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Abstract This study aimed to analyze the cold stress
effects (in terms of hematology, energy reserves, and
oxidative stress) inPiaractus mesopotamicus (pacú) and
their mitigation by a Pyropia columbina red seaweed-
supplemented diet. For this purpose, juvenile fish were
fed with a control (CD) or a red seaweed-supplemented
diet (RD) for 60 days, and then, the animals were
exposed to a low temperature (14 °C) and a control
temperature (24 °C) for 24 h. The cold shock generated
an increase of hemoglobin levels in fish fed with both
diets. In CD-fed fish, plasmatic triglycerides, cholester-
ol, and hepatic glycogen decreased after the thermal
shock; meanwhile, the animals fed with RD showed
decreased hepatic proteins, but increased cholesterol
and hepatic glycogen. Regarding oxidative stress, anti-
oxidant enzymes augmented their activity in the liver,
intestine, and gills; meanwhile, lipid oxidative damage
was observed in the liver and intestine of fish exposed to
14 °C and fed with both diets. Pacú was sensitive to cold
shock, but no mitigation effects were observed in fish
fed with the supplemented diet. Further research should
target higher concentrations of P. columbina in supple-

mented diets to take advantage of this valuable resource.
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Introduction

Temperature is an important stress factor in fish aqua-
culture since its changes could disrupt biochemical re-
actions and physiological functions (Wen et al. 2017).
However, most of the studies took into account biolog-
ical aspects of fish after long periods of exposure to
constant temperatures, and there is a lack of available
information considering short-term variations and stress
biomarker responses like metabolic parameters (Pinto
et al. 2019). Particularly, cold shock (natural or anthro-
pogenic) in fish is a common stress situation which
occurs when fish have been acclimated to a specific
water temperature or range of temperatures and are
subsequently exposed to a rapid decrease in tempera-
ture, resulting in a cascade of physiological and behav-
ioral responses and, in some cases, death (Donaldson
et al. 2008).

Temperature under the optimum limits of a species
could negatively influence the health status and increase
susceptibility to diseases (Ahmad et al. 2011). Changes
in hematological parameters have been proposed as easy
detectors and excellent biomarkers of the health status of
fish to represent early diagnosis of pathological disor-
ders generated by variable temperatures (Pinto et al.

https://doi.org/10.1007/s10695-021-00944-7

Analía Ale and Carla Bacchetta contributed equally to this work.

A. Ale : C. Bacchetta (*) :A. S. Rossi : P. A. Scarabotti :
J. Cazenave
Instituto Nacional de Limnología, CONICET, UNL, Paraje El
Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
e-mail: carlabacchetta@yahoo.com.ar

A. S. Rossi : P. A. Scarabotti : J. Cazenave
Facultad de Humanidades y Ciencias, UNL, Paraje El Pozo,
Ciudad Universitaria UNL, 3000 Santa Fe, Argentina

/ Published online: 16 March 2021

Fish Physiol Biochem (2021) 47:829–839

http://crossmark.crossref.org/dialog/?doi=10.1007/s10695-021-00944-7&domain=pdf


2019). Moreover, thermal stress causes homeostasis
modifications which can be evaluated via fish energy
reserves (Wang et al. 2012; Nobrega et al. 2019). Lastly,
it is widely reported that low water temperature in-
creases endogenous reactive oxygen species (ROS)
and trigger DNA, protein, and lipid damage (Cheng
et al. 2018).

In order to cope with the prevalence and appearance
of new diseases and overcome obstacles to sustainable
aquaculture, fish nutrition is recognized to be one of the
most important topics in management of fish farming.
Thus, increasing attention has been given to the devel-
opment of nutritional strategies that could mitigate the
deleterious effects of stressors associated with aquacul-
ture practices (Gasco et al. 2018). Functional diets have
become a suitable alternative for the inclusion of natural
ingredients which tend to be more biodegradable than
synthetic ones and are less likely to generate resistance
(Muñoz et al. 2018).

There are several reports which tested different kinds
of supplemented diets. In a recent study, mitigation
effects by β-carotene-supplemented diet on physiolog-
ical and antioxidant biomarkers were analyzed in
Piaractus mesopotamicus exposed to 14 °C (Bacchetta
et al. 2020). In Cyprinus carpio fish, a diet supplement-
ed with myrcene and menthol reduced the adverse ef-
fects of ammonia in terms of tissue damage and anemia
(Hoseini et al. 2019). Another study showed that a diet
supplemented with cottonseed meal and exogenous pro-
tease improves growth, nutrient assimilation, and hema-
tology parameters in Nile tilapia (Hassaan et al. 2019).
Other authors found that synthetic astaxanthin supple-
mentation improved antioxidant activity and resistance
to thermal stress in fish (Goda et al. 2018; Cheng et al.
2018).

Dietary algae as feed additive for fish has proved to
have many benefits like acceleration of ascorbic acid
and improvement of physiological conditions in relation
to vitamin C nutrition and lipid metabolism (Nakagawa
1997). Besides, seaweeds are considered a valuable
food source that contains high levels of proteins, dietary
fibers, well-balanced amino acid profile, and significant
amounts of vitamins, omega-3 fatty acids, pigments, and
minerals (Burtin 2003; Ngo et al. 2011). In this way,
there have been growing commercial interests regarding
seaweed diet supplementations in most aquatic species
and in many land-farmed animals (Sotoudeh and
Mardani 2017). However, up to date, there is still lack
of studies that have focused on the evaluation of micro-

or macroalgae as dietary supplements for fish despite
their abundance and easy availability in nature
(Teimouri et al. 2019).

Pyropia columbina is a red seaweed with high eco-
nomic interest, usually found on hard substrates in Pat-
agonia Argentina coasts. It was demonstrated that
P. columbina has bioactive compounds with antioxidant
properties (Cian et al. 2014, 2016).Moreover, Cian et al.
(2019) found that a supplemented diet with this seaweed
improved antioxidant status, promoted higher iron bio-
availability, and had a lipid-lowering effect in juvenile
fish (P. mesopotamicus). Another study showed that
At l an t ic sa lmon (Salmo salar ) fed wi th a
P. columbina-based feed improved their immune sys-
tem based on the expression of immune-relevant genes
and white blood cell lysozyme expression (Muñoz et al.
2018).

P. mesopotamicus (commonly named pacú) repre-
sents a worldwide important resource for fisheries and
aquaculture because of its potential of rustic manage-
ment, good growth rates, and acceptance in the consum-
er market. Besides, its herbivorous/omnivorous habits
represent an excellent attribute to deal with feed restric-
tions (Barbieri and Vigliar Bondioli 2013; Claudiano
et al. 2019). Optimal range for pacú culture is 20–28 °C,
as such, it has been a challenge for farmers to deal with
cold temperatures in winter like poor growth perfor-
mance and low survival rates (Bacchetta et al. 2020).
As aquaculture systems are commonly challenged to
deal with cold stress, this study aimed to evaluate he-
matological, energetic, and oxidative stress parameters
in P. mesopotamicus after a cold-shock exposure and
the mitigation effects in fish fed with a Pyropia
columbina red seaweed-supplemented diet.

Materials and methods

Diets

The formulation and chemical composition of both con-
trol (CD) and red seaweed (Pyropia columbina)-supple-
mented (RD) diets are detailed in Table 1. The CD
ingredients consisted of commercial cornmeal (613 g
kg−1), soybean meal (200 g kg−1), bovine plasma pro-
tein concentrate (130 g kg−1), cornstarch (20 g kg−1),
vitamin-mineral mix (7 g kg−1), and canola oil (30 g
kg−1). In the case of RD, the ingredients were the same
as CD but 35 g kg−1 of cornmeal was replaced with
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P. columbina. The level of red seaweed inclusion was
selected according to a previous study of Cian et al.
(2019), where the production of the RD-based diet is
also described. From the raw P. columbinamaterial, the
samples were washed in distilled water, dried at 100 ± 4
°C, and ground up into a particle size lower than 1 mm
using a laboratory hammer mill (Retsch, Haan, Germa-
ny). The powder obtained was passed through a 20-
mesh sieve (0.85 mm) and stored at 4 °C in plastic bags
until analysis or diet formulation.

Fish and feeding assays

All assays were conducted in the Aquaculture Labora-
tory at the Instituto Nacional de Limnología
(CONICET-UNL, Argentina). Juvenile Piaractus
mesopotamicus fish were purchased from a local fish
farm (Pez Campero, Argentina) (N = 210; 7.0 ± 0.5-cm
standard length; 12.2 ± 2.5 g). Firstly, fish were accli-
mated to laboratory conditions for 2 weeks at controlled
temperature (24 ± 1 °C). Then, the animals were divided
in 35 individual groups per 300-L tanks and fed with
CD or RD twice a day at a rate consisted of 5% biomass
weight per day. The feeding assay lasted 60 days. All
treatments were replicated three times with the consent
of the national and institutional guidelines for the pro-
tection animal welfare (CONICET 2005).

Low temperature exposure

The thermal-stress exposure was defined at 14 °C, as 7–
7.5 °C is considered the lethal temperature for
P. mesopotamicus according to Milstein et al. (2000).

Artificial climate chambers were employed for exposing
fish fed with CD or RD (n = 18 per diet) to control (24 ±
0.1 °C) or cold temperature (14 ± 0.1 °C) in 10-L
aquaria (n = 3 per aquarium, in triplicate). After 24 h,
animals were anesthetized with 100 mg L−1 of benzo-
caine (Parma de Croux 1990). Then, blood was taken
from the caudal peduncle according to Reichenbach-
Klinke (1980) to measure hematological parameters.
Lastly, the fish dissection was performed, and the liver,
intestine, gills, and muscle were extracted and stored at
−80 °C.

Hematological parameters

The following parameters were measured from blood
samples of fish (n = 9): red blood cell count (RBC),
hematocrit (Ht) through the micro-method, and hemo-
g lob in concen t r a t i on (Hb) employ ing the
cyanmethemoglobin method (Houston 1990). From
those values, the hematimetric indexes were calculated
as proposed by Cazenave et al. (2005): mean cell vol-
ume (MCV = Ht × 10/RBC), mean cell hemoglobin
(MCH = Hb × 10/RBC), and mean cell hemoglobin
concentration (MCHC = Hb × 100/Ht).

Blood metabolites and energy reserves in the liver
and muscle

Plasmatic total protein, triglycerides, cholesterol, and
glucose levels (n = 9) were measured employing color-
imetric commercial kits tested in dish (Wiener Lab®).
Total plasma protein concentration was measured by a
kit reagent containing EDTA/Cu complex in an alkaline
medium that reacts with peptide bonds to yield a purple-
blue complex. Plasma levels of total cholesterol and
triglycerides were analyzed by using standard
enzymatic-colorimetric test, and finally, plasma glucose
was assayed by a colorimetric test based on the glucose
oxidase method (Rossi et al. 2017).

In the liver and muscle, glycogen, total proteins, and
lipid contents (n = 6) were quantified. Glycogen was
measured according to Seifter et al. (1950). Briefly,
20 mg of hepatic and 60 mg of muscle tissues were
treated with 1 ml KOH 30% and 0.5 ml KOH 60% at 10
°C. After alkaline tissue disruption, glycogen was pre-
cipitated by ethanol, and glucose was determined using
the anthrone reagent method. Lipid content was extract-
ed using chloroform: methanol (2:1) by the method
described by Folch et al. (1957), and total protein

Table 1 Composition of the control (CD) and red seaweed-
supplemented (RD) diets

Components (g kg−1) * CD RD

Dry matter 895.3 ± 5.3 892.7 ± 0.9

Crude protein 276.8 ± 4.7 268.2 ± 4.3

Crude lipid 34.4 ± 2.6 31.5 ± 1.6

Total starch 444.2 ± 4.3 443.5 ± 1.2

Ash 29.5 ± 1.4 30.9 ± 1.0

Calcium 1.6 ± 0.1 1.7 ± 0.1

Phosphorus 2.2 ± 0.2 2.4 ± 0.2

Zinc 0.1 ± 0.0 0.1 ± 0.0

Iron 0.2 ± 0.0 0.2 ± 0.0

*Chemical composition expressed as mean ± SD (n = 3)
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concentration was determined in tissue homogenates
according to Lowry et al. (1951) using bovine serum
albumin as standard. All biochemical analyses were
measured in triplicate.

Oxidative stress

Enzyme extracts from the liver, intestine, gills, and
muscle of fish (n = 6) were made as proposed by
Bacchetta et al. (2014). Briefly, tissues were homoge-
nized using 0.1 M sodium phosphate buffer, pH 6.5
containing 20% (v/v) glycerol, 1 mM EDTA, and
1.4 mM dithioerythritol (DTE). The homogenate was
centrifuged at 20,000g at 4 °C for 30 min, and the
supernatant was collected and stored at −80 °C for
enzyme measurement.

The activity of the enzyme superoxide dismutase
(SOD, EC 1.15.1.1) was determined by its ability to
inhibit the epinephrine autoxidation (Misra and
Fridovich 1972). Catalase activity (CAT, EC 1.11.1.6)
was measured according to the method of Beutler
(1982) following the decomposition of H2O2. The assay
mixture consisted of 1 M Tris-HCl, 5 mM EDTA (pH
8.0), 10 mM H2O2, and enzyme extract. The activity of
glutathione-S-transferase (GST, EC 2.5.1.18) was deter-
mined following the conjugation of reduced glutathione
with 1-chloro-2,4-dinitrobenzene (CDNB) that pro-
duces a dinitrophenyl thioether as described by Habig
et al. (1974). Glutathione reductase activity (GR, EC
1.6.4.2) was determined as described by Tanaka et al.
(1994) by measuring the oxidation of NADPH. The
reaction mixture contained 100 mM sodium phosphate
buffer (pH 7.5), 20 mM oxidized glutathione, 2 mM
NADPH, and enzyme extract. Lastly, lipid peroxidation
levels (n = 6) were analyzed by measuring the formation
of thiobarbituric reactive substances (TBARS) (Yagi
1976). Enzymatic activities and TBARS levels were
calculated in terms of the protein content according to
Bradford (1976) using serum bovine albumin as
standard.

Statistical analyses

All results were reported as mean ± standard error (SE).
To corroborate normality and homogeneity of variance,
Shapiro-Wilk’s and Levene’s tests were carried out,
respectively. When normal distribution was not accom-
plished, variables were transformed to log10. A two-way
ANOVA was used to analyze the effects of temperature

and diet and the interaction between them for the para-
metric variables. After two-way ANOVA, we per-
formed simple main effects analysis to test the effects
of temperature separately for each diet treatment. This
test was based in the lineally independent pair-wise
comparisons between marginal estimated means using
the error terms and the degree of freedom of the whole
design (Logan 2010). We did not perform post hoc tests
because there are only two temperatures for each diet
treatment. Significant differences were considered when
p<0.05. Variables that remained non-parametric after
transformation were analyzed using Mann-Whitney
tests. For these variables, we performed one test to
evaluate the effects of temperature and another test to
evaluate the effects of the diet. Then, we performed
another test to evaluate the effects of temperature stress
separately for each diet. All tests were carried out using
the SPSS software (SPSS Inc., Chicago, USA).

Results

No mortality was evidenced during the feeding or low
temperature-exposure assays. Hematological measure-
ments are shown in Table 2. After the thermal stress,
both hemoglobin levels and MCHC increased signifi-
cantly. There were no differences in hematological mea-
surements between the diets. No interactions were evi-
denced through the two-way ANOVA.

Blood metabolites and energy reserves in the liver
and muscle are summarized in Table 3. After the low
temperature stress, fish fed with CD showed diminished
plasmatic triglycerides and cholesterol levels. In the case
of RD, cholesterol increased in low temperature-
exposed fish. Two-way ANOVA showed a significant
interaction between diet and temperature for glycogen in
the liver. Hepatic glycogen content decreased after the
low temperature exposure in CD-fed fish but increased
in RD-fed fish. The hepatic protein levels decreased in
fish fed with RD exposed to thermal stress.

Activities of antioxidant enzymes and TBARS levels
are presented in Table 4. The two-way ANOVA showed
significant interactions for SOD in the liver and GST in
the intestine. Activities of SOD and GR in the liver and
GST in the intestine augmented in fish fed with CD and
exposed to 14 °C. In the case of RD-fed fish, the SOD
activity increased in gills of fish exposed to 14 °C.
TBARS levels significantly increased in the liver and
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intestine of fish exposed to thermal stress but did not
show differences between diets in any tissue.

Discussion

Cold-suboptimal temperatures have been widely report-
ed to cause negative impacts in aquaculture production
and generate economic loss (Nobrega et al. 2019). This
problem is particularly important for fish since, as ecto-
thermic animals, they are challenged to adapt their
physiological functions and overcome thermal stress
(Turchini et al. 2010). Moreover, when temperature
radically changes, the effects on organisms are quite
different from those exposed to low but constant tem-
perature (Barbieri 2009a, b). As such, research regard-
ing how fish nutrition could improve the health status of
animals and mitigate the negative effects of environ-
mental stressors has gained importance in order to
achieve a sustainable aquaculture and an optimal man-
agement of fish farming (Gasco et al. 2018).

In the present study, a 24-h exposure to low temper-
ature (or cold shock) increased the hemoglobin level in
juvenilePiaractus mesopotamicus fed with CD and RD,
which could be a compensatory response and an adap-
tation to temperature-imposed increases in oxygen re-
quirements. A study carried out by Panase et al. (2018),
who found an increase in hemoglobin content (among
other hematological parameters) in Nile tilapia exposed

to 13 °C during 24–72 h, reinforces this statement. The
authors explained that fish exposure to low temperatures
increases the oxygen demand to enhance the ATP syn-
thesis for maintaining the body temperature.

Stress responses and preservation of homeostasis
increase energetic costs (Jager et al. 2014). Cortisol is
the principal glucocorticoid secreted under stress condi-
tion by the interrenal tissue located in the head-kidney of
teleost fish (Geslin and Benoit Auperin 2004; Castillo
et al. 2008). It activates different processes to produce
energy according to the increased demand during the
stressful event (Donaldson et al. 2008). Rotllant et al.
(2001) reported that a drop in water temperature affects
the pituitary-interrenal axis in gilthead seabream, trig-
gering cortisol release. As cholesterol is the precursor of
cortisol, these two parameters are expected to show a
similar trend (Miller 1988; Castillo et al. 2008). How-
ever, Panase et al. (2018) observed decreased
cholesterol and increased cortisol levels in plasma of
Oreochromis niloticus exposed to cold shock. In the
present study, fish fed with CD showed decreased
plasmatic levels of cholesterol after the cold stress
event, while fish fed with RD showed an increment of
this biochemical parameter. This difference in fish
response could be attributed to the presence of the
seaweed in the diet, as Wang et al. (2019) observed that
the concentrations of serum cholesterol, high-density
lipoprotein cholesterol, and low-density lipoprotein cho-
lesterol all gradually increased with increasing levels of

Table 2 Hematological parameters of Piaractus mesopotamicus
fed with control (CD) and red seaweed-supplemented (RD) diets
and exposed to low temperature stress. Values are expressed as
means ± SE. In the rows with parameter names, asterisks in the cell
to the right in the columns of diet and temperature represent the
significance of the effect of each factor in two-way ANOVA for

parametrical variables and difference between levels of each factor
in Mann-Whitney tests non-parametric variables. For non-
parametric variables, the significance of interaction was not
assessed (na), and asterisks indicate the significance of Mann-
Whitney’s tests

Parameters Diet Temperature Temperature × diet interaction

CD RD 24 °C 14 °C

RBC (106 μL−1) 2.25 ± 0.07 2.17 ± 0.07 2.1 ± 0.08 2.34 ± 0.07 na

Hematocrit (%) 30.41 ± 0.71 29.41 ± 0.78 29.96 ± 0.79 30.07 ± 0.71 ns

Hemoglobin (g dL−1) 8.52 ± 0.2 8.61 ± 0.22 7.93 ± 0.14 9.12 ± 0.18*** ns

MCH (pg) 38.72 ± 1.84 40.42 ± 1.36 38.78 ± 1.56 40.2 ± 1.91 ns

MCV (μm3) 13.96 ± 0.64 13.94 ± 0.85 14.68 ± 0.85 13.19 ± 0.64 ns

MCHC (%) 277.1 ± 10.54 295.27 ± 12.23 265.59 ± 9.76 301.99 ± 12.23* ns

RBC red blood cells count, MCH mean corpuscular hemoglobin, MCV mean corpuscular volume, MCHC mean corpuscular hemoglobin
concentration, ns not significant, na not assessed

Data with asterisk in a row are significantly different (*p<0.05; **p<0.01; ***p<0.001)
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dietary Sargassum horneri algae to juvenile turbot
(Scophthalmus maximus).

Plasmatic triglycerides were diminished in juvenile
fish fed with CD and exposed to 14 °C. Decreased
triglyceride levels were also found by Lermen et al.
(2004) in Rhamdia quelen exposed to 15 °C for 21 days.
In fasted fish, plasma triglyceride levels represent the
result between the rate of hepatic secretion of very-low-
density lipoproteins and the rate of their clearance by
peripheral tissues (Greene and Selivonchick 1987). In
addition, lowwater temperature could modify the rate of

lipolysis or fatty acid reesterification. Then, the decrease
in plasmatic triglyceride levels observed in
P. mesopotamicus was probably due to the utilization
of fat stores to face thermal stress.

Hepatic glycogen levels decreased in CD-fed fish.
This result was also observed in H. littorale and
R. quelen exposed to 10–15 °C after acute or chronic
conditions (Lermen et al. 2004; Rossi et al. 2017).
Additionally, Ibarz et al. (2010) analyzed the liver pro-
teome of gilthead sea bream (Sparus aurata) exposed to
a cold stress challenge and found a rise in glycogen-

Table 3 Plasma metabolites and tissue energetic reserves of
Piaractus mesopotamicus fed with control (CD) and red
seaweed-supplemented (RD) diets and exposed to low tempera-
ture stress. Values are expressed as means ± SE. In the rows with
parameter names, asterisks in the cell to the right in the columns of
diet and temperature represent the significance of the effect of each
factor in two-way ANOVA for parametrical variables and differ-
ence between levels of each factor in Mann-Whitney tests non-
parametric variables. In the row “Simple main effects”, the

asterisks in the cell to the right in the columns of temperature
correspond to the significance of the differences between the
temperatures for each diet (RD or CD) tested with this analysis.
In the row “Mann-Whitney,” the asterisks in the cell to the right in
the columns of temperature correspond to the significance of the
differences between the temperatures for each diet (RD or CD)
tested with this analysis. In the column “Temperature × diet
interaction,” asterisks mean significant effect of interaction in
two-way ANOVA

Parameters Diet Temperature Temperature × diet interaction

CD RD 24 °C 14 °C

Plasma

Glucose (g L−1) 0.68 ± 0.03 0.75 ± 0.02 0.69 ± 0.02 0.74 ± 0.03 ns

Triglycerides (g L−1) 3.7 ± 0.44 2.22 ± 0.14* 3.67 ± 0.46 2.45 ± 0.25* na

Mann-Whitney CD 5.06 ± 0.63 2.69 ± 0.43*

RD 2.29 ± 0.24 2.15 ± 0.17

Cholesterol (g L−1) 1.65 ± 0.16 1.15 ± 0.16 1.76 ± 0.16 1.09 ± 0.07* na

Mann-Whitney CD 2.34 ± 0.13 0.97 ± 0.07***

RD 1.01 ± 0.04 1.40 ± 0.13**

Total protein (g L−1) 2.62 ± 0.05 2.77 ± 0.11 2.78 ± 0.1 2.55 ± 0.04 ns

Liver

Glycogen (μmol g wt−1) 460.7 ± 30.3 472.19 ± 41.35 442.04 ± 36.45 494.2 ± 34.98 ***

Simple main effects CD 514.38 ± 39.42 393.63 ± 14.80*

RD 369.72 ± 45.56 574.66 ± 25.16**

Lipid (μmol g wt−1) 57.24 ± 4.52 62.99 ± 4.69 60.89 ± 5.21 59.33 ± 4.13 na

Protein (mg g wt−1) 93.58 ± 6.79 141.1 ± 8.01 116.48 ± 12.82 118.2 ± 10.33

Simple main effects CD 142.90 ± 10.22 151.39 ± 14.45

RD 145.39 ± 6.29 122.27 ± 7.62*

Muscle

Glycogen (μmol g wt−1) 1.88 ± 0.08 2.36 ± 0.1 2.04 ± 0.11 2.2 ± 0.11 na

Lipid (μmol g wt−1) 7.77 ± 1.14 11.47 ± 1.75 9.88 ± 1.51 9.53 ± 1.78

Protein (mg g wt−1) 93.58 ± 6.79 141.1 ± 8.01** 116.48 ± 12.82 118.2 ± 10.33

wt wet tissue, ns not significant, na not assessed

Data with asterisk in a row are significantly different (*p<0.05; **p<0.01; ***p<0.001)
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Table 4 Antioxidant enzyme activities and TBARS levels in the
liver, intestine, gills, and muscle of Piaractus mesopotamicus fed
with control (CD) and red seaweed-supplemented (RD) diets and
exposed to low temperature stress. In the rows with parameter
names, asterisks in the cell to the right in the columns of diet and
temperature represent the significance of the effect of each factor
in two-way ANOVA for parametrical variables and difference
between levels of each factor in Mann-Whitney tests non-
parametric variables. In the row “Simple main effects”, the

asterisks in the cell to the right in the columns of temperature
correspond to the significance of the differences between the
temperatures for each diet (RD or CD) tested with this analysis.
In the row “Mann-Whitney”, the asterisks in the cell to the right in
the columns of temperature correspond to the significance of the
differences between the temperatures for each diet (RD or CD)
tested with this analysis. In the column “Temperature × diet
interaction,” asterisks mean significant effect of interaction in
two-way ANOVA

Parameters Diet Temperature Temperature × diet interaction

CD RD 24 °C 14 °C

Liver

SOD (U SOD mg prot−1) 31.15 ± 6.71 45.02 ± 3.7** 28.72 ± 6.18 47.45 ± 3.05*** **

Simple main effects CD 14.81 ± 1.96 44.57 ± 6.37***

RD 42.64 ± 6.75 47.41 ± 3.84

CAT (U mg prot−1) 39.57 ± 4.08 42.71 ± 3.25 42.26 ± 3.94 40.01 ± 3.47 ns

GST (mU mg prot−1) 165.61 ± 14.45 175.53 ± 25 178.5 ± 24.72 162.3 ± 14.67 ns

GR (mU mg prot−1) 50.66 ± 8.48 63.32 ± 5.95 41.44 ± 5.74 69.81 ± 5.55* *

Simple main effects CD 33.98 ± 5.08 67.36 ± 11.14*

RD 51.40 ± 9.61 78.28 ± 3.96

TBARS (nmol mg prot−1) 0.26 ± 0.02 0.2 ± 0.01 0.18 ± 0.01 0.27 ± 0.01*** ns

Intestine

SOD (U SOD mg prot−1) 49.29 ± 2.27 37.01 ± 3.43* 41.3 ± 4.19 44.47 ± 2.88 ns

CAT (U mg prot−1) 5.27 ± 0.42 3.61 ± 0.13** 4.56 ± 0.38 4.41 ± 0.51 ns

GST (mU mg prot−1) 116.75 ± 6.31 111.14 ± 3.87 104.39 ± 3.66 122.83 ± 4.98** *

Simple main effects CD 101.31 ± 5.54 129.39 ± 5.95**

RD 108.25 ± 4.51 113.46 ± 6.23

GR (mU mg prot−1) 24.27 ± 0.9 25.22 ± 1.07 24.58 ± 1.12 24.9 ± 0.87 ns

TBARS (nmol mg prot−1) 1.09 ± 0.2 0.99 ± 0.19 0.55 ± 0.03 1.58 ± 0.08*** ns

Gills

SOD (U SOD mg prot−1) 13.24 ± 2.38 7.56 ± 0.44 8.05 ± 0.97 13.41 ± 2.56* na

Mann-Whitney CD 101.31 ± 5.54 129.39 ± 5.95**

RD 108.25 ± 4.51 113.46 ± 6.23

CAT (U mg prot−1) 1.19 ± 0.11 1.27 ± 0.14 1.03 ± 0.04 1.39 ± 0.14 ns

GST (mU mg prot−1) 70 ± 2.22 78.41 ± 4.32 70.41 ± 1.3 78 ± 4.77 ns

GR (mU mg prot−1) 11.89 ± 0.67 11.7 ± 0.51 10.95 ± 0.29 12.84 ± 0.71 ns

TBARS (nmol mg prot−1) 1.08 ± 0.11 0.88 ± 0.03** 0.94 ± 0.09 1.03 ± 0.09 ns

Muscle

SOD (U SOD mg prot−1) 12.8 ± 1.15 14.59 ± 1.86 14.52 ± 1.9 12.88 ± 1.09 ns

CAT (U mg prot−1) 1 ± 0.12 0.81 ± 0.07 0.94 ± 0.12 0.85 ± 0.06 ns

GST (mU mg prot−1) 11.51 ± 0.79 13.24 ± 0.92 11.51 ± 0.82 13.06 ± 0.89 ns

GR (mU mg prot−1) 5.79 ± 0.6 4.75 ± 0.52 5.67 ± 0.72 4.89 ± 0.3 ns

TBARS (nmol mg prot−1) 0.07 ± 0.003 0.1 ± 0.005 0.085 ± 0.007 0.085 ± 0.006 ns

SOD superoxide dismutase, CAT catalase, GST glutathione S-transferase, GR glutathione reductase, ns not significant, na not assessed

Data with asterisk in a row are significantly different (*p<0.05; **p<0.01; ***p<0.001)
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phosphorylase levels in agreement with their observa-
tion of liver glycogen depletion. These results indicate
that energy substrates, such as glycogen, are broken
down into glucose to provide the extra energy needed
(Viant et al. 2003; Lermen et al. 2004; Chatzifotis et al.
2010; Sun et al. 2019). On the other hand, rats fed with
the seaweedUndaria pinnatifida showed that gluconeo-
genesis was upregulated and, by contrast, glycolysis-
related genes were downregulated (Yoshinaga et al.
2018). These mechanisms could be operating in fish as
increased liver glycogen reserves were observed in RD-
fed fish exposed to 14 °C. Additionally, this group of
fish showed lower hepatic protein levels. This issue
requires further research to elucidate the mechanism
involved in seaweed effects on this macromolecule.

Temperature oscillations lead to changes in fish met-
abolic rate and, consequently, in the generation of reac-
tive oxygen species (ROS) (Pavlović et al. 2010). Then,
farmers are challenged to overcome this situation and
keep the animals under optimal welfare and develop-
mental conditions; thus, early detection of damage in
macromolecules like proteins and lipids has gained im-
portance (Pinto et al. 2019). Bioactive compounds have
been identified in P. columbina red seaweed which are
good electron donors and could act as antioxidants
(Cian et al. 2014); however, no consistent differences
were found in comparison with the CD. In the present
study, P. mesopotamicus fed with both diets and ex-
posed to a 24-h thermal shock showed lipid oxidative
damage in the liver and intestine although augmented
antioxidant activities were observed in these tissues.
Particularly, SOD and GR were increased in fish liver
of CD-fed fish exposed to 14 °C, meanwhile GST
augmented in the intestine. In fish fed with RD, only
SOD activity was increased in gills. Joy et al. (2017)
found increased activities of SOD and CAT in several
tissues (liver, gills, brain, and muscle) of Etroplus
suratensis exposed to cold water for 24–48 h. SOD
and CAT enzymes are considered as the first line of
antioxidant defense, as SOD catalyzes the dismutation
of superoxide anion, and CAT breaks down the hydro-
gen peroxide in water and oxygen (Halliwell and
Gutteridge 1999). Since GST enzyme conjugates alde-
hyde products of lipid peroxidation process (Schlenk
et al. 2008), its activation seems important to prevent
oxidative damage. However, in the intestine of
P. mesopotamicus exposed to 14 °C and CD, it was
not enough probably due to the lack of activation of
other antioxidant enzymes.

The high activity of antioxidant enzymes did not
prevent oxidative damage generated by cold stress,
since increased levels of TBARS were observed in the
liver and intestine of fish fed with both diets. Increased
TBARS levels were also found in the liver of Solea
senegalensis and Danio rerio exposed to low tempera-
tures for 24 and 1–12 h, respectively (Castro et al. 2012;
Wu et al. 2015). Joy et al. (2017) explained that low
temperatures could enhance the formation of ROS and
proton leakage, and then, favor peroxidation of lipids
due to increased polyunsaturation in the mitochondrial
membranes and the respiration rates. Oxidative stress
seems increased because low temperature enhances ox-
ygen solubility; meanwhile, the transfer of electrons
could be disrupted, and the ROS production enhanced
because the mitochondrial membrane may diminish its
fluidity (Weiss 1970; Hazel 1995).

Conclusions

The cultured fish Piaractus mesopotamicus was found
to be sensitive to cold shock based on several bio-
markers. Our results contribute to the current knowledge
regarding cold shock in fish, a situation which could
occur either in aquaculture or during animal transport.
We hypothesized that the thermal stress effects would
be mitigated in fish fed with the Pyropia columbina
seaweed based-diet, but no significant differences were
observed between fish fed with the algae-based diet and
the ones fed with the control diet. Although it is widely
known that seaweeds contain several bioactive sub-
stances with potential health properties (Sørensen et al.
2019), fish responses to dietary seaweed inclusion are
dependent on seaweed species and dose, besides being
species dependent. We suggest that further research
needs to consider different powder algae concentrations
in supplemented diets, to take advantage of this valuable
and abundant natural resource. Last, we consider this
report as relevant to complement the baseline informa-
tion regarding nutritional requirements of this important
farmed species P. mesopotamicus.
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