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Abstract Gamete production is a fundamental pro-
cess for reproduction; however, exposure to stress, 
such as increased environmental temperature, can 
decrease or even interrupt this process, affecting 
fertility. Thus, the survival of spermatogonial stem 
cells (SSCs) is crucial for the recovery of spermato-
genesis upon stressful situations. Here, we show that 
the Notch pathway is implicated in such survival, 
by protecting the SSCs against thermal stress. First, 
we corroborated the impairment of spermatogenesis 
under heat stress in medaka, observing an arrest in 
metaphase I at 10 days of heat treatment, an increase 
in the number of spermatocytes, and downregula-
tion of ndrg1b and sycp3. In addition, at 30 days of 
treatment, an interruption of spermatogenesis was 
observed with a strong loss of spermatocytes and 

spermatids. Then, the exposure of adult males to 
thermal stress condition induced apoptosis mainly 
in spermatogenic and supporting somatic cells, with 
the exception of the germinal region, where SSCs are 
located. Concomitantly, the Notch pathway–related 
genes were upregulated, including the ligands (dll4, 
jag1-2) and receptors (notch1a-3). Moreover, dur-
ing thermal stress presenilin enhancer-2 (pen-2), the 
catalytic subunit of γ-secretase complex of the Notch 
pathway was restricted to the germinal region of the 
medaka testis, observed in somatic cells surround-
ing type A spermatogonia (SGa). The importance of 
Notch pathway was further supported by an ex vivo 
approach, in which the inhibition of this pathway 
activity induced a loss of SSCs. Overall, this study 
supports the importance of Notch pathways for the 
protection of SSCs under chronic thermal stress.

Keywords Presenilin enhancer-2 · Germline · 
Testis · Medaka

Introduction

Spermatogenesis is a cellular process necessary for 
the formation of male gametes from spermatogonial 
stem cells (SSCs), which proliferate through suc-
cessive synchronous divisions and differentiate into 
millions of spermatozoa (Sz) (La and Hobbs 2019; 
Schulz et  al. 2010). To maintain continuous sper-
matogenesis throughout the male reproductive life, a 
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specialized microenvironment of the testes, known as 
SSCs niche, regulates the properties of self-renewal, 
quiescence, size, or the ability of the SSCs to differ-
entiate and proliferate (Chiarini-Garcia et  al. 2001; 
de Rooij 2017; Kitadate and Kobayashi 2010; La and 
Hobbs 2019; Losick et  al. 2011; Mäkelä and Hobbs 
2019; McIntyre and Nance 2020; Nishimura et  al. 
2016; Nóbrega et  al. 2010). Moreover, the number 
of germ cells is maintained by a fine-tuned balance 
between proliferation and apoptosis, whose regulation 
takes place by genes such as amh (anti-müllerian hor-
mone) or ndrg1b (n-myc downstream regulated gene 
1b), and p53, respectively (Arias Padilla et al. 2021; 
Morinaga et  al. 2007; Ohta et  al. 2003; Rodríguez-
Marí et al. 2010). This ability of the testes to maintain 
the homeostasis in SSCs and the decision among self-
renewal, differentiation, or apoptosis is what allows 
them to survive under adverse conditions (La and 
Hobbs 2019).

Temperature is one of the most relevant environ-
mental factors that directly affects reproduction (Alix 
et  al. 2020). While during early development, it can 
affect the course of gonadal differentiation, in adult 
stages increasing temperature can influence the qual-
ity and quantity of gametes in the testes, thus com-
promising spermatogenesis and ultimately reproduc-
tive success (Blackshaw and Massey 1978; Butzge 
et al. 2021; Hansen 2009; Hayashi et al. 2010; Hutson 
et  al. 2013; Mieusset and Bujan 1995; Sarida et  al. 
2019; Setchell 1998). In mammals, the effects of 
how hyperthermia compromises the different types of 
germ cells have been studied (Carlsen 2003; Hansen 
2009), mainly with focus on apoptosis (Lue et  al. 
1999). In case of teleost fish, which are poikilother-
mic animals, it has been observed that under chronic 
exposure to increasing temperatures, only SSCs 
remain as a remnant, which have the ability to regain 
the germ line (Ito et al. 2008a). This resilient charac-
teristic that allows the fish germ line to overcome a 
stress factor, and the interaction of SSCs in the testes, 
led us to think that the protection of germ cells may 
rely on a protective mechanism that would be specifi-
cally activated by environmental cues.

It was observed that one of the main signaling 
pathways involved in the regulation of the prolifera-
tion and quiescence of different stem cells (Blanpain 
et al. 2006; Conboy and Rando 2002), including pri-
mordial germ cells (PGCs) (Garcia and Hofmann 
2013; McIntyre and Nance 2020; Xavier et al. 2013), 

is the Notch pathway. This is a highly conserved jux-
tacrine signaling pathway and is composed of four 
receptors (Notch 1–4) that interact with their ligands, 
delta 1, 3–4, jagged 1–2 (Bray 2006; Henrique and 
Schweisguth 2019). After binding to the ligand in the 
canonical Notch signal pathway, the receptor is acti-
vated by the γ-secretase complex, where proteolysis 
occurs within the transmembrane domain (Fortini 
2002; Selkoe and Kopan 2003; Zhang et  al. 2000). 
After cleavage, it is translocated to the nucleus where 
it associates with DNA-binding proteins, to activate 
transcription of cis target genes, such as hes1 and 
hes5 (Fischer and Gessler 2007; Kageyama et  al. 
2007). Despite the numerous studies on the Notch 
pathway in the regulation of cell proliferation, little is 
known about its participation in the regulation of the 
proliferation of germ cells under an environmental 
stressor, such as temperature.

On these regard, in a previous study, it was sug-
gested that Pen-2, the catalytic subunit of γ-secretase 
complex, acts as an anti-apoptotic gene, protecting 
spermatogonia from temperature during testis dif-
ferentiation in fish (Fernandino et  al. 2011). This 
catalytic member of the γ-secretase complex has been 
shown to play an important function in the survival 
of cells, protecting them from apoptosis (dos Santos 
et al. 2008). Selective knock-down of pen-2 in devel-
oping zebrafish embryos resulted in strong induction 
of the p53-dependent apoptosis cascade in whole ani-
mal (Campbell et al. 2006). Although the function of 
Pen-2 has been highly studied in brain (Fortini 2002; 
Xia 2019) and cancer (Nowell and Radtke 2017), its 
participation on the gonad has not been fully eluci-
dated. As in teleost fish, it has also been established 
that mammalian germ cells experience apoptosis via 
the p53 cascade during exposure to high tempera-
tures (Ohta et al. 2003); however, as other stem cells 
(Wabik and Jones 2015), germ cells have a protective 
mechanism to avoid the damage induced by apop-
tosis by entering into a transient state of cell-cycle 
called quiescence. Therefore, germ cells must retain 
the appropriate information and totipotency, for later 
recovering the reproduction (Kadekar and Roy 2019).

Based on these antecedents, we considered to eval-
uate the participation of Notch pathway in the mecha-
nism of protection of germ cells against thermal stress 
in medaka Oryzias latipes. In this fish, the niche has 
been well characterized, where SSCs are directly sur-
rounded by Sertoli cells and that undergo asymmetric 
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divisions (Nakamura et  al. 2012; Nishimura et  al. 
2016). Moreover, the induction of high temperature 
exposure on the decrease in the number of germ cells 
has been well reported (Selim et  al. 2009), making 
this species an excellent model to study the effects of 
temperature on SSCs maintenance.

Materials and methods

Source of medaka

All experiments were performed with adults of 
medaka Oryzias latipes from the hi-medaka strain 
(ID: MT835) supplied by the National BioResource 
Project (NBRP). Fish were kept under controlled 
laboratory conditions for this species (Kinoshita et al. 
2012). Briefly, 35 male fish were reared in 10 L fish 
tank at 25  °C ± 1 under a photoperiod of 14  h light 
/10 h of darkness for 2 weeks. Then, for the heat stress 
experiment, the temperature was raised to 33  °C ± 1 
for 30 days. The control group was kept under normal 
conditions of the rearing room at 25 °C ± 1. For sam-
pling, 5 fish from each group had their testes removed 
for subsequent analysis at 3, 10, and 30  days after 
the beginning of the experiment (Fig. 1A). Fish were 
handled in accordance with the Universities Federa-
tion for Animal Welfare Handbook on the Care and 
Management of Laboratory Animals (www. ufaw. org. 
uk) and internal institutional regulations (CICUAE-
UNSAM 17/21).

Ex vivo experiments with DAPT

To carry out ex vivo experiments with the testicular 
sections, fish were anesthetized by cooling on ice 
and then euthanized. The testes were then dissected 
under the stereomicroscope, using sterile forceps and 
scissors. The gonads were removed and placed in 
1  M phosphate buffer saline (PBS) with 1 × strepto-
mycin penicillin (Gibco; Thermo Fisher Scientific™, 
Waltham). They were then rinsed, subsequently cut 
into pieces of about 1 mm, and left in L15 medium 
(Gibco) with antibiotic overnight at 25 °C (Fig. 4A). 
Then, 2 to 4 pieces of testis were placed in each well 
with 1 ml of medium with DAPT (Selleckchem, Hou-
ston), a γ-secretase inhibitor that indirectly inhibits 
Notch, at concentrations of 12.5 µM and 25 µM. The 
control was incubated with DMSO (Sigma-Aldrich; 

Merck, Rahway), at a final concentration of 0.1%, 
which was used as a diluent of DAPT. Incubation was 
performed for 24 h in a stove (Thermo Fisher Scien-
tific™) at 25 °C (NT) or 33 °C (HT) and 5%  CO2.

Total RNA extraction and real-time PCR

Half of each testis was removed from males for gene 
expression analysis. Total RNA extraction was car-
ried out using 300 µL of TRIzol® Reagent (Invitro-
gen; Thermo Fisher Scientific™), according to the 
manufacturer’s instructions. RNA from each sam-
ple (500 ng) was used to cDNA synthesis using the 
SuperScript II enzyme (Invitrogen).

Real-time PCR primers are listed in Table Sup-
plement 1. Gene-specific qPCR was performed using 
the SYBR green master mix (Applied Biosystem; 
Merck). The amplification protocol consisted of an 
initial cycle of 1  min at 95  °C, followed by 10  s at 
95 °C and 30 s at 60 °C for a total 40 cycles. The sub-
sequent quantification method was performed using 
the geometric mean of reference gene values for 
ribosomal protein L7 (rpl7) (Castañeda Cortés et al. 
2019; Zhang and Hu 2007) and elongation factor 
alpha (ef-1a) (Arias Padilla et al. 2021). Additionally, 
the variation of reference gene (rpl-7 and ef-1) was 
analyzed in the in vivo and ex-vivo treatments, show-
ing no differences in temperature treatment and time 
of exposure (Supplementary Fig.  S1A) and DAPT 
exposure and temperature treatment (Supplementary 
Fig. S1B).

Histology, cell quantification, and IF

The remaining half of the testis was sampled for con-
ventional histology and IF; tissues were first fixed in 
Bouin’s solution and processed according to stand-
ard protocols for the preparation of hematoxylin 
and eosin-stained histological sections. Then, they 
were transversally sectioned using a DM 2125RT 
microtome (Leica, Wetzlar, Germany) at 4–5  µm 
thickness.

For cell quantification, we followed our previ-
ous work (Arias Padilla et  al. 2021). Briefly, three 
gonadal sections for each testis (n = 3–4 per sample 
points) were counted, setting the distance between 
each section to avoid counting the same cell twice. 
To reduce technical errors, each section was counted 
twice in all experiments. All the section photographs 
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were taken using an Eclipse E600 microscope (Nikon, 
Tokyo). Then, images were analyzed using the FIJI 
software (https:// imagej. nih. gov/ ij/). Individual cells 
were counted manually with the Cell Counter plugin 
for FIJI. Spermatogonia were counted based on the 

description of Iwasaki et  al. (2009) and spermato-
genic cells following Schulz et al. (2010).

For IF, sections were washed with 0.1  M PBS 
(pH 7.4) and blocked in 0.1 M PBS containing 0.5% 
bovine serum albumin (Sigma-Aldrich) and 0.5% 
Triton X100 for 60 min before overnight incubation 
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at 4  °C with primary antibody, anti-pen-2 antibody 
(1:200, rabbit, LS-C135520, LSBio, Seattle). A neg-
ative control was also run to check the specificity 
without the primary antibody. After incubation, the 
sections were washed twice in PBS and incubated at 
room temperature (RT) for 90 min with Alexa Fluor 
488-conjugated goat anti-rabbit IgG secondary anti-
bodies (Thermo Fisher Scientific™, A-11008) at a 
dilution of 1:2000 in PBS. After incubation, sections 
were rinsed twice with PBS and mounted with Fluo-
romount mounting medium (Sigma-Aldrich) contain-
ing 4’,6-diamidino-2-phenylindole (DAPI, 5  µg/ml, 
Life Technologies; Thermo Fisher Scientific™).

TUNEL assay

The presence of apoptosis in gonad was detected 
through the In situ Cell Death Detection Kit, Fluores-
cein (Roche, Basel). Sections were treated according 
to the manufacturer’s manual, with a step of permea-
bilization with 0.1% Triton X-100, 0.1% sodium cit-
rate in PBS 1X solution. Fluorescein was observed 
under a Nikon Eclipse E600 microscope. For the 
quantification of positive Tunel-positive cells, 2 slides 
per testis were quantified for each individual (n = 3 
per sample points).

RNA in situ hybridization

ISH was performed as previously described (Arias 
Padilla et  al. 2021). Briefly, digoxigenin-labeled 
riboprobes were synthesized from linearized plas-
mid containing the full-length medaka cDNA of oct-
4 (a marker of undifferentiated spermatogonia, also 
known as pou5f1) (Froschauer et al. 2013; Wang et al. 
2011), which was previously cloned into pGEM®-T 
Vector (Promega, Madison). Testicular explants 
from ex  vivo treatments were fixed overnight in 4% 
RNAse-free paraformaldehyde (PFA) at 4  °C, per-
meabilized using 20  µg/µl proteinase K at RT, and 
hybridized at 68 °C overnight with oct-4 digoxigenin 
(DIG)-labeled RNA probes. Hybridized probes were 
detected using an alkaline phosphatase–conjugated 
anti-digoxigenin antibody (1:2000; Roche) in the 
presence of nitro blue tetrazolium/5-bromo-4-chloro-
3′-indolyphosphate substrates (Roche). Stained tes-
ticular explants were embedded in gelatin, cryostat 
sectioned at 14–16 µm thickness and photographed.

Statistical analysis

Values are presented as mean ± standard error of the 
mean (SEM) for continuous variables and as per-
centages for categorical variables. Fold change and 
statistical analysis of RT-qPCR quantifications were 
performed using geometric mean in the FgStatistics 
software, based on the comparative gene expres-
sions method (Pfaffl 2001). Statistical analyses were 
performed using Prism 9 (GraphPad Software, San 
Diego). Continuous variables were compared by 
one-way analysis of variance (ANOVA), followed by 
Tukey’s multiple comparisons test, for comparing the 
mean of each group. Continuous variables were com-
pared between two groups by the unpaired two-tailed 
Student’s t-test. All differences were considered sta-
tistically significant for p < 0.05.

Results

Inhibition of spermatogenesis in males reared at high 
temperature

In this first step, the spermatogenesis process was 
analyzed in  vivo in adults, by keeping adult males 
at normal (NT — 25  °C) or high temperature (HT 

Fig. 1  Inhibition of spermatogenesis in males reared at high 
temperature. Experimental design: The spermatogenesis was 
analyzed in adults reared at normal (NT — 25 °C, light grey) 
and high (HT — 33  °C, dark grey) temperature for 30  days 
(A). Histology: Transversal sections of testis stained with 
hematoxylin and eosin (H&E) of adult male reared at HT for 
0 (and control), 3, 10, and 30 days (B). Spermatogenesis cells 
quantification: Number of spermatogonia (SGs: type A undif-
ferentiated spermatogonia and type A differentiated spermato-
gonia as SGa; type B spermatogonia as SGb), number of cysts 
with SGs, number of spermatocytes (leptotenic/zygotenic 
primary spermatocytes; pachytenic primary spermatocytes; 
diplotenic spermatocytes/metaphase I) and number of sper-
matids (early, intermediate and final spermatids) (C). qPCR: 
Quantification of amh, ndrg1b, and sycp3 transcript abundance 
at 10 days in testis of males reared at NT and HT (D). Sper-
matogenic cell quantifications were compared by one-way 
analysis of variance (ANOVA), followed by Tukey´s multi-
ple comparisons test, for comparing the mean of each column 
with the mean of every other column. For transcript abundance 
quantification amh, ndrg1b, and sycp3 values were normal-
ized against geometric mean of reference genes rpl7 and ef-1a. 
Continuous variables were compared between two groups by 
the unpaired two-tailed Student’s t-test. All differences were 
considered as statistically significant for P < 0.05. Scale bar 
represents 20 µm

◂
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— 33 °C) for 30 days (Fig. 1A). Initially, the response 
of medaka to heat treatment was analyzed by histol-
ogy of the testes. It was observed that the number of 
spermatogonia (SGs: type A undifferentiated sper-
matogonia and type A differentiated spermatogonia 
as SGa; type B spermatogonia as SGb) as well as 
the number of cysts with SGs did not change during 
treatment (Fig.  1B, C). Moreover, the inhibition of 
proliferation of SGa and SGb was supported by the 
upregulation of amh, a well-known regulator of germ 
cell proliferation (Morinaga et  al. 2007; Ohta et  al. 
2003; Rodríguez-Marí et al. 2010), at 10 days of heat 
treatment (threefold compared to NT) (Fig. 1D).

On the other hand, we observed an increase in 
the number of spermatocytes (leptotenic/zygotenic 
primary spermatocytes; pachytenic primary sper-
matocytes; diplotenic spermatocytes/metaphase I) 
at 10 days, with a reduction in number at 30 days of 
heat treatment (Fig. 1A, C). Moreover, ndrg1b, char-
acterized as a negative regulator of cystic germ cell 
proliferation (Arias Padilla et  al. 2021), was down-
regulated at 10 days of heat treatment (Fig. 1D), cor-
relating with the increase of spermatocyte number 
(Fig. 1C). In this regard, the spermatogenesis marker 
sycp3 (synaptonemal complex protein 3), which has 
been associated with metaphase I of spermatogenesis 
in medaka (Iwai et  al. 2006; Yuan et  al. 2000), was 
downregulated, in accordance with the reduction in 
the number of spermatids (early, intermediate, and 
final spermatids) observed at 10  days of heat treat-
ment (Fig. 1B, C, D).

Apoptosis of testis germ line at high temperature

To be able to determine the fate of germ cells loss in 
response to heat, the occurrence of apoptosis in the 
heat-treatment was evaluated. The apoptotic pathway, 
quantified by p53 and bcl2 transcript abundances, 
showed an upregulation in HT testis at 10 days (0.5-
fold of p53 and twofold of bcl2) in relation to NT 
(Fig. 2A), suggesting that the heat-treatment induced 
apoptosis. Finally, the analysis of apoptosis in the 
germ line by TUNEL assay showed an increased 
number of TUNEL-positive cells at 10 days of treat-
ment (40-fold; Fig. 2B, C). Moreover, at 30 days, the 
number of TUNEL-positive cells was higher com-
pared to the control group (80-fold; Fig. 2B–C). This 
greater number of apoptotic cells were found in the 
medullar region of the testis, whereas no apoptotic 

cells were observed in the distal portion of the tubule 
(Fig. 2C), where SGa are localized (see below).

Identification of Pen-2 in adult testis

To better understand the regulators of germ cell (GC) 
number maintenance during heat treatment, the Notch 
pathway, one of the main signaling pathways involved 
in the regulation of the proliferation and quiescence 
of different stem cells (Blanpain et al. 2006; Conboy 
and Rando 2002), was evaluated. As a first step, the 
presence of Pen-2, the catalytic subunit of γ-secretase 
complex, was characterized in adult testes maintained 
at NT, observing Pen-2 positive cells in the distal por-
tion of the testis lobule, which comprises the germi-
nal region where the SSCs are located (Fig. 3 A, B). 
To verify the co-localization of Pen-2 with SGa, an 
ISH with oct-4 riboprobe was performed. Immune 
reactive-Pen2 (Ir-Pen-2) cells were observed in 
somatic cells surrounding SGa (oct-4 positive cells) 
(Fig. 3 C, D), indicating that Pen-2 is expressed most 
likely in Sertoli cells.

Upregulation of gonadal Pen-2 at high temperature

After characterizing the localization of Pen-2 in the 
testis, the next step was to analyze its expression dur-
ing thermal treatment. The expression of Pen-2 (tran-
script and protein) was then analyzed in an in  vivo 
adult treatment, by keeping adult males at NT and 
HT for 30 days (Fig. 3 F). Firstly, we quantified the 
transcript abundance of Notch pathway-related genes, 
such as pen-2 and hes-1 (a well-known Notch effec-
tor) (Henrique and Schweisguth 2019). In the heat 
treatment, both genes were upregulated at 3 (pen2 
1.5-fold and hes1 2.5-fold) and 10  days (pen2 and 
hes1 twofold at HT respect to NT) of treatment, 
showing no differences at the end of the experiment 
(30  days) compared to NT (Fig.  3  E, F). Moreover, 
no differences in pen-2 and hes1 transcript abun-
dance were observed at NT between sampling days 
(Fig. 3 E, F).

Additionally, the localization of the Pen-2 in tes-
tis of fish reared at high temperature was character-
ized (Fig. 3 G–J). At the beginning of treatment (NT 
— 0 days), Pen-2 showed expression in somatic cells 
surrounding SGa of the distal portion of the lobule 
and in the medullar region of the testis (Fig. 3 G, G′). 
Under high temperature treatment, the expression of 
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Pen-2 was restricted to the distal portion of the lob-
ule, where the SGa are localized (Fig. 3 H–J, 3H′–J′).

Activation of Notch pathway in testis under high 
temperature treatment

Taking into account the upregulation of Pen-2/pen-2 
and hes1, two key players in the Notch pathway, in 
testes kept at high temperature, the transcript levels 
of ligands and receptors of this pathway were meas-
ured at 10  days of treatment. The transcript abun-
dance of the receptors notch-1a and notch3 (Fig. 4A, 
B), as well as the ligands dll4, jag1a, jag1b, and jag2 
(Fig.  4C–F), was upregulated at high temperature 
compared to the control. In contrast, jag2b did not 
show any difference between NT and HT at 10 days 

of treatment (Fig. 4G). This upregulation of receptors 
and ligands upon temperature treatment supports the 
activation of the Notch pathway in testis upon heat 
stress.

Inhibition of Notch pathway in ex vivo testis explants 
at high temperature

Based on the upregulation of Notch pathway and the 
restricted expression of Pen-2 in the germinal region 
of the distal lobule, our next step was to inhibit this 
pathway under high temperature treatment. Given 
the complexity of the Notch pathway and the way 
it affects the fate of many cell types in different tis-
sues (Campbell et al. 2006), an ex vivo testis explants 
approach was used to analyze the protective role of 

Fig. 2  High temperature induces apoptosis in testis germ line. 
Apoptotic pathway: Quantification of p53 and bcl2 transcript 
abundance at 0, 3, 10, and 30  days in testis of males reared 
at normal (NT — 25 °C, light grey) and high (HT — 33 °C, 
dark grey) temperature (A). Apoptotic cells: quantification of 
apoptotic cells by TUNEL assay at different sampling time and 
thermal treatment (B). TUNEL assay: Transversal section of 
the testis with TUNEL assay showing apoptotic cells (green) 
and nuclei stained with DAPI (blue) at 0 (and control), 3, 10, 

and 30  days (C). For transcript abundance quantification p53 
and bcl2 values were normalized against geometric mean of 
reference genes rpl7 and ef-1a. Apoptotic cell quantifications 
were compared by one-way analysis of variance (ANOVA), 
followed by Tukey’s multiple comparisons test, for comparing 
the mean of each column with the mean of every other column. 
P-values are indicated when differences between treatment at 
the same sampling day differ significantly (P < 0.05). NS, not 
statistically significant. Scale bar represents 20 µm
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this cell-to-cell signaling (Fig. 5A). Initially, apopto-
sis was induced from 3 h of exposure, with an upreg-
ulation in p53 (Supplementary Fig. S2A). Moreover, 
no differences were observed in p53 transcription 
between 3, 12, and 24  h of high temperature expo-
sure, taking the last one to the following ex  vivo 
experiment. Additionally, a dose-dependent response 
showed the highest conditions for blocking the Notch 
action ranged between 12.5 (moderate downregula-
tion of hes1) and 25 µM (high inhibition of hes1) of 
DAPT (Supplementary Fig. S2B).

Finally, as we had previously observed hes1 
expression in testicular explants is upregulated at 
high temperature; however, when testicular explants 
subjected to high temperature are treated with the 
Notch pathway inhibitor DAPT, a loss of hes1 upreg-
ulation was observed (Fig.  5B), showing that Notch 
pathway response was inhibited. Moreover, the 

expression of the stem cell marker oct-4 was only 
affected by temperature treatment, showing an upreg-
ulation (Fig.  5C). Interestingly, in the temperature 
with DAPT treatment, a reduction of these levels was 
observed in testicular explants, presenting levels simi-
lar to the control treatment. This suggests a reduction 
of SGa and a protective effect of Notch on germ cell 
fate under heat stress.

Discussion

The sustainability of spermatogenesis is mainly 
brought about by a decision between two types of 
division, self-renewal of themselves for the main-
tenance of the stem cell pool or the differentiat-
ing division for continuous production of sperma-
tozoa. In the present study, we demonstrated that 

Fig. 3  Pen-2 is upregulated during thermal treatment in male. 
Transversal sections of the distal portion of the testis lobule 
in adult males reared at NT, with Pen-2 expression (green, 
immunofluorescence, IF) and nuclei stained with DAPI (blue) 
(A, B). Co-localization of Pen-2 (green, IF) with oct-4 (blue, 
in situ hybridization) (C, D). Notch pathway: transcript abun-
dance levels of pen-2 and hes1 at of 0, 3, 10, and 30 days of 
treatment. (E–F). IF of Pen-2 (green) in testis of male reared at 
HT at 0 (G), 3 (H), 10 (I), and 30 (J) days of thermal treatment, 
and nuclei stained with DAPI (blue). Magnification of each 

testis (doted orange line) at different sampling time at 0 (G′), 3 
(H′), 10 (I′), and 30 (J′) days of thermal treatment. SGa is indi-
cated with arrowhead (G′–J′). Transcript abundance quantifica-
tion was performed using the geometric mean method and pen-
2 and hes1 values were normalized against geometric mean of 
reference genes rpl7 and ef-1a. P-values are indicated when 
transcript abundance between treatment at the same sampling 
day differs significantly (P < 0.05). NS, not statistically signifi-
cant. Scale bars represent 20 µm
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exposure to high temperature in adult medaka 
males induces the loss of spermatogenesis, observ-
ing an initial arrest in metaphase I with a final loss 

of spermatogenic cells, with the exception of GCs. 
Moreover, in the germinal region of the testis, 
where SSCs are located, the activation of the Notch 

Fig. 4  Notch pathway is 
upregulated in testis at 
10 days of heat treatment. 
Transcript quantification 
of different Notch pathway 
receptors (notch1a, 3; A–B) 
and ligands (dll4, jag1a-b, 
jag2-2b; C–G) at 10 days 
in testis of males reared 
at normal (NT — 25 °C, 
light grey) and high (HT — 
33 °C, dark grey) tempera-
ture. Transcript abundance 
quantification was per-
formed using the geometric 
mean method and notch1a, 
3, dll4, jag1a-b, and jag2-
2b values were normalized 
against geometric mean of 
reference genes rpl7 and ef-
1a. P-values are indicated 
when transcript abundance 
between treatment at the 
same sampling day differs 
significantly (P < 0.05)

Fig. 5  Notch pathway protects type A spermatogonia from 
heat-induced loss. Experimental design of ex  vivo approach, 
in which adult testis explants were incubated during 24  h 
at control (NT — 25 °C, light grey) and high (HT — 33 °C, 
dark grey) temperature with DAPT (γ-secretase inhibitor; 12.5 
and 25 µM) in triplicates (A). Transcript abundance levels of 
hes1 (B, Notch pathway cis target genes) and oct-4 (C, stem 

state marker gene) at different treatments. Transcript abun-
dance quantification was performed using the geometric mean 
method, and hes1 and oct-4 values were normalized against 
geometric mean of reference genes rpl7 and ef-1a. P-values are 
indicated when transcript abundance between treatment at the 
same sampling day differs significantly (P < 0.05)
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pathway was observed. Additionally, the inhibition 
of this pathway under thermal stress triggered a 
fast impairment of spermatogenic germ stem cells, 
supporting that the activation of the Notch pathway 
is essential for the maintenance of the germ line 
(Supplementary Fig. S3), what could ensure the re-
establishment of the spermatogenic cycle.

Although increasing temperatures promote sper-
matogenesis by differentiation of spermatogonia 
(Alvarenga and França 2009), prolonged persistence 
at high temperatures causes reduction in the sper-
matogenic cell line due to an increase in apoptosis 
in most cells (Ito et al. 2008b; Rockett et al. 2001), 
with the exception of type A spermatogonia (Ito 
et al. 2008a, b; Majhi et al. 2009). These stem cells 
are kept in a quiescent state, a strategy that protects 
them from stress by inhibiting differentiation-acti-
vating signals, either intrinsic or through cell-to-
cell interactions (Chen et al. 2017; Liao et al. 2014; 
Zhou et al. 2017). For this reason, the interpretation 
of the mechanism that allows these cells to persist 
during stress would have important implications 
for understanding the reduction of male fecundity, 
sperm quality, or even infertility. In our experimen-
tal model medaka, thermal stress showed to induce 
the loss of spermatogenic line, from spermatocytes 
to spermatozoa. The induction of apoptosis was 
earlier observed by the upregulation of apoptotic-
related genes, such as p53 and bcl2, indicating that 
both the apoptotic and anti-apoptotic pathways are 
active under temperature stress. Interestingly, Notch 
pathway has been observed to protect different cells 
from apoptosis (Chadwick et  al. 2010; Zetterberg 
et  al. 2006). Moreover, the protective action of 
apoptosis from Notch was corroborated in zebrafish 
embryos using morpholinos against pen-2, and as 
in our work, using DAPT as an inhibitor of this 
γ-secretase complex (Zetterberg et  al. 2006). On 
this regard, we observed apoptotic cells mainly in 
the medullary region of the testis, but not in the dis-
tal portion of the lobule, where SSCs are localized. 
In addition, an impairment of SGa upon treatment 
with the Notch pathway inhibitor was observed 
under heat treatment, due to a decrease in oct-4, 
possibly due to differentiation of SGa into SGb. 
These results suggest that SGa are less susceptible 
to apoptosis than other germ cells, further suggest-
ing the existence of a protective mechanism of SGa 
differentiation under heat stress.

Related to apoptosis, in our experiments, we 
observed a large difference in the time course of 
apoptotic response to temperature between in  vivo 
and ex  vivo experiments. These differences in 
response could rely on the fact that exposure in a 
whole organism presents different regulations that 
does tissue culture, both at the cellular and paracrine 
levels, as well as at the systemic and endocrine levels, 
which implies a limitation in ex vivo exposure experi-
ment. The whole organism presents different strate-
gies to cope with a rise in temperature at the systemic 
level, such as the elevation of cortisol through a cer-
ebral translation by corticotropin-releasing hormone 
(Crh), for the synthesis of this glucocorticoid in the 
adrenal/interrenal, and its modulatory action in the 
organs target, such as the gonad (Wang et al. 2011); 
e.g., it has been observed in fish like Japanese eel and 
pejerrey that a rise in temperature is accompanied 
by an increase in cortisol, the major stress hormone, 
through the activation of Crh in the brain (Fernandino 
et al. 2012; Mommsen et al. 1999; Ozaki et al. 2006). 
This increase in cortisol produces a concomitant 
elevation in androgen levels, as a secondary effect, 
which promotes an initial increase in spermatogen-
esis (Mommsen et al. 1999; Ozaki et al. 2006). Then, 
under chronic thermal stress, this effect decreases and 
an increase in apoptosis can be detected, as in our 
study, as well as in experiments carried out in other 
species (Ito et al. 2008a). In contrast, the ex vivo cul-
ture does not present these homeostatic modulations 
to external factors, so its responses can be acceler-
ated by direct contact with the stressor, in this case 
temperature. Always bearing in mind the limitations 
of ex vivo approach, the combination of in vivo and 
ex  vivo experiments has allowed us to elucidate the 
regulation of the Notch pathway in the protection of 
SGa against an increase in temperature, a mechanism 
that takes on greater relevance in the present scenario 
of global warming/climate change.

In the present work, we analyzed the expres-
sion of the Notch pathway member Pen-2, a pro-
tein of the γ-secretase complex that is essential 
for the correct cleavage and signal transduction 
inside the cell (Zhang et  al. 2000). During thermal 
stress, pen-2 was highly expressed and, interest-
ingly, restricted to the distal portion of the lobule 
surrounding SSCs, presumptively in Sertoli cells 
(Alix et  al. 2020; Nishimura et  al. 2016; Schulz 
et  al. 2010). On this regard, our observation would 
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establish a cell-to-cell communication that protects 
the SSCs from high temperature-induced apopto-
sis, with the Notch pathway holding an important 
role in such protective mechanism. Besides the 
germ cell protection, the Notch signaling has been 
related to the regulation of self-renewing state and/
or prevention of differentiation of SSCs through 
the regulation of Nanos2, Stra8, Bcl6b, Cxcr4, and 
other genes in  Aundiff spermatogonia (Chen et  al. 
2005; Garcia et  al. 2014, 2017; Oatley et  al. 2006; 
Sada et al. 2012). Notch negative regulation occurs 
through the activation of Jag1 (jagged 1) expression 
in germ cells expressing Jag1 (Garcia et  al. 2014, 
2017; Mäkelä and Hobbs 2019), a ligand that was 
highly expressed in our study on thermal treatment 
in medaka. In case of the receptor NOTCH1, it is 
expressed in undifferentiated germ cells and Ser-
toli cells of mouse testis, whereas the ligand Dll4 
is ubiquitously expressed in germ cells and in some 
Sertoli cells (Murta et al. 2013). During embryogen-
esis, the constitutive activation of NOTCH1 signal-
ing in Sertoli cells caused the exit of gonocyte from 
the quiescence status (Garcia et  al. 2013). In flies, 
Notch signaling directly controls germline stem cell 
development and maintenance (Kimble and Crit-
tenden 2007; McIntyre and Nance 2020), reinforcing 
the importance of cell-to-cell Notch signaling in the 
regulation of germ cell differentiation. In this regard, 
our results support a strong link between the activa-
tion of the Notch pathway and the inhibition of sper-
matogenesis by increasing temperature. Moreover, 
the inhibition of SGa proliferation was observed at 
a cellular level by the loss of the sperm lineage, and 
also molecularly by the increase of genes related to 
the inhibition of germ cell proliferation in fish, such 
as amh (Morinaga et al. 2007). Moreover, an initial 
increase in spermatocyte proliferation is observed 
with increasing temperature, which is corroborated 
by a decrease in the cystic proliferation inhibitor 
ndrg1b (Arias Padilla et  al. 2021). However, these 
spermatocytes are arrested in metaphase I, as also 
corroborated by a decrease of sperm markers, such 
as sycp3 (Iwai et al. 2006; Yuan et al. 2000). How-
ever, if exposure to high temperatures persists, a 
drastic decrease in the number of spermatocysts and 
spermatids is observed, resulting in a testis with a 
limited number of remnants spermatogonia. Inter-
estingly, although our results in medaka support the 
activation of the Notch pathway, including receptors, 

ligands, γ-secretase, and the respective effectors of 
this pathway, the activation of Notch signals seems 
to work in the opposite direction to that described 
above, wherein the input signal (high temperature) 
seems to be sensed by SGa while the output seems 
to be in the somatic cells with a high expression of 
Pen-2, presumably Sertoli cells (Nishimura et  al. 
2016). This differential activation by temperature 
in medaka would promote the protection through a 
state of quiescence and the concomitant inhibition of 
SGa differentiation (Supplementary Fig. S3) by the 
suppression of spermatogenesis.
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