal. Although many studies are available on different 
species, no studies have been conducted on the effect 
of photoperiod on oscar families. This study was a 
follow-up study from our EMS project. After four 
studies (Esmaeili et al. 2022; Zare et al. 2024, 2023a, 
2023b), we understood that 2 out of 10-week stress 
events do not impair growth, stress response, and 
many blood parameters and even improved survival 
after AC stress. Further, the interaction of photoper-
iod and EMS and eventually their impacts on the final 
survival rate after acute AC stress was undiscovered. 
This study indicated that photoperiod does not affect 
fish growth, but consistent light schedule impaired 
fish health. This result shows that we can farm 
oscars even in the 8:16 (light to dark) regime without 
decreased growth. Unlike previously available studies 
(Esmaeili et al. 2022; Zare et al. 2023a, 2023b), EMS 
did not affect the growth and physiology of fish due 
to the probably stronger effect of photoperiod. As it is 
the first study on this topic, more studies are required 
to test the interaction of EMS and photoperiods on 
other species.

Growth performance and body composition

One of the most important consequences of pho-
toperiod manipulation is its potential to affect 
the growth performance of fish. In the present 
research, the effect of photoperiod or EMS sched-
ule on growth performance was not significant 
and showed that fish grew well on all five photo-
period schedules. Providing light for aquaculture 
systems can be costly, and even with 8 h of light, 
oscar can grow well. Similar to this output, other 
studies indicated fish growth was the same between 
8:16 and 12:12 L:D, which has been considered the 
optimum for most fish species. While we fed fish 
twice per day in the 8:16 group, the growth was 
not affected, showing that fish were able to adjust 
their feeding with this photoperiod schedule. For 
example, in African catfish (Almazán‐Rueda et al. 
2005) and channel catfish (Ictalurus punctatus) 
(Stickney and Andrews 1971), these results were 
observed. Photoperiod similarly did not affect the 
growth performance of flounder (Pleuronectes fer-
rugineus) (Purchase et  al. 2000), rainbow trout 
(Reddy and Leatherland 2003), turbot (Psetta 
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maxima) (Imsland et  al. 1995), and sunshine bass 
(Morone chrysops × Morone saxatilis) (Davis and 
Mcentire 2006). Other studies reported the positive 
effect of continued or increased light on the growth 
of fish such as gilthead sea bream (Sparus aurata) 
(Ginés et  al. 2004), which was due to increased 
food conversion efficiency and suppressed sexual 
maturation. Since photoperiod can affect the level 
of plasma growth hormone and eventual growth, it 
is reasonable to hypothesise that levels of hepatic 
insulin-like growth factor I mRNA are indirectly 
regulated by photoperiod (Vera Cruz and Brown 
2009). While there are possible mechanisms to 
improve growth by photoperiod, oscar was not 
sensitive to light in the present study, similar to 
several other fish species noted above. In fish spe-
cies like catfishes, longer periods of light can be 
stressful as more time is needed to show dominant 
behaviour or escape from dominant individuals by 
subordinate ones (Boeuf and Falcon 2001). Oscars 
may have less dominant-subordinate and social 
hierarchies, and because of that, continued light 
did not negatively affect fish growth. More behav-
ioural studies may be warranted to better under-
stand the relationship between social hierarchies 
and photoperiod.

In the present study, DFI, HSI, feed intake, and 
FCR were not affected by photoperiod (Table  2), 
which is unlike other studies that showed, for exam-
ple, improved FCR with decreased and increased light 
period (Purchase et al. 2000; El-Sayed and Kawanna 
2004). However, similar results were observed in tila-
pia (Wang et al. 2023), barramundi (Lates calcarifer) 
(Barlow et  al. 1995), and yellowtail flounder (Pur-
chase et al. 2000). Lack of any change in these param-
eters is in line with growth data indicating that oscar 
had no issue with different photoperiod schedules.

The survival rates in the current study were insig-
nificant among treatments and greater than 90% at the 
end of the 9-week experiment, indicating that all fish 
were grown in a suitable environment. However, the 
effect of EMS on survival after final AC stress was 
significant, and those subjected to the EMS schedule 
had a higher survival (80.67%) than those grown in 
normal conditions without EMS (61.33%) (P < 0.05). 
The higher survival rate in EMS groups is consistent 
with our previous studies (Esmaeili et al. 2022; Zare 
et al. 2023a, 2023b) and is further evidence that the 
fish experienced adaptation and that allowed them Ta
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to tolerate an acute stress condition better. This find-
ing supports the notion that in a healthy population 
of high-performing fish, equal growth performance 
after an EMS or even AC stress does not necessarily 
translate to more robust fish. Nutritional status, cul-
tural system, size of fish, and species are other vari-
ables that may invariably affect the results of growth 
performance. While both biotic (age, gender, and 
size) and abiotic factors (water quality, season, and 
geographical location) can affect the proximate body 
composition of aquatic species, the diet is most likely 
responsible for most of the changes (Shearer 1994). 
Unsurprisingly, as oscars in the present study were 
fed the same diets, there was no significant difference 
in protein, fat, ash, and moisture contents (Table 3). 
These results align with earlier studies investigating 
EMS (Esmaeili et al. 2022) and photoperiod (Biswas 
et al. 2006a, b; Biswas et al. 2008, 2016; Zolfaghari 
et al. 2011; Tian et al. 2019). However, other studies 
on marine species, such as gilthead sea bream, have 
reported changes to the proximate composition of fish 
in response to different photoperiod regimes (Ginés 
et al. 2004).

Haematology and blood biochemistry

Environmental factors such as photoperiod and stress 
drive alterations in haematology and biochemis-
try parameters, and these parameters can be indica-
tors of the health status of fish. Our results indicated 
that some markers were affected by the photoperiod 
including haematocrit, WBC, and blood perfor-
mance before and after AC stress (P < 0.05; Table 4). 
In detail, fish exposed to 24 h of light had lower 
haematocrit and WBC levels. It can be hypothesised 
that 24 h of light was a bit stressful for oscar, which 
eventually decreased their haematocrit and WBC. 
Decreasing these parameters with stress has been 
reported earlier (Gao et  al. 2021; Shin et  al. 2016). 
These results are consistent with our previous EMS 
works (Esmaeili et  al. 2022). Other studies showed 
that photoperiod has significantly altered the hae-
matology parameters. For example, in coho salmon 

(Fang et al. 2019) and piracanjubas (Brycon orbygni-
anus) (Machado et  al. 2016), the same results were 
observed. In contrast, some other species, such as 
beluga (Bani et al. 2009), red sea bream (Biswas et al. 
2006a, b; Biswas et al. 2006a, b; Biswas et al. 2010), 
and pacamã (Lophiosilurus alexandri) (Kitagawa 
et  al. 2015), experienced no alterations in haemato-
crit under photoperiod treatments. The WBC is an 
important parameter showing the immune status of 
fish (Esmaeili 2021). A decrease in this parameter in 
the 24L0D group could be evidence of a suppressed 
immune system with continuous light. Photoperiods 
did not change the WBC in iridescent shark catfish 
(Pangasionodon hypophthalmus) (Windarti et  al. 
2021). However, this parameter was changed in 
other species such as pikeperch (Sander lucioperca) 
(Pourhosein Sarameh et  al. 2013), Persian sturgeon 
(Acipenser persicus) (Falahatkar et al. 2012), rainbow 
trout (Valenzuela et al. 2022), tambaqui (Colossoma 
macropomum) (Pereira et al. 2021), and carp (Cypri-
nus carpio) (Ruchin 2006). The observed various out-
puts can highlight the fact that fish species respond 
differently to photoperiod regardless of trophic levels.

A blood performance (BP) marker has previously 
been used as an indicator of fish growth and health 
(Esmaeili 2021). In the current data, the photoperiod 
effect for BP before and after AC stress was signifi-
cant, and accordingly, the 240LD group (14.22 and 
13.88 for before and after AC stress, respectively) had 
a lower value than the others (Fig. 1). These results 
show that BP can be an indicator of immunity of fish 
as the immune parameters, WBC, and haematocrit 
were lower in continued light. To further validate, 
new investigations related to BP and photoperiod 
to compare with the current data are still required. 
Unlike the present data, in other studies from this 
project (Esmaeili et al. 2022; Zare et al. 2024, 2023a, 
2023b) and also other studies (Esmaeili et  al. 2017; 
Hosseini et  al. 2021, 2022; Montazeri et  al. 2021; 
Ravardshiri et  al. 2021), the connection of growth 
and BP was observed. Earlier research found that a 
lower BP level can indicate a weaker fish in terms of 
its overall health status. Accordingly, when fish were 
fed too much soybean (Montazeri et  al. 2021), total 
carbohydrate (Ravardshiri et al. 2021), and meat and 
bone meal (Esmaeili et  al. 2017), the BP was lower 
when compared to the control group.

A blood biochemistry panel of markers is con-
sidered an indicator of fish metabolism as it is in 

Fig. 1  Haematological parameters of oscar exposed to differ-
ent photoperiods and early mild stress treatments during 10 
weeks plus data related to after acute confinement stress (AC 
stress). Values were represented by means ± SDM of triplicate 
samples

◂
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other species and humans. Some blood biochemistry 
parameters like albumin and total protein are also 
markers of the immune system status. In the current 
study, total protein was the only parameter affected 
by photoperiod, with the 24L0D group having the 
lowest value before (5.02 g/dL) and after (4.75 g/dL) 
AC stress (Fig. 2). Proteins have key roles in almost 
all physiological metabolism, such as the transport 
of bilirubin, hormones, metals, vitamins, drugs, 
and lipid metabolism. Most importantly, almost all 
immune system components are protein-based, such 
as carrier proteins, enzymes, complements, and 
immunoglobulins. Some studies indicated a change 
in total protein with photoperiod. For example, in 
golden mahseer (Akhtar et al. 2020) and largemouth 
bass (Micropterus salmoides) (Malinovskyi et  al. 
2022), these results were observed. However, no 
change in this parameter was observed in Murray cod 
(Maccullochella peelii) (Di et  al. 2023), Nile tilapia 
(Wang et al. 2023), and red sea bream (Biswas et al. 
2006a, b).

Immune and stress response

The EMS can positively improve the immune and 
stress response and can act as a preparedness for 
the fish in terms of future stressful conditions. We 
observed the positive effect of EMS on the immune 
system and stress response of oscars in several prior 
studies (Esmaeili et  al. 2022; Zare et  al. 2023a, 
2023b) but not in the present study where the effect 
of EMS was only significant for immunoglobulin M, 
being lower in the EMS group (Fig. 3). However, the 
effect of photoperiod before AC stress for lysozyme, 
immunoglobulin M, and complement C3 was sig-
nificant. The oscar that was grown in the continued 
light and before AC stress had the lowest value of 
lysozyme (29.95 µ/mL), immunoglobulin M (15.25 
mg/mL), and complement C3 (90.88 mg/dL). After 
the AC stress was applied, the fish followed the same 
trend, and the 24L0D group had the lowest values of 
immunoglobulin M (15.95 mg/mL), lysozyme (24.72 
µ/mL) and ACH50 (159.15 µ/mL). The photoperiod 
and immune system are closely related to each other. 
It has been well-known that the immune system is 
affected by photoperiods and, in most cases, improved 
immunity in less light is observed. For example, 
increased spleen and thymus mass and numbers of 
lymphocytes and neutrophils are documented (Nelson 

et  al. 1996). Melatonin influences the light–dark 
rhythm in most vertebrates, including fish, and even-
tually affects the humoral innate immune system 
(Ángeles Esteban et  al. 2006). In the present study, 
the immune system was decreased in 24 h of light but 
with no change in stress response parameters like glu-
cose and cortisol. This is potential evidence that it has 
not been due to suppression of immunity by the endo-
crine system. Chronic stress also prevents immune 
cells and signalling networks from communicating 
with each other properly (Bae and Shin 2019). It can 
be hypothesised that the relationship between immu-
nity and photoperiod comes from melatonin. Unfortu-
nately, we could not measure this parameter and more 
hormonal studies are required.

Lysozyme plays a key role in the nonspecific 
immune response of fish and is one of the most 
commonly measured parameters in aquaculture. In 
other studies, 24 h of light during culture decreased 
lysozyme, erythrocytes, leucocytes, lymphocytes, 
monocytes, and polymorphonuclear in rainbow trout 
compared with the 12:12 light to dark cycle (Burgos 
et  al. 2004; Valenzuela et  al. 2022). Similar to our 
data, decreased lysozyme was observed in gilthead 
seabream and European sea bass (Dicentrarchus lab-
rax) (Ceballos-Francisco et  al. 2020) as well. How-
ever, other studies reported no change in lysozyme 
with photoperiod in other species including golden 
mahseer (Akhtar et  al. 2020), Atlantic halibut (Hip-
poglossus hippoglossus) (Bowden et al. 2004), Euro-
pean sea bass (Ángeles Esteban et al. 2006), and Nile 
tilapia (Atwood et al. 2003). Immunoglobulin M was 
another parameter that was declined in the 24L0D 
group. Decreased immunoglobulin with increased 
light in gilthead seabream and European sea bass 
(Ceballos-Francisco et  al. 2020) and also other ani-
mals (Guo et al. 2010; Park et al. 2015) was observed, 
which is in line with the current study.

The 24L0D groups had the lowest values of some 
haematological parameters and total proteins as well 
that can be connected to the immune system results. 
Although it was not significant, the 24L0D groups 
also had numerically lower growth (around 32 g com-
pared to others, around 37 g), which can potentially 
be connected to these blood chemistry results. How-
ever, the 24L0D groups had the same survival rate 
compared to other pre-AC stresses, while the survival 
rate was significantly lower in the 24L0D groups after 
AC stress. It is possible that the stress events were not 
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sufficient to affect the growth and survival rate sig-
nificantly after EMS stress, but the immune parame-
ters were changed. Our previous studies observed that 
decreased immunity was responsible for decreased 
growth and survival rate after AC stress (Esmaeili 
et al. 2022; Zare et al. 2023a, 2023b). To the best of 
our knowledge, no study has measured fish in a vast 
panel of immunity parameters under photoperiod 
treatments in oscar. Further research is needed to 
determine how different fish species’ immune systems 

react to EMS and photoperiod and how this eventu-
ally translates to growth performance and survival.

The present study indicated no significant differ-
ences in stress parameters’ levels such as glucose, 
lactate, and cortisol (Fig.  4). It should be noted 
that after AC stress, these parameters were higher 
in most treatments but not significant. The result of 
this study is unlike our previous studies that showed 
AC stress increased stress parameters (Esmaeili 
et al. 2022; Zare et al. 2023a, 2023b). However, as 
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Fig. 2  Blood biochemistry parameters of oscar exposed to different photoperiods and early mild stress treatments during 10 weeks 
plus data related to after acute confinement stress (AC stress). Values were represented by means ± SDM of triplicate samples
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previously mentioned, the fish grown in the EMS 
schedule had a higher survival rate after AC stress. 
Aquaculture sustainability depends on growth 
performance and survival as key indicators, and 
reduced stress responsiveness can improve these 
parameters. The present study clearly demonstrates 

that glucose, lactate, and glucose cannot always be 
relied upon as the only indicators in fish studies to 
show stress responsiveness after acute stress. It has 
been reported that stress does not always cause an 
increase in cortisol, glucose, and lactate. The pos-
sible reasons can be impaired cortisol secretion by 
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Fig. 3  Immune response parameters of oscar to differ-
ent photoperiods and early mild stress treatments during 10 
weeks plus data related to after acute confinement stress (AC 
stress). Values were represented by means ± SDM of tripli-
cate samples. Hashtag (#) indicates the significant difference 
in each treatment between farmed fish with and without early 

stress according to the independent sample T-test (P < 0.05) 
(for example, 24L0D compared to ES24L0D). X, Y, and Z 
indicated significant differences across different photoperiod 
groups after AC stress (the interaction effect was significant for 
this parameter)



1039Fish Physiol Biochem (2024) 50:1025–1046 

1 3
Vol.: (0123456789)

interrenal exhaustion and environmental factors or 
the HPI axis is no longer being stimulated, as the 
fish “acclimate” through gradual loss of awareness 
of the stress factor (Ellis et al. 2012).

Antioxidant enzyme activities

Antioxidant enzymes such as SOD, CAT, GPx, and 
MDA are also indicators of health status and are 

Fig. 4  Stress response 
parameters of oscar exposed 
to different photoperiods 
and early mild stress treat-
ments during 10 weeks plus 
data related to after acute 
confinement stress (AC 
stress). Values were repre-
sented by means ± SDM of 
triplicate samples
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commonly employed in aquaculture studies. These 
enzymes protect cells from uncontrolled oxidative 
reactions that produce superoxide and  H2O2 radicals 
(Hoseinifar et  al. 2020). The current data indicated 
that before AC stress, SOD and catalase were affected 
by both EMS and photoperiod. SOD and catalase 
were higher and lower in the “without EMS” groups 
(Fig.  5). Like several other measured parameters 
explained in previous sections, 24L0D groups had the 
lowest values of SOD and catalase before (37.88 U/
mL and 29.03 U/mL, respectively) and after AC stress 
(33.05 U/mL and 28.10 U/mL, respectively). After AC 
stress, GPx in the 24L0D and without EMS groups had 
the lowest level compared to other treatments. It can 
be seen that, generally, the 24L0D had a lower value 
of antioxidant system enzymes, which may indicate 
this group of fish was under oxidative stress. The link 

between growth and antioxidant activities was well-
reviewed (Hoseinifar et  al. 2020), and previously, we 
linked the lower survival rate to decreased cellular 
resistance to oxidative stress and impaired mainte-
nance of the antioxidant-ROS balance (Esmaeili et al. 
2022; Zare et al. 2023a, 2023b). In the present study, 
the photoperiod effect was more dominant and influen-
tial in changing antioxidant enzymes rather than EMS. 
Other studies similarly indicated that SOD, catalase, 
and GPx were changed with photoperiod in European 
sea bass (Li et al. 2021), blunt snout bream (Tian et al. 
2019), golden hamster (Mukherjee and Haldar 2015), 
and gibel carp (Wei et al. 2019) where the lowest anti-
oxidant status was observed in the groups with high-
est light exposure. However, no change was observed 
in black sea bass (Centropristis striata) (Ren et  al. 
2020). As we can see, most of the literature reported 
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Fig. 5  Antioxidant system parameters of oscar exposed to dif-
ferent photoperiods and early mild stress treatments during 10 
weeks plus data related to after acute confinement stress (AC 
stress). Values were represented by means ± SDM of tripli-
cate samples. Hashtag (#) indicates the significant difference 
in each treatment between farmed fish with and without early 

stress according to the independent sample T-test (P < 0.05) 
(for example, 24L0D compared to ES24L0D). x, y, and z and 
also, a, b, and c indicated significant differences across differ-
ent photoperiod groups with and without early stress, respec-
tively (the interaction effect was significant for this parameter)
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decreased antioxidant activities with higher or contin-
ued light. The possible reason for the lower antioxidant 
status in the 24L0D group of the present study can be 
related to a higher rate of metabolic oxygen consump-
tion (Martínez-Álvarez et  al. 2005). However, this 
group did not have a significantly lower growth or sur-
vival rate as a result of oxidative stress.

Liver enzymes

Liver or serological enzymes (LDH, ALP, AST, and 
ALT) can show the health status of fish, especially 
the liver, which is the central metabolic organ. Con-
sistent with other markers examined in this study, the 
AST in the 24L0D group before AC stress was higher 
than in the other groups (Fig.  6). Other parameters 

did not change with EMS or photoperiod and can be 
a positive sign that oscars were in a healthy/normal 
condition. In previous studies, higher liver enzymes 
in oscar were evidence of stress, leading to decreased 
growth (Esmaeili et  al. 2022). The interaction effect 
for ALT before and after AC stress was significant, 
as shown in Fig. 6. In the without EMS group, before 
and after AC stress, and in EMS treatment before AC 
stress, the 24L0D group had the highest value among 
the others. Other studies indicated that liver enzymes 
were changed with photoperiod in common carp, 
largemouth bass (Malinovskyi et  al. 2022), Malay-
sian red tilapia (Malambugi et  al. 2020), and tiger 
puffer (Takifugu rubripes) (Ma et  al. 2021) and no 
change in Murray cod (Di et al. 2023). These results 
are matched with other parameters, such as lower 
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Fig. 6  Liver enzyme parameters of oscar to different photo-
periods and early mild stress treatments during 10 weeks plus 
data related to after acute confinement stress (AC stress). Val-
ues were represented by means ± SDM of triplicate samples. 
Hashtag (#) indicates the significant difference in each treat-
ment between farmed fish with and without early stress accord-
ing to the independent sample T-test (P < 0.05) (for example, 

20L4D compared to ES20L4D). Further, x, y, and z and also, 
a, b, and c indicated significant differences across different 
photoperiod groups with and without early stress, respectively 
(the interaction effect was significant for this parameter). In 
addition, X, Y, and Z indicated significant differences across 
different photoperiod groups after AC stress (patterned col-
umns)
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antioxidant enzymes and immune system parameters 
in the 24L0D group. It was earlier mentioned that a 
lower survival rate after AC stress and higher liver 
enzymes are further evidence that this treatment was 
not displaying normal physiological responses (Zare 
et al. 2023a). Aquaculture studies have reported ele-
vated ALT and AST in response to different stresses 
in a wide range of fish species (Tejpal et  al. 2009; 
Liu et al. 2016; Sun et al. 2019; Dawood et al. 2021; 
Hoseini et  al. 2022). More research is necessary to 
demonstrate how EMS, photoperiod, and the liver’s 
physiological status react with each other.

Conclusion

The result of the present research suggests that neither 
EMS nor photoperiod affected fish growth perfor-
mance or survival rate after a 9-week experiment. Fish 
exposed to continued light (24L0D) showed negative 
responses to many markers examined, such as lower 
haematological parameters, immune system param-
eters, antioxidant enzyme activities, and higher liver 
enzymes. However, none of these alterations led to 
impaired fish growth performance. Survival rate was 
significantly changed after AC stress, with fish exposed 
to EMS regimes being more able to cope with stress. 
AC stress decreased some health parameters under 
24-h light, while such results were not observed in the 
EMS-exposed fish. Therefore, the EMS schedule can be 
a useful tool in preventing the negative effects of acute 
stress. More programmed stresses and measurements of 
more parameters at the classical and molecular levels 
are needed, as well as a nutritional fortification, to illus-
trate the various mechanisms of EMS and its interaction 
with photoperiod in fish. EMS can directly influence 
the behaviour of fish; behavioural and learning mecha-
nisms should be focused on in future studies.
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