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Abstract Rainbow trout (Oncorhynchus mykiss)
farming is one of the major aquacultures in Turkey.
Some conditions in fish farming can induce oxidative
stress leading to the deterioration in properties such
as appearance/color, texture, and flavor in fish meat.
This situation may cause the consumer not to prefer
edible fish. Although there are some studies on the
impacts of light intensity on fish welfare, the changes
in the antioxidant enzyme activities have not been
elucidated. In the current study, it was intended to
examine in rainbow trout how cultivating under dif-
ferent wavelengths affects the antioxidant enzymes
and acetylcholine esterase (AChE) activity, because
its activity is associated with oxidative stress, and
also the determination of which light is suitable for
fish welfare was aimed. Rainbow trout larvae were
grown under four lights with different wavelengths:
natural sunlight and incandescent long-wave (red
light), medium-wave (green light), and short-wave
(blue light) LED light. The experiment lasted for
64 days. Biochemical assays were carried on in the

brain, gill, and liver of rainbow trout. Antioxidant
enzymes and AChE activity, which play an important
role in the central nervous system, were assayed. In
gill tissues, superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GPx), glucose 6
phosphate dehydrogenase (G6PD), glutathione re-
ductase (GR), glutathione S-transferase (GST), and
AChE activities increased under all three light wave-
lengths. In the liver, while activities of antioxidant
enzymes and AChE decreased in red light, all of them
increased in blue and green light. In the brain, GPx,
GST, G6PD, and SOD activities were reduced but
AChE activity did not alter under all three light
sources. In conclusion, light sources with different
spectral structures caused important changes in the
activities of antioxidant enzymes in rainbow trout.
On this basis, it may be thought that this may be a
response to the changing redox status of a cell. Based
on our results, blue light sources may be suggested
for fish welfare in rainbow trout culture, and provid-
ing fish welfare by changing light sources can be
easy and cheap in fish farming.
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enzymes . Light wavelengths . Rainbow trout

Introduction

Light is an important factor in the growth and survival of
juvenile fish, as in all animals and plants. Light-emitting
diodes (LEDs) can provide specific wavelengths and
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can be used effectively in fish farming (Dawson et al.
2001; Young 1988). The red or long spectrum pene-
trates only shallow waters and negatively affects the
physiological functions of fish while blue or short spec-
trum is dominant in deep waters. On the other hand,
several studies reported that oxidative stress decreases in
short wavelengths such as green light (Choi et al. 2016;
Migaud et al. 2007; Shin et al. 2011). Depending on fish
species habitat characteristics and their specific visual
abilities, light spectrum is known to affect multiple
physiological aspects such as growth (Downing 2002;
Ruchin 2004), neurohormonal system (Bayarri et al.
2002; Diler et al. 2003), reproduction (Diler et al.
2003; Noar et al. 2001), and behavior (Karakatsouli
et al. 2007). In the early stages (larvae) of trout farming,
artificial lighting is generally used in all hatcheries,
because the larvae stage is carried out in closed
environments.

Rainbow trout (Oncorhynchus mykiss), with 814 tons
of live weight production, is one of the oldest species
and the 14th most important cultured fish species in the
world (FAO 2018). In Turkey, trout farming began in
the 1970s, and with the use of cages in lakes and dams, it
has continued to grow and develop (DOĞAKA 2014).
Fishing is one of the four major components of the
agriculture industry in Turkey. In addition to providing
useful nutrition to people, fishing creates a high poten-
tial for employment opportunities and exports in the
industrial sector (Harlıoğlu and Yonar 2007).

Rainbow trout is a fast-growing fish and can easily
tolerate changing environmental conditions. It can be
found in many different habitats such as gravel bottom,
fast-flowing, well-oxygenated rivers, cold main waters,
streams, and lakes (Coombs 1999). They can withstand
a wide variety of temperature changes, but the temper-
ature range for spawning and growth is narrower (Parisi
et al. 2014). However, when fish are exposed to unfa-
vorable environmental conditions, some endocrine and
physiological responses occur and, if they are sustained
in time (chronic response), can lead to alterations in the
survival, growth, and reproduction ability of the fish. On
the other hand, these environmental stressors can lead to
an oxidative stress condition affecting fish performance
under aquatic conditions (Barton and Iwama 1991;
Pickering 1992).

Previous research showed that changes in environ-
mental parameters such as temperature or light wave-
length can affect fish breeding conditions, causing oxi-
dative stress response and affecting fish welfare and

growth performances (Bonga 1997). Regarding this,
in vitro and in vivo studies have reported that rainbow
trout and sea bass are more sensitive to changes in light
wavelengths especially peaking at 450–500 nm
(Pickering and Pottinger 1989).

Oxidative stress originates from the production of
reactive oxygen species (ROS) and the imbalance of
the antioxidant defense system in living organisms
(Nishida 2011). Although enzyme isoforms are not
completely identified in several fish species, antioxidant
defense mechanisms include an enzymatic system and
low molecular weight antioxidants in fish similar to the
mammals (Di Giulio and Meyer 2008). Superoxide
dismutase (SOD), catalase (CAT), glutathione peroxi-
dase (GPx), glucose 6 phosphate dehydrogenase
(G6PD), glutathione reductase (GR), and glutathione
S-transferase (GST) are the fundamental antioxidant
enzymes, which are the markers of antioxidant status
(Kelly et al. 1998).

SOD catalyzes the dismutation of O2˙
− to H2O2,

which would later be transformed into H2O and O2 by
CAT. GPx, on the other hand, contributes to the disin-
tegration of H2O2 and other organic peroxides (Winston
and Digiulio 1991). GR catalyzes the generation of
reduced glutathione (GSH) from oxidized form
(GSSG), in the presence of pyridine nucleotides
(NADPH). GSH would later be used by GPx and GST
which is responsible for cellular detoxification of xeno-
biotics by catalyzing the conjugation of electrophilic
xenobiotics with GSH (Güller et al. 2018; Hayeshi
et al. 2007). The source of utilized NADPH is created
in the pentose phosphate pathway as a result of the
reaction catalyzed by the G6PD enzyme (Keha and
Küfrevioğlu 2012). Figure 1 schematizes the interrela-
tionship of the enzymatic antioxidant system. Many
organs are affected by oxidative stress, but the brain is
the most affected organ. Since brain tissue consumes
more oxygen and its antioxidant system is weak, it is
more vulnerable in struggling against ROS than other
organs of the body and this sensitivity of brain tissue can
cause neurodegenerative diseases. Also, the increased
percentage of lipids in this organ joined to lower anti-
oxidant defenses makes it more prone to lipid peroxida-
tion (Konishi 2009; Milatovic et al. 2006; Sanz et al.
2013).

If oxidative stress cannot be prevented by the antiox-
idant defense system, it can cause oxidation of different
biomolecules integrating cells such as leading for exam-
ple to lipid peroxidation (Halliwell and Gutteridge
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1989). Furthermore, sensory properties (flavor, appear-
ance, texture, and color), which are the main factors
used by consumers to evaluate fillet quality, and func-
tional properties (water holding capacity and emulsify-
ing ability) of meat are affected by lipid oxidation (Gray
et al. 1996; Torrico et al. 2018).

On the other hand, acetylcholinesterase (AChE) hy-
drolyzes the neurotransmitter acetylcholine (Ach) to
choline and acetate in cholinergic synapses and neuro-
muscular synapses, thus playing an important role in
cholinergic neurotransmission (Tripathi and Srivastava
2008) and regulating animal behavior. Effects on AChE
activity in fish can be dangerous, as it will affect nutri-
tional ability, swimming activity, predator avoidance,
and spatial orientation of species (Das and Mukherjee
2003). Besides, AChE is associated with oxidative
stress responsible for the formation of free radicals,
which cause disorders in fish mobility and disturbed
swimming (Blenau et al. 2012; Salbego et al. 2010).

Data related to the effects of different light spectra on
fish welfare showed that while some light wavelengths
negatively affect physiological functions in farm fish,
some of them reduce oxidative stress. For this propose,
the present study aimed to investigate the activities of
antioxidant enzymes and AChE in rainbow trout culti-
vated under light sources with different spectral struc-
tures, to discuss whether these growing conditions cause
oxidative stress, and to response which light is suitable
for fish welfare?

Materials and methods

Materials

Animals and experimental design

Rainbow trout (Oncorhynchus mykiss) larvae (4.39 ±
0.5 mean weight ± SEM) were obtained from a produc-
tion facility in Van provinceGürpınar Township. After a
3-week adaptation period, rainbow trout larvae were
placed in eight 5-ton PVC experiment tanks including
44 larvae per tank. The eight tanks were exposed to
different wavelengths of light (two tanks of the same
wavelength) and were separated by light-proof curtains.

The water quality parameters mean dissolved oxy-
gen, average water temperature, and mean water pH
were measured as 6.3 ± 1.6 mg/L, 15.5 ± 0.5 °C, and
8.1 ± 0.7, respectively. The highest average water

temperature was 17.15 °C during August and the lowest
was 13.68 °C in November. Among the environmental
parameters, the average flow rate of the tank influent
was constant at 17 ± 0.2 L/s, while the intensity of the
light received by the tanks was also constant at 50 ± 3 lx.

For each group, three different types of LED light
boxes (MGN Lighting, Bali, Indonesia) were fixed
above the aquaria. The properties of light wavelengths
were set up as presented in Table 1. The tank influent
flow rate was set at 1 L/11 s. All tanks contained equal
water volume and were equipped with two air stones
each. Animals were fed on a commercial feed produced
by Inve and were used in the study. A 1.6-mm feed was
used during the adaptation stage. The experiment stage
was started with 2.0-mm feed. Then, based on measure-
ment findings, feed size was first increased to 3.0 mm
and later on to 4.0 mm. Feeding was manual and ad
libitum. The water temperature and dissolved oxygen in
the tanks were measured with a digital oxygen meter
(YSI Pro 20). Amobile pHmeter (Thermo) was used for
pH measurement. The experiment lasted 3 months.

The tests concerning the effects of light on trout
larvae were conducted at Van Yüzüncü Yıl University
(YYU) Research and Application Farm Hatchery, and
enzyme activity measurements to determine oxidative
stress were conducted in Atatürk University, Faculty of
Sciences, and Department of Chemistry Biochemical
Research Laboratory. All chemicals were procured from
Sigma Chem. Co.

Tissue collection and sampling treatment

At the end of the experimental period, three fish were
sampled from each tank. Six fish per experimental con-
dition were used for analysis. The fish were anesthetized
by using MS-222.

The liver, gill, and brain tissues were lacerated sepa-
rately with liquid nitrogen and the samples were homog-
enized in 50 mM Tris/HCl (pH 7.5) containing 1 mM
DTT, 1 mMEDTA, and 1mMPMSF and to remove the
cellular residue, they were centrifuged at 13,000 rpm, at
+ 4 °C for 30 min. The supernatant of samples was used
immediately for activity measurements (Güller et al.
2014).

Antioxidant enzymes assays

Activity measurements of antioxidant enzymes were
given as below.
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The total SOD activity was assayed via xanthine
oxidase (XO) activity according to Sun et al. (1988).
The assay is based on the transformation of xanthine
to uric acid in the catalyst of XO, associated with
the formation of superoxide radical (Chung et al.
1997). Then superoxide radical reacts with 4-
nitroblue tetrazolium (NBT) in the reaction mixture
and formazan occurs, when SOD added in reaction
medium formation of formazan is inhibited. The
absorbance of formazan was measured at 560 nm
for each sample. One enzyme unit of SOD is defined
as the amount of enzyme causing 50% inhibition of
the reduction of NBT.

The CAT activity was determined according to the
method put by Aebi (1984). The method is based on the
determination of the decomposition of H2O2 to H2O and
O2. The absorbance reduction of the depleted H2O2 was
measured at 240 nm.

The total GPx activity was measured via GR activity
according to Wendel (1980). The mechanism involves
oxidation of GSH by hydrogen peroxide. GSH is pro-
duced from GSSG in the presence of NADPH and this
reaction is catalyzed by GR. One enzyme unit deter-
mines the amount of enzyme that catalyzes the oxidation
of 1 μmol NADPH per minute. The decreasing NADPH
at 340 nm is monitored.

Fig. 1 Cellular ROS (reactive oxygen species) generation and the cooperation of main antioxidant enzymes

Table 1 Light characteristics and color temperature of the groups used in the experiment

Group Wavelength (nm) Color Temperature (Kelvin, ko) Lux

Control group 1 (sunlight, N) – 4230 50

Long wavelength (red light, R)* 570–620 < 2300 50

Medium wavelength (green light, G)* 495–570 < 2300 50

Short wavelength (blue light, B)* 450–495 > 10,000 50

*Mgn, LED brand used
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GR activity was assayed according to Carlberg and
Mannervik (1975) modified by Taser and Ciftci (2012).
The method is based on following the oxidation of
NADPH associated with the reduction of GSSG to
GSH. The decreased absorbance was monitored at
340 nm.

The enzyme activity of G6PD was performed by
following Beutler’s (1984) method. G6PD converts D-
glucose 6-phosphate (G6P) into 6-phospho-D-glucono-
1,5-lactone and in this reaction, NADP+ is reduced to
NADPH. The increased absorbance was monitored at
340 nm.

GST activity was determined according to Habig
et al. (1974) at 340 nm. The method is based on a
decreasing absorbance of dinitrobenzene S-glutathione
(DNB-SG), formed by conjugation of glutathione and 1-
chloro-2,4-dinitrobenzene in the GST-catalyzed
reaction.

Acetylcholinesterase activity assay

Acetylcholinesterase (AChE) activity was assayed at
436 nm with a spectrophotometer according to Worek
et al. (1999), a modified method of the Ellman
procedure.

Quantitative protein assay

For determination of the specific activity of enzymes,
quantitative protein analysis in homogenates was
assayed at 595 nanometer by using 1 mg/ml of bovine
serum albumin standard, based on the methodology
determined by Bradford (1976).

All the enzymatic assays were carried on at room
temperature and measured for three biological replica-
tions. Except for SOD that was previously explained, a
unit of the activity was defined as the amount of enzyme
causing 50% inhibition of reduction of NBT per minute.
For all enzymes, absorbance was assayed in a spectro-
photometer (The Beckman Coulter DU 730 UV/Vis
Spectrophotometer).

Statistical analysis

The statistical analyses of the in vivo inhibition
studies were performed using GraphPad Prism 6
(GraphPad, La Jolla, CA) Software 7.0 and t test
to compare each experimental group with the con-
trol. Statistical results are given with mean standard

error (SEM) deviations (n = 9 per group). Significant
changes in activities are marked by an asterisk,
whereby p < 0.05 = * is significant, p < 0.01 = ** is
very significant, p < 0.001 = *** and **** are highly
significant.

Results

Regarding the antioxidant enzymes, Fig. 2 shows that in
the liver of rainbow trout exposed with blue and green
light, activities of all enzymes increased very signifi-
cantly (p < 0.001) except the CAT under green light. But
under red light, activities of CAT, GPX, GR, G6PD, and
GST significantly decreased (p < 0.01) apart from SOD
activity. Exposure to green light caused a statistically
highly significant increase in the activities of G6PD and
GST.

As indicated in Fig. 3, activities of all related antiox-
idant enzymes significantly increased in the gill tissues
of the fish in all groups when compared with those in the
control group (p < 0.05). In fish exposed to red and blue
light, SOD, G6PD, and GST activities rose highly sig-
nificantly (p < 0.0001) in this tissue.

In the brain of rainbow trout growth under red light,
while G6PD (significantly), GPx, and GST activities
decreased (highly significant), SOD (highly significant)
and GR (significantly) activities increased. In the group
that grows under blue light, activities of enzymes de-
creased except CAT and GR. Under green light, while
G6PD, GR, GPx, and GST activities significantly re-
duced, the activities of CAT and SOD did not show any
changes (Fig. 4). At all light wavelengths, GST activi-
ties were highly decreased (p < 0.0001).

Besides, alteration in AChE activities was con-
trolled in the liver, gill, and brain tissues of rainbow
trout under red, blue, and green lights. As illustrated
in Fig. 5, in the brain tissue, there were no signifi-
cant changes in all groups, but its activity was
increased in all light wavelength groups in the gill
tissue. While AChE activity was decreased in the
liver of trout under red light, it increased in the blue
and green light groups.

It was monitored that GR activities were higher in gill
compared with those in the brain and liver. While CAT
activities were higher in the liver, SOD activities were
high in the brain. Activities of G6PD, GPx, and GST
showed similar values in all tissues.
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Discussion

Trout farming for domestic consumption has become
the most widespread aquaculture industry in the last few
years. The freshness of fish meat and its biochemical
composition, such as protein and fat, play an important
role in consumer demand and also studies confirm that
the consumer associates the color of fish meat with taste,
quality, and freshness (Anderson 2000; Gormley 1992;
Yağız et al. 2008).

In previous studies, it has been shown that stressors
in fish can induce ROS production and disrupt antioxi-
dant balance (Braun et al. 2010; Halliwell and
Gutteridge 1989). Increased production of ROS, caused
by adverse environmental factors, may lead to lipid
peroxidation, protein oxidation, and even DNA damage
(Halliwell and Aruoma 1991; Kucukbay et al. 2009).
The most important form of lipid oxidation in meat is
free radical oxidation, called autoxidation, and causes
odor production, the formation of toxic compounds, and
loss of functional properties and nutritional value and
changes the color of the meat (Soladoye et al. 2015).

The fluent coordination of antioxidant enzymes, CAT,
SOD, G6PD, GR, GPx, and GST, joined to antioxidant
molecules, is extremely important to prevent possible
damage of ROS to the cell.

Up to now, the effects of light on the physiology of
many vertebrates from reptiles to fish have been studied
(Choi et al. 2016; Reguera et al. 2014). In fishes, previous
studies have shown that some parameters such as differ-
ent crowding, handling, flow velocity, water temperature,
dissolved oxygen, photoperiod, and LED light spectra
affected activities of antioxidant enzymes on various
species (Braun et al. 2010; Choi et al. 2019; Kim et al.
2019; Li et al. 2019; North et al. 2006; Qiang et al. 2019;
Sahin et al. 2014; Trenzado et al. 2006, 2008; Wei et al.
2019).

Recent studies have investigated the effects of light
on the living body and have shown that certain light
wavelengths can affect various physiological responses
in fish. It has been shown that the red wavelength from
LEDs can cause oxidative stress and negatively affect
the physiological functions of fish; short wavelengths
such as green light can effectively reduce oxidative

Fig. 2 Antioxidant enzyme activities in the liver of rainbow trout
grown under red, blue, and green light. The mean ± standard error
(SEM) values were analyzed for all the results. The values

expressed by an asterisk represent significance values obtained
from statistical analysis (p < 0.05 = * is significant, p < 0.01 = ** is
very significant, p < 0.001 = *** and **** are highly significant)
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stress and increase immunity (Choi et al. 2012; Choi
et al. 2016; Shin et al. 2011; Villamizar et al. 2009). In
the liver of juvenile gibel carps (Carassius auratus),
under increased time to light exposure from 0 to 24 h,
it was observed that SOD, GPx, and GST activities
decreased while CAT and GR activities increased
(Wei et al. 2019). Previous research also reported that
low wavelength light alleviates stress in olive flounder
(Paralichthys olivaceus) during starvation (Choi et al.
2019). Other authors manifested that for the develop-
ment of the normal fish farm, the minimum light inten-
sity is required, whenever not reached a level of inten-
sity that causes stress (Boeuf and Le Bail 1999).

This paper focused on whether the growth under
different light wavelengths causes oxidative stress in
the rainbow trout and how these conditions affect the
activities of antioxidant enzymes and AChE in the liver,
gill, and brain tissues. In our earlier study, the effects of
different wavelength farming on the growth of rainbow
trout were investigated and statistically, it was observed
that the mean body weights and lengths of the fish in the

groups at the end of 96 days had not been affected by the
light wavelengths (Timucin et al. 2016).

The liver plays an important role in themetabolism of
sugars, lipids, steroids, and xenobiotics, many of which
are highly toxic, mutagenic, and/or carcinogenic. De-
toxification of oxygen by-products includes superoxide
and H2O2 that are produced by autoxidation of small
molecules in hepatocytes or by the redox cycle of xeno-
biotics (Kehrer and Smith 1994). Antioxidant enzymes
protect cells from oxidative stress. It is well known that
the liver is the primary tissue of GSH synthesis (Shi
et al. 1996); therefore, it has a better antioxidant defense
compared with the other tissues. In the current study, the
activities of CAT and SOD were increased sharply in
the liver of trout grown under blue light and while SOD
activity was not affected, CAT activity was decreased.
Similar results were found by Yuan et al. (2017) with
zebrafish Danio rerio growth under blue and red light-
emitting diodes. They found in zebrafish liver that the
enzymatic activities of Cu/Zn-SOD and CAT were sig-
nificantly increased by light-emitting diodes (blue
LEDs, LDB), while SOD activity was unchanged and

Fig. 3 Antioxidant enzyme activities in the gill of rainbow trout
grown under red, blue, and green light. The mean ± standard error
(SEM) values were analyzed for all the results. The values

expressed by an asterisk represent significance values obtained
from statistical analysis (p < 0.05 = * is significant, p < 0.01 = ** is
very significant, p < 0.001 = *** and **** are highly significant)
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activity of CAT was decreased (but not significantly) by
light-emitting diodes (blue LEDs, LDR).

The activities of antioxidant enzymes in the gill tissues
increased significantly at all light wavelengths. Gills are
the multifunctional organs that perform vital functions
such as respiration, osmoregulation, and acid-base bal-
ance. Because of their role in respiration, gills are espe-
cially prone to the production of oxygen radicals since

there is a significant exchange of oxygen. In gill tissues,
stress raises blood pressure and permeability of the epi-
thelium by increasing the secretion of adrenaline and this
causes ionic losses in freshwater fish. Besides, hydroxyl
radicals cause disruptions in ion transport mechanisms by
attacking unsaturated lipids in the gill cell’s membrane
(Braun et al. 2010; Cech et al. 1996; Postlethwaite and
Mcdonald 1995; Sundin 1999). On this basis, these high

Fig. 4 Antioxidant enzyme activities in the brain of rainbow trout
grown under red, blue, and green light. The mean ± standard error
(SEM) values were analyzed for all the results. The values

expressed by an asterisk represent significance values obtained
from statistical analysis (p < 0.05 = * is significant, p < 0.01 = ** is
very significant, p < 0.001 = *** and **** are highly significant)

Fig. 5 AChE activities in the liver, gill, and brain of rainbow trout
grown under red, blue, and green light. The mean ± standard error
(SEM) values were analyzed for all the results. The values

expressed by an asterisk represent significance values obtained
from statistical analysis (p < 0.05 = * is significant, p < 0.01 = ** is
very significant, p < 0.001 = *** and **** are highly significant)
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activities in gill can be a physiological response of the
fish against the oxidative stress produced as a result of
growth under light sources with different spectral struc-
tures (Parvez and Raisuddin 2005).

Since the brain contains a high level of unsaturated
fatty acids and consumes high amounts of oxygen per
unit weight, it is an important organ where the effect of
oxidative damage can be examined (Afifi et al. 2010;
Afifi et al. 2016; Karageorgos et al. 2006). In the liter-
ature, there was not found a study examining the chang-
es in the activities of antioxidant enzymes in the brain
tissues of fish grown under varying light spectra. In a
study performed by Jung et al. (2016) after investigating
the stress parameter in brain tissues, it was reported that
green wavelength LED light in goldfish (Carassius
auratus) reduced the effects of stress caused by high
water temperature. In the brain tissues, contrary to the
findings of Matkovics et al. (1977), who reported that
CAT activity shows a certain parallelism with SOD
activity, CAT activity changed only under blue light
(short wavelength) and SOD activity increased under
long wavelength (red light) and decreased under short
wavelength (blue light) (see Fig. 4). SOD and CAT act
together in the deactivation of O2˙

− and H2O2. As for the
activities of glutathione system–related antioxidant en-
zymes, G6PD, GPx, and GST were repressed in the
brain of fish growth light sources with different spectral
structures but GR activity did not change under blue
light while its activity increased under red light and
decreased under green light. GPx, GR, and GST en-
zymes are involved in regulating the GSH/GSSG ratio, a
marker of intracellular redox status. GR catalyzes the
recovery of GSH from GSSG in an NADPH-dependent
way and NADPH is produced in a reaction catalyzed by
G6PD in the pentose phosphate pathway, while GST
acts conjugation of xenobiotics with GSH. GPx cata-
lyzes the conversion of H2O2 to H2O by using GSH.
The resulting GSSG is again converted into GSH using
GR, thereby maintaining the GSH/GSSG ratio (Budak
et al. 2014; Duthie et al. 1989; Franco et al. 2019).
Besides, when compared with liver and brain tissues,
significantly increased antioxidant activities in gill show
that this organ is particularly prone to ROS production
associated with its oxygen exchange function.

Kumar et al. (2017) studied the effects of different
spectral bands of visible light and natural sunlight on
Lymnaea acuminata. They found that maximum change
in AChE activity in the nervous tissue of L. acuminata
was observed when exposed to red monochromatic light

(314% of control) than blue light (296% of control) and
yellow (294% of control). As mentioned before, the
inhibition of AChE activity in fish can be dangerous.
On the other hand, there are no data related to the effects
of light wavelength on AChE in fish; our work is the
first in this respect. In the current study, the effects of
light sources with different spectral structures on AChE
activities in the liver, gill, and brain tissues were exam-
ined. AChE activities did not change in the brain tissue.
In agreement with previous results in old and aged rats’
plasma and brain (Haider et al. 2014), changes in AChE
activity were generally in parallel with the changes in
the activities of antioxidant enzymes in the liver and gill
tissues of the fish growth under different light
wavelengths.

Conclusion

On the basis of this study results, growing under light
sources with different light wavelengths caused statisti-
cally significant changes in the activities of antioxidant
enzymes and AChE activities in the liver, brain, and gill,
except for AChE in the brain tissue. Moving on, it may
be thought a cell response to changing redox status.
Nevertheless, when the growth parameters of a previous
study (Timucin et al. 2016) and the changes in the
activity of the antioxidant enzymes and AChE assayed
in this study are evaluated together, blue and green light,
primarily blue light, can be used to improve rainbow
trout culture. We think that our work can benefit fish
farming by changing only physical culturing conditions,
that is, to provide fish welfare without the need to add
any additives to feeds or water.
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