
Vol.: (0123456789)
1 3

https://doi.org/10.1007/s10695-023-01248-8

RESEARCH

Optimization of weaning strategy in the climbing perch 
(Anabas testudineus, Bloch 1792) larvae on growth, survival, 
digestive, metabolic and stress responses

Patekar Prakash  · Sikendra Kumar · Parimal Sardar · 
Sukham Munilkumar · Sujata Sahoo · M. Satheesh · Halpati Reena · 
Vijayakumar Mannur · Anusha Patel

Received: 15 June 2023 / Accepted: 2 October 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract  A 30-day experiment was carried out to 
know responses of different weaning approaches to 
the growth and survival of Anabas testudineus larvae. 
A total of 10800 larvae (Avg. weight 0.016 ± 0.03 mg; 
3DPH) were randomly distributed in nine treatments 
(triplicates), including two controls. The strategies are 
as follows: C1 (Control I): feeding with live food (LF) 
for 30 days and C2 (Control II): feeding with micro-
particulate diet (MPD) for 30 days; T1: LF for 5 days 

and MPD for next 25 days; T2: LF for 10 days and 
MPD for next 20 days; T3: LF for 15 days and MPD 
for next 15 day; T4: LF for 20 days and MPD for next 
10 days; T5: LF for 25 days and MPD for next 5 days; 
T6: LF for 5 days, then 25% LF replacement by MPD 
for next 5 days, 50% LF replacement by MPD for next 
5 days, 75% LF replacement by MPD for next 5 days, 
and 100% LF replacement by MPD for last 10 days; 
and T7: LF for 10 days, then 25% LF replacement by 
MPD for next 5 days, 50% LF replacement by MPD 
for next 5 days, 75% LF replacement by MPD for next 
5  days, and 100% LF replacement by MPD for last 
5 days. Significantly (p < 0.05) higher WG and SGR 
were recorded in T2 (213.17 ± 0.32, 23.98 ± 0.02) fol-
lowed by T6, whereas the lowest was found in C2. 
Significantly higher (p < 0.05) percentage survival 
was manifested in the T7 (31.83 ± 0.22), followed 
by T2 (24.75 ± 0.13), and the lowest survival was 
observed in the C2. The digestive enzyme activities 
were found to be non-significant (p > 0.05) between 
different treatment groups. The alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST), 
lactate dehydrogenase (LDH), and malate dehy-
drogenase (MDH) were reported to be significantly 
higher (p < 0.05) in C2 (68.52 ± 0.08, 19.55 ± 0.10, 
21.79 ± 0.04, and 0.044 ± 0.01) followed by T1; how-
ever, their reduced level was observed in C1. The 
activity of superoxide dismutase (SOD), catalase 
(CAT), glucose, and cortisol levels was observed sig-
nificantly (p < 0.05) higher in C2 and lower in C1 and 
T2. As per the finding, it can be recommended that 
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the appropriate weaning time for A. testudineus lar-
vae is from 13 DPH onwards, in which larvae can be 
fed an initial ten days LF afterward MPD and the best 
weaning strategy can be adopted as in the T7 group 
for higher survival percentage.

Keywords  Anabas testudineus · Weaning · 
Microparticulate diet (MPD) · Growth and survival · 
Digestive enzyme

Introduction

Species diversification is one of the important strat-
egies in aquaculture to increase fish production. The 
selection of high-demand species is important to get-
ting a higher return. Anabas testudineus, also known 
as koi or climbing perch, is one of the promising fish 
found in several countries, including Indian subcon-
tinent (Tan and Lim 2004). It is well known for its 
superior taste and flavor and is a good source of iron 
and copper (Sarma et al. 2010; Bhuyan and Hussain 
2018). It is highly resistant to unfavorable environ-
ments due to its air-breathing ability, which makes it a 
preferred species for aquaculture (Van Trieu and Long 
2001). After fertilization, eggs will hatch in approxi-
mately 24h. The newly hatched larvae are 2–3-mm 
long and begin free swimming within two days (Wei 
et al. 2021). During larval development, the yolk sac 
is completely absorbed within 72h, indicating the first 
external feeding should be begun (Basak et al. 2014). 
The process of transforming the notochord into ver-
tebrae through segmentation, as well as the devel-
opment of the alimentary canal, takes place within 
a time frame of 144 to 192h. The final expansion of 
paired and median fins, mouth, and scale formation 
is completed by 336h after hatching. Pectoral, pelvic, 
caudal, and dorsal fins with fin rays fully form dur-
ing this stage (Basak et  al. 2014). The predominant 
digestive enzymes found in A. testudineus larvae are 
proteases and amylases (Chandan et  al. 2023). Pro-
tease activity is higher than amylase activity, reflect-
ing the carnivorous feeding habits (Singh et al. 2023). 
Protease activity within the larval gut is significantly 
higher in the hindgut region than in the foregut (Mon-
dal et al. 2008).

Despite its cultural potential, species is not widely 
cultivated due to a lack of seed availability (Kohi-
noor et  al. 2012; Jayasankar 2018). In this context, 

successful larval culture for this species is one of the 
challenging tasks as the larval survival rate is very 
poor (Hamre et  al. 2013; Singha et  al. 2015, Singh 
et al. 2019; Alang et al. 2020), probably due to a lack 
of suitable live food (Rao 2003) and weaning diet and 
weaning strategy (Kolkovski 2001; Hauville et  al. 
2014; Jayasankar 2018).

Formulated microparticulate diet (MPD) is advan-
tageous over live food because of the balanced nutri-
ent supply, bulk preparation, easy storage, and lower 
cost of production (Holt 2011; Thompson et  al. 
2019). However, larvae are always very much fond 
of live prey like Rotifer, Moina, and Artemia nauplii, 
which are preferable live foods for koi larvae (Bell 
et  al. 2003; Hamre et  al. 2013). But the production 
cost of live food is high, and it is not nutritionally bal-
anced (Cahu et al. 1998; Callan et al. 2003; Ma et al. 
2015; Jamali et al. 2018) and can act as a vector for 
pathogens (Bonaldo et al. 2011). On the other hand, 
koi larvae are reluctant to accept artificial feed alone 
(Conceição et al. 2010; Rønnestad et al. 2013; Chen 
et al. 2020). Therefore, a suitable weaning strategy is 
required to be standardized for the large-scale culture 
of koi larvae with optimum survival rate (Kolkovski 
2008), and the formulated feed should be nutrition-
ally balanced with higher nutrient digestibility and 
well accepted by the larvae (Giri et  al. 2002; Rad-
hakrishnan et al. 2020).

Some research has been conducted on larval rear-
ing of A. testudineus for higher seed production 
(Zalina et  al. 2011; Singh et  al. 2019) but failed to 
establish a suitable weaning strategy for successful 
larval culture (Ahilan and Thangarani 2020; Lazo 
et  al. 2007). However, the majority of researchers 
suggest that koi fish larvae have a distinct and well-
defined digestive physiology, and this information 
could be helpful in developing suitable MPD and 
optimal weaning protocol for higher survival and pro-
duction of larvae (Lazo et al. 2000; Thompson 2013).

Weaning is a transition from one feed to another as 
well as a period of adjustment in which both types of 
feeds are supplied for an extended period, with a grad-
ual reduction of live food and a gradual increase in 
prepared diet (Chèvre et al. 2011; Williot et al. 2011). 
This is especially required for carnivorous fish lar-
vae, which have high protein and lipid requirements 
for both energy and body development (Andersen 
et al. 2016). A relatively successful weaning strategy 
involves mix feeding with live food and a formulated 
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diet for some period of time (Ljubobratović et  al. 
2015; Hung et  al. 2022); however, co-feeding also 
plays a significant role in optimizing nutrient intake 
in the fish larval stage. Co-feeding results in signifi-
cantly higher (p < 0.05) growth compared to just live 
feeds or microdiets alone during weaning (Djellata 
et al. 2021). Sudden weaning with a direct shift from 
live food to an artificial diet has poor success in lar-
val survival (Herath and Atapaththu 2013). Live feeds 
provide exogenous enzymes and dietary compounds 
that stimulate larval digestive activity (Pradhan et al. 
2014; Khoa et al. 2020). Co-feeding takes advantage 
of both live feed and artificial diet, enhancing diges-
tion and growth (Djellata et al. 2021).

Recent advancements in MPD composition have 
substantially shortened the early weaning period, ena-
bling finfish culture to begin feeding on a specific lar-
val diet as soon as the mouth opens (Cahu and Infante 
2001). Weaning is most important stage in larval 
rearing because larvae need soluble proteins and 
fatty acids, which can be provided through a prepared 
diet (Rønnestad et  al. 2013). A pre-digested protein 
source called fish protein hydrolysate (FPH) may 
be added as a dietary source of protein in the MPD. 
FPH has a simple form of proteins that includes pep-
tides and amino acids, which serve as feed stimulants 
and attractants, which improve the diets flavor and 
acceptance (Chotikachinda et al. 2013; Siddaiah et al. 
2022). In order to enhance larval growth performance 
as well as survival by incorporating FPH has been 
observed in some species, such as Atlantic salmon, 
Salmo salar (Berge and Storebakken 1996), Rainbow 
trout, Onchorhynchus mykiss (Dabrowski et al. 2003), 
and Clarias magur (Kumar et  al. 2022). The FPH 
might aid in the digestion and absorption of artificial 
food (Zambonino-Infante et al. 1997; Carvalho et al. 
1997; Cahu et  al. 1999). Both abruptly weaned and 
gradually weaned larvae showed improved develop-
ment and survival when FPH was added to a formu-
lated diet (Kotzamanis et  al. 2007; Srichanun et  al. 
2014). Anguas-Ve’lez et  al. (2000) also noted that 
larvae fed with FPH had the highest overall rate of 
survival. Several papers discuss the advantages of an 
FPH-enriched larval diet, which raises the percent-
age of survival (Cahu et al. 1999; Gisbert et al. 2009; 
Kumar et al. 2022).

Considering above backgrounds, the current study 
was conducted to develop a suitable weaning strategy 
for A. testudineus larvae and its effects on survival, 

growth, stress, and physio-metabolic and other 
enzyme responses.

Materials and methods

Experimental animal

The experiment was conducted at ICAR-Central Insti-
tute of Fisheries Education, Kolkata Center, West 
Bengal (India). A. testudineus larvae were produced 
through induced breeding by administering WOVA-
FH™ (Biostadt India Limited, Kolkata) into females 
(23–38g; n = 3) at 0.4 mlkg−1 and male (21–34g; n = 3) 
at the rate of 0.2 mlkg−1 (Singh et al. 2019). After hor-
monal injection, male and female brooders were trans-
ferred into the fiber-reinforced plastic (FRP) tank at 
a 1:1 ratio. After 8–12h of latency period, eggs were 
released and temperature was maintained at 27 ± 2 °C 
with mild aeration. Newly hatched larvae stocked in 
FRP container for the 3-day post hatch (DPH) period.

Microparticulate diet (MPD) preparation

The proximate analysis of ingredients and diet is 
mentioned in Table 1. The diet was prepared and as 
protein sources fish meal, groundnut oil cake, and 
FPH, whereas wheat flour was a carbohydrate source 
used. Butylated hydroxyl toluene was used as a pre-
servative (antioxidant), and sodium alginate was used 
as a binder. A vitamin-mineral premix, vitamin C, 
and betaine hydrochloride were used as additives. 
Ground all the ingredients as suggested in the formu-
lation, and mix them uniformly. Except for additives 
and oil, all other ingredients are mixed and the dough 
is made by mixing the water, then kept in a thick plas-
tic bag and transferred for 25–30  minutes for steam 
cooking. After that, the mixture was crushed to allow 
it to cool. The other ingredients, namely, oil, BHT, 
soy lecithin, sodium alginate, betaine hydrochloride, 
mineral-vitamin mix, and FPH, were mixed prop-
erly. To make pellets, the mixture was placed in the 
pelletizer (SB-Panchal, Mumbai), then made in uni-
form spheroid size by using a spheronizer (die size: 
200µm) and dried using a mechanical dryer (UNIF-
LUID NANO, India). The dried feed (size approxi-
mately 200–250µm) was kept in a closed container, 
marked properly, and kept in a cool place.
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Experimental design, setup, and management

The ten thousand eight hundred 3 DPH larvae 
(2.7 ± 0.6  mm (length) and 0.016 ± 0.03  mg (wet 
body weight)) of A. testudineus were stocked in 
nine experimental groups in triplicates (Fig.  1) 
such as C1 (Control I): feeding with live food (LF) 
for 30 days, C2 (Control II): feeding with micropar-
ticulate diet (MPD) for 30 days; T1: LF for 5 days 
and MPD for next 25 days, T2: LF for 10 days and 

MPD for next 20 days, T3: LF for 15 days and MPD 
for next 15  day, T4: LF for 20  days and MPD for 
next 10 days, T5: LF for 25 days and MPD for next 
5  days, T6: LF for 5  days, then 25% LF replace-
ment by MPD for next 5 days, 50% LF replacement 
by MPD for next 5  days, 75% LF replacement by 
MPD for next 5 days, and 100% LF replacement by 
MPD for last 10 days and T7: LF for 10 days, then 
25% LF replacement by MPD for next 5 days, 50% 
LF replacement by MPD for next 5 days, 75% LF 
replacement by MPD for next 5 days, and 100% LF 
replacement by MPD for last 5  day. Accordingly, 
27 glass aquaria (45 × 30 × 30 cm3; 40  l capacity 
and 20  l water volume; stocking density 20 larvae 
l−1) were used. All aquaria were provided with 
continuous aeration facilities, and 30–35% of daily 
water was exchanged with freshwater. The tem-
perature, dissolved oxygen (DO), and pH levels of 
water were continued at 27.7–29.6  °C, 6–8  mg/l, 
and 6.9–7.6, respectively, throughout the experi-
mental period. The larvae were fed with LF (Bra-
chionus calyciflorus) at the rate of 15–20 individ-
ual ml−1 of water while MPD (Fig. 1) was fed five 
times per day based on visual inspection, approxi-
mately amounting to 10% of body weight respec-
tively. Before the feeding at 8:00 a.m., feces were 
siphoned out every morning. The daily mortality of 
larvae was meticulously observed and recorded in 
every experimental aquarium over the entire dura-
tion of the experiment.

Growth performance and survival of larvae

At last of the trial, all larvae were collected from 
every experimental tank, anesthetized with ice, 
and rinsed in distilled water (DW), and average 
final body weight (FBW) was measured using an 
electronic balance. The weight gain (WG) and 
specific growth rate (SGR) were estimated as

The survival percentage was calculated by

WG(mg) = Final wet weight (mg) − Initial wet weight (mg)

SGR =
(ln of f inal wet weight − ln of initial wet weight)

Experimental period (days)
× 100

Survival(%) =
Total number of larvae harvested

Total larvae stocked
× 100

Table 1   Formulation and proximate composition of micropar-
ticulate diet used for feeding of A. testudineus larvae

*Gross energy content was estimated as follows: (crude pro-
tein % × 5.65) + (ether extract % × 9.45) + (total carbohydrate 
% × 4.2)
1 FPH, fish protein hydrolysate
2 GNOC, groundnut oil cake
3 Composition of the vitamin-mineral mixture (quantity/kg): 
vitamin A, 55,00,000  IU; vitamin D3, 11,00,000  IU; vitamin 
B2, 2000 mg; vitamin E, 750 mg; vitamin K, 1000 mg; ascor-
bic acid, 2500 mg; vitamin B6, 1000 mg; vitamin B12, 6 mcg; 
calcium pantothenate, 2500  mg; nicotinamide, 10  g; choline 
chloride, 150 g; Mn, 27,000 mg; I, 1000 mg; Fe, 7500 mg; Zn, 
5000 mg; Cu, 2000 mg; Co, 450 mg; selenium, 125mg
4 BHT, butylated hydroxytoluene

Ingredients Inclusion (%)

Fish meal 25.00
FPH1 15.00
Soybean meal 25.00
GNOC2 17.00
Wheat flour 9.70
Cod liver oil 1.50
Sunflower oil 1.50
Vitamin mineral mix3 1.50
BHT4 0.02
Soy lecithin 2.00
Sodium alginate 1.00
Vitamin C 0.03
Betaine hydrochloride 0.75
Total 100.00
Proximate composition (dry matter basis)
Moisture (%) 9.10
Crude protein (%) 48.09
Ether extract (%) 8.17
Crude fiber (%) 5.17
Total ash (%) 12.07
Nitrogen free extract (%) 26.50
Gross energy* (Kcal/100 g) 460.215

Fish Physiol Biochem (2023) 49:1151–11691154
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Proximate composition of diet and carcass

The proximate composition of larvae and diet was 
examined according to the standard method of 
AOAC (AOAC 1995) on a dry matter basis. Mois-
ture was estimated using a hot air oven (HTLP 
28L, Memmert Type HTLP-013, IKON INSTRU-
MENTS, India), crude protein (CP) [total nitrogen 
percent (TN %) × 6.25] was estimated using the 
MicroKjeldahl Semi-automate unit. The quantifi-
cation of Ether extract (EE) or lipids was accom-
plished through the solvent extraction method, 
employing diethyl ether as the solvent (boiling point 
55 ± 5 °C), and crude fiber (CF) content was deter-
mined using FibroTRON (FRB-8, Tulin Equipment, 
India), and total ash (TA) was estimated by muf-
fle furnace at 550  °C for four hours. Nitrogen-free 
extract (NFE) of diet and total carbohydrate (TC) of 
the whole body calculated as follows:

In samples, CP, lipid, TA, and TC contents were 
expressed on a wet-weight basis.

NFE(%) = 100 − (crude protein% + lipid% + crude f iber% + total ash%)

TC(%) = 100 − (crude protein% + lipid% + total ash%)

Assays of enzymes

Tissue collection and homogenate preparation

On completion of the experiment, 15–20 larvae 
from each replicate tank were pooled before the 
first feeding time, then anesthetized using ice, and 
instantly stored at − 80  °C for biochemical exami-
nation. Each larva underwent a distilled water rinse 
and eliminated excess water using tissue paper 
before dissection. Whole fish larvae were dissected 
and anterior, and posterior sections were excised as 
described by Comabella et al. (2006) on the dry ice 
packet. Then, the larvae were homogenized while 
maintaining a cold temperature. A tissue homoge-
nate comprising 0.05-M Tris hydrochloric acid 
and two percent sucrose was made. Centrifuging 
(REMI, India) at 5000 rpm for 10 min at 4 °C. The 
upper layer was collected in Eppendorf tubes and 
preserved (− 80 °C) until analysis.

Total protein estimation from tissue homogenate

The estimated concentration of total protein of tissue 
homogenate was obtained by following Lowry et al. 

Fig. 1   Schematic representation of nine experimental groups of 3DPH to 33DPH A. testudineus larvae
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(1951). The obtained results are used for enzymatic 
calculation.

Digestive enzymes

Acid protease

Anson method (1938) measured samples of acid pro-
tease (pepsin) activity. Hemoglobin substrate (0.25%) 
was mixed with sodium acetate buffer-HCl (0.1  M, 
pH 3). Sample homogenate (25  μl) was added and 
incubated for 30  min. Trichloroacetic acid (TCA, 
12%) was added to break the reaction. After cen-
trifugation, supernatant absorbance was measured at 
280 nm (Singh et al. 2023).

Alkaline protease

Alkaline protease activity was assessed by following 
a modified version of the Drapeau (1974) method. 
Tissue homogenate was incubated with a one percent 
casein solution in 0.05-M Tris phosphate buffer (pH 
7.8) for 5  minutes. Then solution was then filtered 
after the addition of 10% TCA. Enzyme activity was 
quantified based on the acid-soluble fragment release, 
equal to Δ0.001A280 per minute at 37 °C and pH 7.8.

Amylase

Activity of amylase was measured using the DNS 
technique with a starch solution, phosphate buffer and 
tissue homogenate (Rick and Stegbauer 1974). After 
incubation at 37 °C, absorbance was read at 540 nm 
following DNS addition. The activity was stated as 
maltose out from starch per minute at 37  °C (Singh 
et al. 2023).

Lipase

Activity of lipase was assessed via Cherry and Cran-
dell’s titrimetric method (1932), involving hydroly-
sis of triglycerides in olive oil emulsion. Fatty acids 
released were quantified by titration with standard 
NaOH. The assay comprised 1.5-ml emulsion, 1.5-ml 
(pH 8.0) Tris-HCl buffer, and 1.0-ml crude enzyme, 
incubated for 24 h. at 37  °C. Reaction stopped with 
3-ml 95% ethyl alcohol, followed by titration with 
0.01N NaOH and phenolphthalein indicator (Singh 
et al. 2023).

Protein metabolic enzymes

ALT (alanine aminotransferase) and AST (aspar-
tate aminotransferase) activity was assessed in tis-
sue homogenates using Wootton’s method (1964). 
In AST, a substrate comprising 0.2M D, L-aspartic 
acid and 2-mM α-ketoglutarate in 0.05M (pH 7.4) 
phosphate buffer was added (0.5ml) to experimental 
and control tubes. Tissue homogenate (0.1 ml) initi-
ated the reaction. After 60  minutes at 37  °C, 0.5ml 
of 1mM 2,4 dinitrophenyl hydrazine ended the reac-
tion. In control, samples were added after DNPH and 
kept at room temperature, shaken occasionally. After 
twenty minutes, 5ml of NaOH was mixed and OD 
was recorded at 540 nm in contrast to blank (Wash-
ington and Hoosier 2012). ALT (alanine aminotrans-
ferase) activity was determined (Wootton 1964) using 
0.2M D, L-alanine. Enzyme activity was expressed in 
nanomole pyruvate formed/min/mg protein at 37 °C.

Carbohydrate metabolic enzymes

Lactate dehydrogenase (LDH) and Malate dehydro-
genase (MDH) activities in tissue homogenates were 
measured using established methods (Wróblewski 
and Ladue 1955; Ochoa 1955). For LDH, a reaction 
mixes with phosphate buffer, NADH, tissue homoge-
nate, sodium pyruvate, and checked OD at 340 nm for 
3 min. MDH activity was assessed similarly but with 
oxaloacetate. The activity was expressed in units/mg 
protein/min at 25 °C, with 1 unit equating Δ 0.01 OD/
min at 37 °C (Singh et al. 2023).

Oxidative stress enzymes

Superoxide dismutase (SOD)

Superoxide dismutase (SOD) activity was assessed by 
following Misra and Fridovich (1972) method. Sam-
ples were mixed with a buffer containing EDTA and 
epinephrine and the variation in OD at 480  nm for 
three minutes. SOD activity is determined by the pro-
tein amount needed for 50% inhibition of epinephrine 
oxidation (Karmakar et al. 2022).

Catalase (CAT)

Catalase activity was measured using Takahara et al. 
(1960) method. Tissue homogenate and H2O2 in 
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phosphate buffer were reacted; OD was checked at 
240  nm in 15-second intervals for 3  minutes, with 
distilled water as the blank. The activity is shown as 
nanomoles of H2O2 decomposed/min/milligram of 
protein at 37 °C (Singh et al. 2023).

Glucose

Glucose estimation of larval tissue was done using an 
ELISA-based commercially available ERBA Glucose 
assay kit (Catalogue No. BLT00002, Cayman Chemi-
cal). The activity was expressed in mg/dl.

Cortisol

The cortisol levels in the sample were studied by 
using a Cortisol EIA kit (Catalogue No. 500360, 
Krishgen) as per the protocol given in the kit. OD was 
observed by using an ELISA reader at 412 nm. The 
activity is expressed in ng/ml.

Statistical analysis

The data study was done using a one-way analysis of 
variance (ANOVA) in SPSS version 22.0 Software. 
The normality assumption (using Shapiro-Wilk test) 
and homoscedasticity (Levene’s test) were made. The 
results were presented in the format of mean ± stand-
ard error. A one-way ANOVA and Duncan’s test 
were employed to make comparisons between the 
mean values of the test concentrations and the con-
trol group. A significant change was observed at a 5% 
probability level (p < 0.05).

Results

Growth and survival

Different weaning strategies significantly (p < 0.05) 
affected the growth and survival of A. testudineus 
larvae reared under the experimental duration of 
30  days (Tables  2 and 3). The highest WG and 
SGR were observed in T2 (213.17 ± 0.32  mg; 
23.98 ± 0.02), followed by T6 (197.64 ± 0.29  mg; 
23.73 ± 0.03, respectively), while the lowest WG and 
SGR (98.69 ± 0.16  mg; 21.42 ± 0.06, respectively) 
were found in C2. In the initial first 15 days of cul-
ture (3 DPH to 18 DPH), the highest survival was 

manifested by T7 (32.83 ± 0.60%) followed by T2 
(27.83 ± 0.96%). The lowest survival was observed 
in C2 (10.00 ± 0.14%). At the end of the next 15 days 
(18 DPH to 33 DPH) of culture, the larvae of T3 
showed the highest survival, but insignificant results 
were found in the remaining treatments. Overall, at 
the end of the whole experimental duration (3 DPH 
to 33 DPH), the maximum survival was observed in 
T7 (31.83 ± 0.22%), followed by T2 (24.75 ± 0.13%), 

Table 2   Effects of weaning strategy on growth performance 
of Anabas testudines larvae reared for the period of 30 days

Data are expressed as mean ± SE, n = 3; mean values in the 
same column with different superscripts differ significantly 
(p < 0.05)
1 FBW final body weight
2 WG weight gain
3 SGR specific growth rate (% day−1)

Treatments FBW1 (mg) WG2 (mg) SGR3

C1 166.47 ± 0.30e 166.31 ± 0.30e 23.16 ± 0.01e

C2 98.85 ± 0.16a 98.69 ± 0.16a 21.42 ± 0.06a

T1 148.27 ± 0.27c 148.11 ± 0.27c 22.77 ± 0.04c

T2 213.33 ± 0.32i 213.17 ± 0.32i 23.98 ± 0.02i

T3 195.53 ± 0.35 g 195.37 ± 0.35 g 23.69 ± 0.01 g

T4 159.03 ± 0.30d 158.87 ± 0.30d 23.01 ± 0.05d

T5 147.30 ± 0.26b 147.14 ± 0.26b 22.75 ± 0.05b

T6 197.80 ± 0.29 h 197.64 ± 0.29 h 23.73 ± 0.03 h

T7 190.50 ± 0.31f 190.34 ± 0.31f 23.61 ± 0.07f

p-value 0.001 0.001 0.001

Table 3   Effects of weaning strategy on survival percentage of 
Anabas testudines larvae reared for the period of 30 days

Data are expressed as mean ± SE (n = 3); mean values in the 
same column with different superscripts differ significantly 
(p < 0.05)

Treatments 3–18 DPH 18–33 DPH 3–33 DPH

C1 17.42 ± 0.65b 77.93 ± 0.96a 13.42 ± 0.61b

C2 10.00 ± 0.14a 93.33 ± 0.67b 9.20 ± 0.08a

T1 14.17 ± 0.57b 90.65 ± 0.47b 12.92 ± 0.57b

T2 27.83 ± 0.96de 88.36 ± 0.98b 24.75 ± 0.13e

T3 19.25 ± 0.43b 97.22 ± 0.56b 18.67 ± 0.65bcd

T4 18.08 ± 0.21b 96.76 ± 0.46b 17.50 ± 0.01bc

T5 19.83 ± 0.26bc 96.22 ± 0.73b 19.08 ± 0.23cde

T6 25.42 ± 0.79 cd 93.68 ± 0.19b 23.83 ± 0.18d

T7 32.83 ± 0.60e 96.99 ± 0.09b 31.83 ± 0.22f

p-value 0.001 0.001 0.001
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and the lowest survival was found in the C2 
(9.20 ± 0.08%).

Carcass proximate composition

The proximate analysis of whole larvae varied sig-
nificantly (p < 0.05) among the experimental groups 
(Table  4). The maximum crude protein content was 
found in T2 and T6, followed by T3 and T7, and the 
least crude protein was obtained in the C2 group. The 
higher moisture content was obtained in T2 and T6, 
and the lower levels were found in C2 and T5. On the 
other hand, elevated total lipid levels were recorded in 
C2, T5, and T7 and decreased in T2 and T6.

Effect of weaning strategy on digestive enzymes

The acid and alkaline digestive proteases, amylase, 
and lipase activities in A. testudineus larvae varied 
non-significantly (p > 0.05) between the treatments 
(Table 5).

Effect of weaning strategy on metabolic enzymes

The protein metabolic enzyme activities (AST and 
ALT) and carbohydrate metabolic enzymes (LDH and 
MDH) differed significantly (p < 0.05) (Table 6). The 
highest AST and ALT activities were observed in C2 
(19.55 ± 0.10 and 68.52 ± 0.08, respectively), whereas 
the lowest values were observed in C1 (8.25 ± 0.04 

Table 4   Effects of weaning 
strategy on whole body 
proximate (% wet weight 
basis) of A. testudines 
larvae reared for the period 
of 30 days

Data are expressed as 
mean ± SE (n = 3); mean 
values in the same column 
with different superscripts 
differ significantly 
(p < 0.05)

Treatments Moisture Crude Protein Lipid Total Ash Total Carbohydrate

C1 83.26 ± 0.05de 11.90 ± 0.05e 1.56 ± 0.02 cd 2.37 ± 0.07abcd 0.90 ± 0.06c

C2 82.20 ± 0.09a 10.45 ± 0.07a 2.12 ± 0.01 g 3.41 ± 0.03f 1.83 ± 0.03de

T1 82.98 ± 0.05 cd 11.47 ± 0.04c 1.58 ± 0.01d 2.48 ± 0.13bcd 1.49 ± 0.12d

T2 83.72 ± 0.27f 12.40 ± 0.08f 1.48 ± 0.03a 2.15 ± 0.05a 0.24 ± 0.11a

T3 83.33 ± 0.04de 12.03 ± 0.04e 1.54 ± 0.01bc 2.25 ± 0.12abc 0.84 ± 0.11c

T4 83.15 ± 0.08de 11.68 ± 0.04d 1.58 ± 0.01 cd 2.66 ± 0.04de 0.94 ± 0.04c

T5 82.51 ± 0.05ab 10.74 ± 0.03b 2.02 ± 0.01f 2.82 ± 0.05e 1.92 ± 0.06e

T6 83.40 ± 0.11e 12.37 ± 0.04f 1.51 ± 0.01b 2.19 ± 0.17ab 0.53 ± 0.13b

T7 82.67 ± 0.02bc 11.96 ± 0.01e 1.94 ± 0.02e 2.53 ± 0.03 cd 0.89 ± 0.04c

p-value 0.001 0.001 0.001 0.001 0.001

Table 5   Effects of weaning strategy on activities of digestive enzyme on Anabas testudines larvae reared for the period of 30 days

Data are expressed as mean ± SE (n = 3)
1 Acid protease activity is expressed in U/mg protein/min
2 Alkali protease activity is expressed in millimole of tyrosine released/mg protein/min
3 Amylase activity is expressed in micromole of maltose released/mg protein/min
4 Lipase activity is expressed in U/mg protein/min

Treatment Acid protease1 Alkali protease2 Amylase3 Lipase4

C1 1.49 ± 0.04 1.16 ± 0.03 1.38 ± 0.03 0.87 ± 0.03
C2 1.44 ± 0.02 1.09 ± 0.00 1.33 ± 0.02 0.83 ± 0.02
T1 1.46 ± 0.06 1.12 ± 0.02 1.36 ± 0.02 0.85 ± 0.04
T2 1.53 ± 0.02 1.20 ± 0.03 1.44 ± 0.02 0.93 ± 0.02
T3 1.50 ± 0.04 1.18 ± 0.02 1.41 ± 0.02 0.89 ± 0.03
T4 1.47 ± 0.05 1.15 ± 0.04 1.37 ± 0.03 0.86 ± 0.02
T5 1.45 ± 0.03 1.11 ± 0.02 1.34 ± 0.02 0.84 ± 0.03
T6 1.52 ± 0.02 1.19 ± 0.03 1.42 ± 0.02 0.90 ± 0.03
T7 1.49 ± 0.03 1.17 ± 0.02 1.39 ± 0.02 0.88 ± 0.03
p-value 0.537 0.095 0.060 0.355
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and 59.80 ± 0.08, respectively). Similarly, the high-
est LDH and MDH activities were observed in C2 
(21.79 ± 0.04 and 0.044 ± 0.01), followed by T1 and 
T3 and lower activity was found in C1 (10.76 ± 0.14; 
0.022 ± 0.03) followed by the T2 group.

Effect of weaning strategy on oxidative stress or 
antioxidant enzymes

The antioxidant enzymes viz., SOD (50% inhibition 
of epinephrine auto-oxidation/mg protein/min) and 
CAT (nanomoles H2O2 decomposed / mg protein/
min) significantly varied (p < 0.05) between treat-
ments (Fig.  2). Significantly (p < 0.05) higher SOD 
value was obtained in C2 followed by T1 and T3, 
whereas the least activity was found in C1 and T2. 
Similarly, the CAT value was significantly (p < 0.05) 
highest in C2, followed by T1, and a lower value was 
found in C1, followed by T2 and T6.

Tissue glucose and cortisol level

The glucose (mg/dl) and cortisol (ng/ml) levels sig-
nificantly differed (p < 0.05) among treatments 
(Fig.  3). The significantly lowest (p < 0.05) glucose 
levels found in larvae of C1, T2, T6, and T7, and the 
highest level was found in the C2 followed by T1. 
Significantly (p < 0.05) lower cortisol levels found 

in T2 followed by C1 and reported higher in C2 fol-
lowed by T1, although the larvae of T3 and T4 exhib-
ited comparable cortisol levels (p > 0.05).

Discussion

The primary objective of this investigation was an 
optimization of the weaning strategy with a formu-
lated microparticulate diet (MPD) and live food (LF) 
for a culture of A. testudines larvae. At onset of exog-
enous feeding, the larval digestive system is func-
tional but simple, lacking a true stomach and pyloric 
caeca (Kolkovski 2001). Digestive enzyme activity 
is low or undetectable at an early stage (Mozanzadeh 
et  al. 2021). Major changes in digestive physiology 
occur during metamorphosis from larvae to adults 
in the gut. However, significant functional changes 
happen during the larval phase ((Kolkovski 2001). 
Assessing enzyme activity levels in relation to growth 
and survival data obtained from co-feeding provides 
insights into the most favorable weaning period 
(Yufera et  al. 2012). In some fish species, gradual 
replacement of live food with MPD has shown to be 
an effective weaning approach (Hamre et  al. 2013; 
Biswas et  al. 2022). It is well known that adopting 
larvae on MPD needs a strategy or protocol to adjust 
them to significant morphological, physiological and 

Table 6   Effects of weaning strategy on protein and carbohydrate metabolic enzymes activities in Anabas testudines larvae reared for 
the period of 30 days

Data are expressed as mean ± SE (n = 3); mean values in the same column with different superscripts differ significantly (p < 0.05)
1 AST aspartate aminotransferase; the activity is expressed as nanomoles of oxaloacetate released / mg protein/min
2 ALT alanine aminotransferase; the activity is expressed as nanomoles of sodium pyruvate formed/mg protein/min
3 LDH lactate dehydrogenase; the activity is expressed in U/mg protein/min
4 MDH malate dehydrogenase; the activity is expressed in U/mg protein/min

Treatments AST1 ALT2 LDH3 MDH4

C1 8.25 ± 0.04a 59.80 ± 0.08a 10.76 ± 0.14a 0.022 ± 0.03a

C2 19.55 ± 0.10i 68.52 ± 0.08i 21.79 ± 0.04 g 0.044 ± 0.01f

T1 17.14 ± 0.05 h 54.75 ± 0.12 h 19.38 ± 0.05f 0.041 ± 0.05e

T2 10.44 ± 0.07b 47.62 ± 0.15b 14.48 ± 0.05b 0.026 ± 0.01b

T3 16.92 ± 0.04 g 64.44 ± 0.16 g 18.79 ± 0.41e 0.036 ± 0.04d

T4 15.76 ± 0.05f 52.60 ± 0.11f 17.66 ± 0.08d 0.033 ± 0.09c

T5 14.21 ± 0.05e 57.71 ± 0.08e 16.83 ± 0.11c 0.031 ± 0.06c

T6 11.61 ± 0.10c 53.37 ± 0.30c 14.73 ± 0.11b 0.027 ± 0.02b

T7 12.17 ± 0.05d 57.59 ± 0.01d 16.65 ± 0.24c 0.031 ± 0.01c

p-value 0.001 0.001 0.001 0.001
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behavioral changes (Rao 2003). In contrast, the devel-
opmental stage was a significantly non-dependent 
factor in determining larval development and dietary 
status (Andrade et al. 2012). In the current investiga-
tion, different weaning strategies have shown a sub-
stantial impact on the growing performance and sur-
vivability of A. testudines. Variations in larval size 
are inevitable and can be corrected over the rising 
phase; however, weaning is critical to larval growth 
and survival during the rearing phase (Ali et al. 2003; 
Curnow et al. 2006; Valente et al. 2013; Hung et al. 
2022).

Growth performance and survival

Several studies showed a good effect of live prey on 
the growth performance of various species of aqua-
culture (Conceição et  al. 2010; Singh et  al. 2019; 
Chen et al. 2020). A lack suitable weaning diet dur-
ing initial larval rearing and cannibalism are the 
main constraints for successful larviculture of A. 
testudineus (Morioka et al. 2009; Singha et al. 2015; 
Singh et  al. 2019). In existing investigation, signifi-
cantly (p < 0.05) higher WG and SGR of the larvae 
were found in T2, which might be due to the better 
acceptability of live food at the early stage. The larvae 
lack a well-developed digestive system at their initial 
development stage to digest a formulated diet; hence, 
live food could be considered a better one as it prob-
ably could supply exogenous digestive enzymes for 
synergistic effects with endogenous enzymes (Singh 
et  al. 2019). The findings corroborated the observa-
tions in larvae of African catfish, Clarias gariepinus 
(Verreth and Tongeren 1989; Verreth et al. 1992) and 
Redtail catfish, Mystus nemurus (Kamarudin et  al. 
2011), where feeding fish of appropriate weaning age 
with artificial diet could result in better weight gain 
and SGR. Mir et al. (2018) also reported that Clarias 
magur larvae could exhibit higher SGR and survival 
after weaning with an artificial diet. Kolkovski et al. 
(1997) also demonstrated that the co-feeding of Euro-
pean seabass larvae with formulated feed and live 
food increased growth and nutrient metabolism. In 
the current study, poor growth of larvae in C2 might 
be due to feeding of larvae with artificial feed from 
the first day of an experiment, which probably could 
result in lower feed intake due to low palatability with 
poor nutrient digestibility at early stage of larvae. As 
MPD lacks the endogenous enzyme, which results in 

low feed digestion, it consequently results in lower 
growth of larvae (Cahu and Infante 2001). Similar 
findings were observed in Sand bass Paralabrax mac-
ulatofatofasciatus (Civera-Cerecedo et  al. 2008) and 
Senegalese sole (Engrola et  al. 2007), where larvae 
exhibited poor growth in C1, probably due to limited 
availability of dietary nutrients resulting mobilization 
of nutrient from body reserve for energy production 
and satiation leading to poor growth of larvae. There-
fore, an inadequate weaning strategy may cause poor 
survival as well as growth of larvae (Ma et al. 2012).

The main challenge in A. testudineus larviculture 
is poor survival, lack of proper weaning strategy, and 
cannibalism among larvae (Singha et al. 2015). Previ-
ous outcomes of A. testudineus larval rearing showed 
only 4–16% survival solely feeding on formulated 
diet (Trieu and Long 2001) and 16–28% feeding on 
live food (Morioka et  al. 2009; Singh et  al. 2019) 
during a 15-day period. Furthermore, cannibalistic 
behavior can be developed and it leads to heterogene-
ous growth, leading to reduced survivability of larvae 
(Thanh et  al. 1999). However, Dicentrarchus labrax 
larvae showed low cannibalism after the feeding of 
the artificial feed after the appropriate age (Infante 
and Cahu 1994a, b). Therefore, a weaning strategy 
was optimized in the present study to enhance larval 
survivability and growth. In comparison to control 
groups (C1 and C2), higher survival reported in T7 
and T6 probably could prove that instead of continu-
ous feeding with live food certain co-feeding pat-
terns may enhance larval survivability, as reported 
by Brown et  al. (1997). Lower survival in larvae of 
C1 might be due to a deficiency of certain essential 
nutrients in live food (Segner and Witt 1990; Mejri 
et al. 2021; Grayson and Dabrowski 2022). Moreover, 
the lowest survival in C2 also suggests that feeding 
artificial feed alone can’t sustain larval survival, prob-
ably owing to lower feed intake and nutrient digesti-
bility and, eventually, starvation (Salhi and Bessonart 
2012).

Proximate composition of carcass

Food availability, fish growth and anabolic or cata-
bolic response are all aspects that affect the chemical 
composition of the fish body (Abdel-Tawwab et  al. 
2006). A significant difference (p < 0.05) in carcass 
proximate analysis found in present study and con-
tradicts the findings of earlier findings may be due to 
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variations in feeding regimens, fish stage, type, nutri-
ent digestibility, and research environment. However, 
according to Jafari et al. (2011), there was a consider-
able change in the whole-body composition of Rutilus 
frisii kutum larvae on different feeding regimens.

Effect of weaning strategy on digestive enzymes

There were no significant (p > 0.05) changes detected 
in digestive enzyme response between the treatments. 
In fish larvae, acid protease activity normally emerges 
after the development of a functioning stomach 
(Cahu and Infante 2001; Kolkovski 2001). The cur-
rent research found insignificant acid protease activ-
ity, representing that stomach and acid protease action 
were functional at the end of the experiment. Accord-
ingly, functional intestinal track and pepsin activity 
were found in the sea bass, Lates calcarifer larvae 
at 17 days (Walford and Lam 1993) and in red porgy 
Pagrus pagrus at 30 days (Darias et al. 2005). In lar-
vae, protein assimilations began through alkaline 
proteolytic enzymes at the initial phase (Darias et al. 
2007). The alkali protease activity in larvae was also 
not affected significantly by MPD or live food (Gren-
dell and Rothman 1981; Tseng et  al. 1982; Infante 
and Cahu 1994a, b). The evolution from the early to 
the juvenile stage is assumed to have ended when the 
gut and proteolytic enzyme secretion appear (Govoni 
et  al. 1986). Similarly, amylase and lipase activities 
were non-significant (p > 0.05) in the present work; 
most digestive activity, such as acid protease, alka-
line protease, amylase, and lipase, shows comparable 
patterns (Ribeiro et  al. 1999). A similar pattern has 
also been reported in European sea bass, gilthead sea-
bream, red drum, and black spot sea bream (Moyano 
et al. 1996; Ribeiro et al. 2008). It indicates that once 
their digestive systems are completely formed and the 
larvae have acclimated to the formulated diet, larvae 
are very flexible to various dietary regimes (Pittman 
et al. 2013; Rønnestad et al. 2013).

Effect of weaning strategy on protein metabolism

The protein metabolic activities are indicators of 
nutritional status, growth condition, and stress of ani-
mals, including fish (Pan et  al. 2003; Haridas et  al. 
2017). Increased AST and ALT activities may be 
explained in two ways in relation to growth. Accord-
ingly, increased activities of these enzymes with 

improved growth indicate that apparently produced 
non-essential amino acids participate in cellular 
metabolism in the body, leading to growth, in contrast 
with increased enzyme activity with reduced growth 
indicates oxidation for energy generation may restrict 
growth and at the same time releasing ammonia in 
the environment might create stress in fish. Thus, the 
highest AST and ALT values in the C2 group with 
reduced growth may be because less food ingestion 
and nutrient utilization and leads to energy satiation 
met through oxidation of body protein-derived amino 
acids leading to growth retardation. Similarly, higher 
AST and ALT values follow dietary stress due to low 
acceptability of feed with reduced feed intake in rats 
(Stadler et  al. 2005). The higher AST and ALT lev-
els with higher growth in larvae of certain weaning 
groups than C1 might be due to the participation of 
synthesized amino acids leading to better develop-
ment of larvae. Moreover, the live food-fed group 
probably had a deficiency of some essential amino 
acids, leading to lower growth of larvae (Grayson and 
Dabrowski 2022).

Effect of weaning strategy on carbohydrate metabolic 
enzymes

The LDH and MDH activities also followed a similar 
pattern and were found significantly increasing in C2; 
this might be due to anaerobic oxidation leading to 
large amounts of lactate being released since lactate 
is the preferred substrate for gluconeogenesis to cope 
with stress and produce glucose and therefore LDH 
activity is raised (Chatterjee et  al. 2006). However, 
the C1 group has low LDH and MDH, indicating that 
the live food-fed group had low stress due to better 
acceptability of live food in this group. Also, MDH 
is essential for gluconeogenesis as well as lipogen-
esis, which catalyzes the reversible malate oxidation 
to oxaloacetate in the cytosol (Panepucci et al. 2000). 
The increased MDH activity in fish suggests that 
there is a rising incidence of Kreb’s cycle as a result 
of rising energy demand to overcome stress (Kumar 
et al. 2011). However, lower LDH and MDH activi-
ties in T2 and T6 suggest they adopted a weaning pro-
tocol. Kumar et  al. (2015) showed that MDH activ-
ity was increased in L. rohita fingerlings in response 
to temperature shock than control, implying a higher 
energy requirement during the stress condition.
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Effect of weaning strategy on oxidative stress 
enzymes

The SOD catabolizes the dismutation of superoxide 
radicals to oxygen and hydrogen peroxide and CAT 
converts hydrogen peroxide to oxygen and water 
(Morales et  al. 2004; Pérez-Jiménez et  al. 2007). 
These enzymatic pathways reduce stress and have the 
potential to balance proper oxidation-reduction equi-
librium, ameliorate reactive oxygen species (ROS) 
equilibrium, and save cells from oxidation (Abdel-
Tawwab and Wafeek 2017; Hoseinifar et  al. 2020). 
SOD and CAT activities were significantly (p < 0.05) 
varied between the experimental groups, with C2 
indicating the highest SOD and CAT might be due 
to the higher stress in the larvae that were fed with 
MPD. As a CAT, SOD speeds up the dismutation of 
superoxide anion (Kehrer et  al. 2010). The C1 had 
considerably decreased SOD and CAT compared to 
others due to the exclusive live food fed in this group, 
demonstrating relatively reduced stress. Lim et  al. 
(2002) also reported that the live food-fed fish group 
had much less stress than commercial diet-fed fish.

Glucose and cortisol

Glucose and cortisol are another two major stress 
indicators in fish, and their elevated levels indicate 
stress in fish. As a useful tool for evaluating the 
health status of fish larvae, measuring glucose lev-
els is also a good biomarker for research on second-
ary stress reactions (Wedemeyer 1981). The primary 
glucocorticoid released by interregnal muscle in the 
kidney of teleost fish is cortisol (Iwama et al. 1999). 
The value of glucose and cortisol found to rise in 
fish is an indicator of various stressors (Luz et  al. 
2008; Fiúza et  al. 2015). Elevated levels of cortisol 
and glucose levels were observed in both C2 and T1 
groups, indicating that the larvae fed with an artifi-
cial diet for 30 days and 25 days encountered starva-
tion stress. Similarly, feeding a microdiet to Chinese 
longsnout catfish larvae significantly increases body 
glucose content (Liu et  al. 2012). A considerable 
increase in cortisol levels in the C2 group fed with 
MPD indicates they were under nutritional stress as 
nutritional requirements have not yet fulfilled, which 
is also indicates reduced growth in this group (Yu 
et al. 2019).

Conclusion

The initial phase of larval rearing is a major aspect 
impeding the growth and survival of Anabas tes-
tudineus farming because live food production is both 
costly and nutritionally deficient and it also needs 
specialized production facilities. As a result, optimiz-
ing the weaning protocol to minimize dependency on 
live food is of both technical and economic impor-
tance. The research outcomes suggest that different 
weaning approaches substantially influenced growth 
and survival. Also, proximate composition and enzy-
matic activities associated with digestion, protein, 
and carbohydrate metabolism exhibited significant 
differences among the treatments. Furthermore, anti-
oxidant enzyme activities also displayed variations 
with the control group. The glucose and cortisol lev-
els demonstrated substantial differences among the 
experimental groups. Major findings of the experi-
ment reveal A. testudineus larvae can be weaned after 
13 DPH on formulated feed. The present study also 
concludes that feeding A. testudineus larvae with LF 
for 10  days, then 25% LF replacement by MPD for 
next 5  days, 50% LF replacement by MPD for next 
5 days, 75% LF replacement by MPD for next 5 days, 
and 100% LF replacement by MPD for last 5 days can 
be the best weaning strategy as far as survival (31%) 
is concerned. The implementation of this weaning 
protocol may ensure seed availability for a wide-
spread culture of A. testudineus. Additional research 
is advised to explore the comprehensive understand-
ing of larval nutrition, like molecular level exami-
nation is essential for precise dietary interventions, 
along with the implementation of innovative method-
ologies for investigating the nutritional requirements 
of A. testudineus larvae.
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