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Abstract Diseases are natural components of the envi-
ronment, andmany have economic implications for aqua-
culture and fisheries. Aquaculture is a fast-growing in-
dustry with the aim to meet the high protein demand of
the ever-increasing global population; however, the emer-
gence of diseases is a major setback to the industry.
Probiotics emerged as a better solution to curb the disease
problem in aquaculture among many alternatives. Probi-
otic Bacillus has been proven to better combat a wide
range of fish pathogens relative to other probiotics in
aquaculture; therefore, understanding the various

mechanisms used by Bacillus in combating diseases will
help improve their mode of action hence yielding better
results in their combat against pathogens in the aquacul-
ture industry. Thus, an overview of the mechanisms
(production of bacteriocins, suppression of virulence
gene expression, competition for adhesion sites, produc-
tion of lytic enzymes, production of antibiotics,
immunostimulation, competition for nutrients and ener-
gy, and production of organic acids) used by Bacillus
probiotics in mitigating fish pathogens ranging from
Aeromonas , Vibrio, Streptococcus , Yersinia ,
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Pseudomonas , Clos tr id ium , Acine tobacter ,
Edwardsiella, Flavobacterium, white spot syndrome vi-
rus, and infectious hypodermal and hematopoietic necro-
sis virus proven to be mitigated by Bacillus have been
provided.

Keywords Bacillus . Aquaculture . Diseases .

Immunity .Mechanism

Introduction

Aquaculture is a fast-growing industry aimed at meeting
the high protein demand of the ever-increasing global
population (Plant and LaPatra 2011). Fish and fishery
products are sources of important proteins and
micronutrients that are essential for human health
(Carbone and Faggio 2016). The emergence of diseases,
however, has been a setback to the aquaculture industry.
Diseases are natural components of the environment,
and many have economic implications for aquaculture
and fisheries industry (Plant and LaPatra 2011; Lafferty
et al. 2015; Carbone and Faggio 2016).

Diseases in aquaculture are caused by bacterial, viral,
and parasites (Carbone and Faggio 2016; Bastos Gomes
et al. 2017). Most of the pathogenic diseases in aqua-
culture are often associated with the genus Aeromonas,
Vibrio, Streptococcus, Yersinia, Acinetobacter,
Lactococcus, Pseudomonas, and Clostridium (Santos
et al. 2018; Yi et al. 2018). Massive mortality events
have been associated with one or more of the pathogens
mentioned above, and many efforts have been made to
mitigate the occurrence of fish diseases. These efforts
initially included the use of antibiotics which later failed
its purpose due to the issue of antibiotic resistance
(Pérez-Sánchez et al. 2014). Moreover, the use of anti-
biotics in systems with large water volume is relatively
expensive (Harikrishnan et al. 2011); therefore, subse-
quent measures including the use of vaccines,
probiotics, prebiotics, paraprobiotics as well as medici-
nal plants were employed (Pérez-Sánchez et al. 2014;
Van Hai 2015a, b; Abarike et al. 2018b; Choudhury and
Kamilya 2018; Kuebutornye et al. 2019). Among all the
alternatives to antibiotics, probiotics have gained much
attention due to their ability to create an unfriendly
atmosphere for pathogens as well as the production of
compounds wi th inh ib i to ry proper t ies and
immunostimulation among other benefits (Balcázar
et al. 2006; Merrifield et al. 2010).

Lactic acid bacteria (LAB) and Bacillus species fam-
ily are the most commonly used probiotic candidates
(Banerjee and Ray 2017). Bacillus as probiotics have
been proven experimentally over the years to combat
diseases (Balcázar et al. 2006; Kavitha et al. 2018;
Ramesh and Souissi 2018; Yi et al. 2018), to improve
feed utilization which in turn enhances growth (Aly
et al. 2008; Zhou et al. 2010; Gobi et al. 2016; Goda
et al. 2018), to enhance the immunity of aquaculture fish
species (Nayak 2010; Abriouel et al. 2011; Buruiană
et al. 2014), and to improve the quality of the rearing
water (Camargo and Alonso 2006; Nimrat et al. 2012;
Zokaeifar et al. 2014) as well as stress reduction
(Shaheen et al. 2014; Abdollahi-Arpanahi et al. 2018;
Eissa et al. 2018). Bacillus has a long history of being
used in the pharmaceutical industry and medicine to
mitigate many diseases in humans, animals, and as a
biological control agent in plants due to their ability to
produce a wide range of metabolites with antagonistic
activity against microbes (McKeen et al. 1985; Silo-Suh
et al. 1994). Also, the sporulation ability of Bacillus
species makes them very important probiotic candidates
(Meidong et al. 2018; Kuebutornye et al. 2019). Endo-
spore formation enables them to withstand extreme
stresses and also provides biological solutions to the
preservation and formulation problems thus can be pro-
duced on a large scale (Yi et al. 2018).

Many researchers have proven that Bacillus could be
used to mitigate diseases in the fish farming industry.
This review provides an overview of published scientif-
ic studies in which Bacillus have been investigated as
effective agents for controlling diseases in the aquacul-
ture sector. This review mainly focuses on the possible
mechanisms used by Bacillus in fighting diseases as
well as the various diseases proven experimentally to
be mitigated by Bacillus in the aquaculture industry.

The role of Bacillus in mitigating fish pathogens

Bacillus species are essential as they synthesize
antibiotics/metabolites which are antagonistic against
pathogens and also possess immunostimulatory abilities
(Al-Ajlani and Hasnain 2010; Amin et al. 2015) thus
have been used to control various diseases (McKeen
et al. 1985; Silo-Suh et al. 1994). The use of Bacillus
as probiotics in aquaculture is relatively recent; never-
theless, their role in mitigating pathogenic microorgan-
isms in aquaculture is overwhelming (Table 1). The
following are classes of pathogenic microbes which
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threaten the aquaculture industry and the contribution of
Bacillus to their mitigation.

Aeromonas

The genus Aeromonas includes various groups of
straight coccobacillary to bacillary gram-negative bac-
teria that occur commonly in aquatic ecosystems and are
sometimes isolated from food products (Hatje et al.
2014). Aeromonas are disease-causing pathogens of fish
and other cold-blooded species and are as well regarded
as the etiologic agents for a variety of infectious com-
plications in both immunocompromised and immuno-
competent persons (Janda and Abbott 2010;
Fečkaninová et al. 2017). Members of this genus in-
clude A. hydrophila , A. caviae , A. veronii ,
A. salmonicida, A. bivalvium, A. allosaccharophila,
A. sobria, A. jandaei, and A. bestiarum (Noga 1996;
Fečkaninová et al. 2017; Santos et al. 2018). They are
important pathogens in aquaculture due to high mortal-
ity and morbidity in a variety of fish species (salmon,
trout,Macrobrachium rosenbergii, turbot, Labeo rohita,
Atlantic cod, Nile tilapia, rockfish, wolfish, seabream)
resulting in significant economic losses worldwide
(Noga 1996; Ariole and Oha 2013; Keysami and
Mohammadpour 2013; Dallaire-Dufresne et al. 2014;
Addo et al. 2017a; Nandi et al. 2017a; Duarte et al.
2018). They can be detected in both marine and fresh-
water environments. Some members of the genus
Aeromonas (A. veronii, A. sobria, A. bivalvium) howev-
er have been used to enhance the immunity of some
fishes against other pathogenic microbes (Abbass et al.
2010; Hao et al. 2014, 2017; Giri et al. 2018).

As indicated by Cruz et al. (2012), probiotics can
reduce mortality caused by Aeromonas species. Re-
search findings from both in vitro and in vivo methods
have proven that Bacillus species either inhibits the
proliferation of Aeromonas species or enhances the
host’s immunity to withstand the virulence of
Aeromonas species. For instance, natural antimicrobial
compounds (NACs) produced by Bacillus subtilis were
antagonistic against A. hydrophila, A. salmonicida,
A. veronii, and A. bivalvium (Santos et al. 2018). B.
subtilis was reported to confer protection on Nile tilapia
(Iwashita et al. 2015; Addo et al. 2017a) and grass carp
(Tang et al. 2019) against A. hydrophila infection. Ba-
cillus species were also reported to reduce the suscepti-
bility of L. rohita to A. hydrophila infection (Ramesh
et al. 2015; Nandi et al. 2017a). With regards to

A. salmonicida, Bacillus velezensis V4 was reported to
reduce mortality up to 81.86% in rainbow trout and in
Atlantic salmon after its infection (Gao et al. 2017a;
Wang et al. 2019) through the modulation of immune
parameters. In rainbow trout, B. subtilis AB1 was re-
ported to be effective in inhibiting disease caused by
highly virulent Aeromonas sp. (Newaj-Fyzul et al.
2007). The quorum quenching ability of Bacillus spe-
cies against A. hydrophila has also been demonstrated
(Zhou et al. 2016b; Zhou et al. 2018). Many more
evidence (Keysami and Mohammadpour 2013; Chu
et al. 2014; Iwashita et al. 2015) have proven that
Bacillus can be used to protect fish against the adverse
effects of Aeromonas species.

Vibrio

Vibrio species are found in aquatic environments, and
most species namely V. parahaemoly t icus ,
V. alginolyticus, V. vulnificus, V. anguillarum,
V. harveyi, and V. splendidus have been reported to be
responsible for many diseases in aquaculture (Jayasree
et al. 2006; Letchumanan et al. 2015; Igbinosa 2016;
Rasmussen et al. 2018). Interestingly, Vibrio species can
be sporadically transmitted to humans through unhy-
gienic food animals or contaminated water sources
(Igbinosa 2016) suggesting that more attention needs
to be paid to this group of pathogens. Vibrio species
cause vibriosis which is a major epizootic disease that
impacts wide and cultured fish species worldwide (Gao
et al. 2017b). Clinical signs of Vibriosis in fish include
fin erosion, skin haemorrhages, circular ulcerative le-
sions along the sides, and general congestion of the
internal organs (liver and spleen) and pale yellow serous
liquid in the gut (Breuil 1991). Disease outbreaks are
usually detected when fish are immunocompromised or
under stress due to overcrowding (Kumari 2013).

As indicated by Gao et al. (2017b), probiotics offer a
promising approach to the prevention of Vibrio diseases
in aquaculture. Many researches have demonstrated that
Bacillus species are effective at mitigating the adverse
effects caused by Vibrio species in aquaculture. Gobi
et al. (2016) demonstrated the immunostimulatory po-
tentials of Bacillus licheniformis in Pangasius
hypophthalmus against V. parahaemolyticus infection.
Gao et al. (2017b) reported that the cell-free supernatant
of Bacillus pumilus H2 containing amicoumacin Awas
effective at inhibiting the growth of all 29 Vibrio strains
tested. Antimicrobial peptides produced by B. subtilis
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exhibited antimicrobial activity against V. alginolyticus
and V. parahaemolyticus and protected white shrimp,
Litopenaeus vannamei against V. parahaemolyticus in-
fection (Cheng et al. 2017). Similarly, supernatants
(metabolites) of B. subtilis showed antibacterial activity
against V. parahaemolyticus, V. harveyi , and
V. vulnificus (Santos et al. 2018). Other studies in fresh-
water prawn, M. rosenbergii (Gupta et al. 2016), sea
cucumber, Apostichopus japonicas (Zhao et al. 2017),
Japanese eel, Anguilla japonica (Lee et al. 2018), and
Pacific white shrimp, L. vannamei (Harpeni et al. 2018)
in addition to the above evidences are indications that
Bacillus species can be used to protect cultured fish
from Vibriosis.

Streptococcus

Streptococcal diseases caused by Streptococcus species
(S. agalactiae, S. parauberis, S. dysgalactiae, S. iniae,
L. garvieae, and Vagococcus salmoninarum) occur in all
parts of the world (Nho et al. 2009; Pereira et al. 2010;
Abdelsalam et al. 2013; Mishra et al. 2018).
Streptococcosis has resulted in substantial financial
losses to the aquaculture industry (both marine and
freshwater) especially in tilapia aquaculture with
S. agalactiae and S. iniae being the main pathogens
(Hernández et al. 2009; Suebsing et al. 2013; Nguyen
et al. 2016; Leigh et al. 2018). It is notable that Strepto-
coccus species are zoonotic and cause diseases in
humans and other vertebrates hence need much atten-
tion (Addo et al. 2017b; Leigh et al. 2018; Mishra et al.
2018). Some symptoms of streptococcal diseases of fish
include hemorrhage, lesions (liver, kidney, spleen, and
intestine), erratic swimming, and swollen abdomen
(Mishra et al. 2018).

Enhancement of immune parameters such serum an-
tioxidant and lysozyme activity, serum protein and glu-
cose level of Oplegnathus fasciatus by Bacillus
amyloliquefaciens resulted in the fish’s increased sur-
vival after S. iniae infection (Kim et al. 2017). Metabo-
lites from B. velezensis JW inhibited the growth of
S. agalactiae (Yi et al. 2018). Abarike and colleagues
(Abarike et al. 2018a, b) reported the combined effects
ofBacillus species and Chinese herbs as well as a mix of
Bacillus species on the immunity of Nile tilapia, trans-
lating into its resistance against S. agalactiae infection.
A similar observation was made in zebrafish after die-
taryB. amyloliquefaciens R8 supplementation (Lin et al.
2019). Bacillus sp. CPB-St was reported to be

antagonistic against a variety of Streptococcus species
(L. garvieae, S. parauberis, Lactococcus piscium, and
S. iniae) (Lee and Kim 2014).

Yersinia

Yersinia ruckeri (a gram-negative rod-shaped enterobac-
terium) causes enteric red mouth disease (ERM) or
yersiniosis in salmonid fish species, rainbow trout,
channel catfish, sturgeons, and white fish (Tobback
et al. 2007; Kumar et al. 2015; Ormsby and Davies
2017). Y. ruckeri infections have impacted dramatically
on the aquaculture industry (Ohtani et al. 2019). Anoth-
er member of this species Yersinia enterocolitica has
been reported to cause infections in brown trout (Salmo
trutta L.) (Kapperud and Jonsson 1976).

A few researchers have demonstrated that Bacillus
species can be used to fight ERM in aquaculture. For
example, immunostimulatory effects in rainbow trout
instead of growth inhibition of Y. ruckeri by B. subtilis
and B. licheniformis were observed in an experiment by
Raida et al. (2003). It was concluded from this experi-
ment that Bacillus could confer some protection against
ERM. Intraperitoneal injection of rainbow trout with
lipopolysaccharides (LPS), cell wall proteins, whole-
cell proteins, outer membrane proteins, and live cells
of B. subtilis JB-1 resulted in survival between 80 and
100% after being experimentally infected with
Y. ruckeri (Abbass et al. 2010). This indicates that both
cellular components and whole cells of Bacillus can be
used in reducing the virulence of Y. ruckeri. In another
study, a lytic enzyme, an alkaline protease produced by
Bacillus proteolyticus inhibited the growth of pathogen-
ic Yersinia enterocolytica (Bhaskar et al. 2007). These
few pieces of evidence indicate that Bacillus has the
potential to be used in mitigating diseases caused by
Yersinia; therefore, more research in this direction is
recommended.

Pseudomonas

Pseudomonas infections have been implicated as the
most common bacterial infection in fish and mostly
stress related and occur in freshwater, brackish, and
marine farmed fish (Kholil et al. 2015; Wiklund 2016).
Although some are used as probiotics (Korkea-Aho
et al. 2011; Giri et al. 2012), few have been reported to
cause diseases in fish. P. fluorescens and P. aeruginosa
are regarded as opportunistic pathogenic microbes in
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aquaculture (Altinok et al. 2006). Reports indicate that
Pseudomonas causes diseases in diverse fish species.
For instance, P. anguilliseptica in eel, A. japonica, ayu
(Plecoglossus al t ive l i s ) , s t r iped beakperch
(O. fasciatus), cod (Gadus morhua), lumpsucker
(Cyclopterus lumpus), P. chlororaphis in amago trout,
Oncorhynchus rhodurus, P. plecoglossicida in ayu,
P. altivelis and P. putida in rainbow trout, and
P. baetica in wedge sole (Dicologoglossa cuneata)
(Park et al. 2000; Altinok et al. 2006; Wiklund 2016;
López et al. 2017).

A few studies have elucidated the role of probiotics in
combating pathogenic Pseudomonas species. The few
available demonstrates that Bacillus species can be con-
sidered as potential probiotics in combating Pseudomo-
nas infections. For instance, in an experiment by Nandi
et al. (2017b), dead cells of Bacillus sp. and
B. amyloliquefaciens effectively inhibited the growth
of P. fluorescens. Similarly, bacteriocins synthesized
from B. subtilis LR1 showed inhibitory activity against
P. fluorescens (Banerjee et al. 2017). Furthermore, feed-
ing channel catfish with B. velezensis supplemented diet
resulted in reduced Pseudomonas sp. in its intestines
(Thurlow et al. 2019). Extracellular and intracellular
products from Bacillus circulans and Bacillus cereus
were reported to inhibit the growth of pathogenic Pseu-
domonas sp. (Prayitno et al. 2018). It is obvious that the
role of probiotics especially Bacillus in combating other
pathogenic Pseudomonas sp. such as P. anguilliseptica,
P. plecoglossicida, and P. putida is less explored; mean-
while, available evidence indicates that Bacillus can be
used to curb the adverse effects of Pseudomonas sp. in
aquaculture. More researches in this regard are
recommended.

Clostridium

It was shown that Clostridium butyricum could be used
as probiotics (Song et al. 2006; Pan et al. 2008; Nayak
2010; Gobi et al. 2018; Sumon et al. 2018) while Clos-
tridium botulinum and Clostridium perfringens have
been reported to be pathogenic to fish and zoonotic
(Novotny et al. 2004; Panigrahi and Azad 2007; Wani
et al. 2018). Regarding the role of Bacillus in mitigating
pathogenic Clostridium species in fish, a record is avail-
able. Immunostimulation of Nile tilapia Oreochromis
niloticus by B. amyloliquefaciens spores resulted in
higher survival after C. perfringens infection (Selim
and Reda 2015). In nonfish species such as chicken

(Jayaraman et al. 2013; Geeraerts et al. 2016; Zhou
et al. 2016a) and mice (Fitzpatrick et al. 2011;
Colenutt and Cutting 2014), Bacillus species have been
reported to reduce the deleterious effects of pathogenic
Clostridium species indicating the potential of Bacillus
to be as well used as a control mechanism against
pathogenic Clostridium in aquaculture.

Acinetobacter

The genus Acinetobacter includes gram-negative,
nonfermentative, strictly aerobic, rod-shaped bacteria
(Nemec et al. 2010). It was mentioned that this group
of bacteria could infect a wide range of animals includ-
ing fishes (Behera et al. 2017). Recent reports indicated
the emergence of diseases in fish caused by
Acinetobacter species. A. baumannii, A. tandoii,
A. junii, A. lwoffii, A. johnsonii, A. schindleri, and A.
calcoaceticus have been reported to cause diseases in
rainbow trout, Indian major carp, common carp, blunt
snout bream, Dawkinsia filamentosa, Pangasius finger-
lings, and channel catfish (Reddy and Mastan 2013;
Kozińska et al. 2014; Cao et al. 2016, 2017; Dadar
et al. 2016; Behera et al. 2017; Kavitha et al. 2018).
Despite all these incidences of Acinetobacter infections
and the renowned role of probiotic Bacillus in fighting
diseases in aquaculture, only one report of Bacillus
species inhibiting the growth of Acinetobacter species
has been reported (Kavitha et al. 2018). In their study
(Kavitha et al. 2018), cell-free supernatants of
B. amyloliquefaciens showed high antagonistic activity
against Acinetobacter sp. and A. tandoii.With the rising
incidence of Acinetobacter infections, more research
geared towards probiotic Bacillus use is recommended.

Edwardsiella

The genus Edwardsiella have been associated with dis-
eases in many economic fish species (Griffin et al. 2017;
Buján et al. 2018a). E. ictaluri and E. tarda are patho-
gens of cultured channel catfish (Ictalurus punctatus),
ti lapia (Oreochromis sp.), Japanese flounder
(Paralichthys olivaceus), mullet (Mugil cephalus),
seabass (Dicentrarchus labrax), red seabream (Pagrus
major), sole (Solea senegalensis), turbot (Scophthalmus
maximus), yellowtail (Seriola quinqueradiata), and
striped bass (Morone saxatilis) (Hawke et al. 1981;
Mohanty and Sahoo 2007; Castro et al. 2012; Soto
et al. 2012; Buján et al. 2018a). Other species such as
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E. piscicida (Buján et al. 2018b; Choe et al. 2017) and
E. anguillarum (Reichley et al. 2018) have also been
reported to cause diseases in fish.

E. tardawas reported to be inhibited by antimicrobial
compounds synthesized by Bacillus species (Santos
et al. 2018). Studies by Thy et al. (2017) revealed that
a mix of B. pumilus 47B and B. amyloliquefaciens 54A
could stimulate the immune system (respiratory bursts,
phagocytic activity, and lysozyme activity) of striped
catfish (P. hypophthalmus) thereby increasing its resis-
tance against E. ictaluri infection, likewise B. velezensis
AP193 in channel catfish (Thurlow et al. 2019).
Immunostimulation of catfish after probiotic Bacillus
diet supplementation was observed, which translated
into its resistance against E. ictaluri (Ran et al. 2012).
Similarly, B. amyloliquefaciens increased Catla survival
rates after being challenged with E. tarda by enhancing
the immunity of the fish (Das et al. 2013). Live cells of
B. subtilis exhibited inhibitory activities against
E. ictaluri in an experiment by Guo and colleagues
(Guo et al. 2016a). This inhibition could be attributed
to competition for energy and nutrients resulting in the
starvation and exclusion of E. ictaluri. Regarding
pathogenic E. piscicida, in vitro studies by Etyemez
and Balcazar (2016) revealed that cell-free culture su-
pernatants of Bacillus mojavensis were antagonistic
against E. piscicida. They proposed that antibacterial
activity was as a result of the production of organic acids
or pH-dependent compounds by the Bacillus species.
These findings are evidence that Bacillus species can be
used to control pathogenic Edwardsiella in aquaculture.

Flavobacterium

Flavobacterium spp. are dominant in freshwater envi-
ronments (Laanto et al. 2017) and are known to be
pathogenic. F. branchiophilum and F. succinicans are
known for bacterial gill disease (BGD), a common and
occasionally devastating disease that affects many
farmed fish species worldwide (Good et al. 2015).
F. columnare causes columnaris disease in both farmed
and wild fish (Patra et al. 2016; Evenhuis et al. 2017).
F. columnare has caused remarkable economic losses in
fish such as O. niloticus (Eissa et al. 2010), I. punctatus
(Shoemaker et al. 2008), Catla catla (Verma and
Rathore 2013), Clarias batrachus and L. rohita (Dash
et al. 2009), Anabas testudineus (Rahman et al. 2010),
Carassius auratus (Verma et al. 2015), and Oncorhyn-
chus mykiss (LaFrentz et al. 2012). F. psychrophilum is

the etiological agent of rainbow trout fry syndrome as
well as bacterial cold-water disease in older salmonid
fish and hampers the productivity of salmonid farming
worldwide (Chettri et al. 2018; Duchaud et al. 2018).

Mohamed and Refat demonstrated that B. subtilis in
water or diet is effective in ameliorating the lesions of
F. columnare disease in Nile tilapia (Mohamed and
Refat 2011). In another experiment, metabolites
(supernatants) of Bacillus species isolated from soil or
channel catfish intestines successfully inhibited the
growth of F. columnare using the agar well diffusion
method (Ran et al. 2012). The available few evidence is
indicative that Bacillus could be explored for their use
against Flavobacterium infections.

White spot syndrome virus

One of the most virulent pathogenic and devastating
viruses affecting the shrimp aquaculture industry as well
as other crustaceans is white spot syndrome virus
(WSSV), the causative agent of white spot disease
(Ahmad et al. 2017). WSSV has been responsible for
major economic loss worldwide to shrimp aquaculture
since the 1990s (Jeena et al. 2018). Among the strategies
developed by researchers to curb the damaging effects
of WSSV, probiotic Bacillus emerged as one of the safe
ways mainly through stimulation of the shrimp immu-
nity. Typically, feeding Bacillus PC465 to L. vannamei
increased its survival against WSSV challenge (Chai
et al. 2016). Synergistic effects of Bacillus OJ and
isomaltooligosaccharides resulted in higher immune ti-
ters in L. vannamei thus a higher survival againstWSSV
(Li et al. 2009). Many other studies (Sánchez-Ortiz et al.
2016; Sekar et al. 2016; Pham et al. 2017) have shown
the ability of probiotic Bacillus to enhance the immunity
of shrimp to withstand the pathogenicity of WSSV.

Infectious hypodermal and hematopoietic necrosis virus

Runt-deformity syndrome and stunted growth usually
found in shrimps are caused by infectious hypodermal
and hematopoietic necrosis virus (IHHNV) (Chen et al.
2017; Dewangan et al. 2017). Recent advancements
have proven that IHHNV infests a wide range of crus-
taceans including crab, freshwater crayfish,
Procambarus clarkia, and freshwater shrimps,
M. rosenbergii (Nita et al. 2012; Rai et al. 2012; Chen
et al. 2017) resulting in massive economic losses. Like
WSSV, probiotic Bacillus has been reported to reduce
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infections caused by IHHNV through the enhancement
of the host’s immunity. For example, feeding
L. vannamei with a diet containing a mix of Bacillus
species resulted in reduced prevalence of IHHNV due to
improved immunity (Sánchez-Ortiz et al. 2016). This
single evidence demonstrates the potential of Bacillus
species in the mitigation of runt-deformity syndrome in
aquaculture. More research, however, is required to
ascertain and elucidate the role of Bacillus in mitigating
IHHNV.

Mechanisms used by Bacillus in protecting fish
against pathogenic microbes

Understanding the various mechanisms used by Bacil-
lus in combating diseases will help improve their mode
of action hence yielding better results in their fight
against pathogens in the aquaculture industry. As men-
tioned by Urdaci and Pinchuk (2004), the antimicrobial
activity of a particular bacterial strain is dependent on
their ability to produce diverse substances as well as
compounds with very specific spectrums and modes of
action such as bacteriocins, bacteriolytic enzymes, and
antibiotics. The following are overviews (Fig. 1) of the
possible mechanisms used by Bacillus in fighting path-
ogens in aquaculture.

Production of bacteriocins

Bacteriocins are bioactive antimicrobial peptides pro-
duced in the ribosome of many bacteria and released
extracellularly. Bacteriocins are capable of killing or
inhibiting the growth of prokaryotes and can be used
against pathogenic bacteria and antibiotic-resistant
strains of bacteria as well (Riley and Wertz 2002; Zou
et al. 2018). Bacteriocins are different from traditional
antibiotics and have been discussed in detail by Cavera
et al. (2015) and Zou et al. (2018) and are considered
alternatives to antibiotics (Bierbaum and Sahl 2009).

Genome sequencing has revealed the genus Bacillus
as a source of antimicrobial compounds (Grubbs et al.
2017). A review on the antimicrobial substances pro-
duced by B. subtilis by Stein (2005) indicated that the
antimicrobial active compounds synthesized by
B. subtilis include ribosomally synthesized and post-
translationally modified peptides (lantibiotics and
lantibiotic-like peptides) and nonribosomally generated,
as well as nonpeptidic compounds such as polyketides,
aminosugars, and phospholipids. In another study by

Urdaci and Pinchuk (2004), it was indicated that Bacil-
lus species produce bacteriocins and bacteriocin-like
inhibitory substances (BLISs) which are effective in
inhibiting pathogens.

Collective literature showed that Bacillus species
used in aquaculture have antimicrobial properties, spe-
cifically bacteriocin production. In a study by Yi et al.
(2018), three PKS gene clusters (bacillaene, difficidin,
macrolactin), four bacteriocins gene clusters, and five
NRPS gene clusters (fengycin, bacilysin, surfactin,
bacillibactin, and an unknown NRPS) which are
bacteriocins and antimicrobial secondary metabolite–
related genes were detected in B. velezensis isolated
from carp. This has resulted in the ability of the B.
velezensis to fight various fish pathogenic bacteria in-
c l u d i n g A e rom o n a s h y d ro p h i l a , Vi b r i o
parahemolyticus, Lactococcus garvieae, Aeromonas
salmonicida, and Streptococcus agalactiae. B.
amyloliquefaciens isolated from the marine fish
Epinephelus areolatus was reported to produce novel
bacteriocin named CAMT2 which inhibited Listeria
monocytogenes, Staphylococcus aureus, Escherichia
coli, and V. parahaemolyticus (An et al. 2015). Other
studies also highlighted bacteriocin production by Ba-
cillus species (Teixeira et al. 2009; Abriouel et al. 2011;
Compaoré et al. 2013; Al-Thubiani et al. 2018). Aside
from the traditional use of bacteriocins produced by
Bacillus species, they are also used in food preservation
as reported byGálvez et al. (2007) to be good candidates
as food preservatives, shelf life extenders, and ingredi-
ents. For instance, a novel bacteriocin Coagulin pro-
duced by Bacillus coagulans was proved to elongate
the shelf life of large yellow croaker during storage at
4 °C (Fu et al. 2018). A similar observation was made
by Teixeira et al. (2009) and Guo et al. (2016b) who
concluded that bacteriocins produced by Bacillus
atrophaeus and B. licheniformis could be useful against
pathogens in the food industry thus could be used as
preservatives. It could therefore be said that Bacillus
species produce bacteriocins which exhibit both patho-
genic and spoilage bacteria hence could be used in
fighting diseases as well as in the preservation of fish
food.

Quorum quenching (suppression of virulence gene
expression)

Quorum sensing (QS) is a bacterial regulatory mecha-
nism in which bacteria coordinate gene expressions in a

828 Fish Physiol Biochem (2020) 46: 1 – 18 48 9

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/surfactin


cell density–dependent manner by producing, releasing,
and recognizing small signal molecules called
autoinducers (Suga and Smith 2003; Defoirdt et al.
2004; Chu et al. 2014). N-acyl homoserine lactone
(AHL) signals are used by bacteria to monitor their
population density and synchronize target gene expres-
sion (Zhang and Dong 2004). QS regulates several
bacteria phenotypes such as bioluminescence (Miller
and Bassler 2001; von Bodman et al. 2008), biofilm
formation (Cvitkovitch et al. 2003; Merritt et al. 2003),
swarming (Shrout et al. 2006; Tremblay et al. 2007), and
virulence factors (Mellbye and Schuster 2011) which
contribute to bacterial pathogenesis.

Since QS controls the pathogenicity traits of bacteria,
disruption of QS has been suggested and proven as a
strategy to control pathogenic bacteria in the field of
animal husbandry and aquaculture (Defoirdt et al. 2004;
Boyen et al. 2009; Piewngam et al. 2018). Quorum
quenching (QQ) therefore is the disruption of QS (Roy
et al. 2011); thus, the destruction of AHLs is an efficient
way to interrupt QS (Musthafa et al. 2011; Cao et al.
2014; Chu et al. 2014). Many microorganisms have
been reported to produce enzymes which can degrade
AHLs (Christiaen et al. 2011; Tang et al. 2013) of which
Bacillus is no exception. In aquaculture, many re-
searchers have proven that Bacillus species possess

Fig. 1 Summary of the mechanisms used by Bacillus in mitigating pathogens in aquaculture
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QQ ability as one of its mode of suppressing the viru-
lence of pathogenic microbes. For instance, a study by
Musthafa et al. (2011) revealed that Bacillus sp. SS4
isolated frommarine source interfered with the activities
of AHL in Chromobacterium violaceum and Pseudo-
monas aeruginosa hence reducing their pathogenicity
and biofilm production. In another study, AHL
lactonase produced by Bacillus species was responsible
for QQ in A. hydrophila and decreased the mortality of
common carp after the challenge test (Chen et al. 2010).
In another experiment, AiiO-AIO6 gene from Bacillus
degraded the signal molecules of A. hydrophila and
inhibited the expression of the virulence factors of
A. hydrophila (Zhang et al. 2011). A similar observation
was made by Reimmann et al. (2002) who concluded
from their study that the introduction of an AHL degra-
dation gene (aiiA gene) fromBacillus intoP. aeruginosa
can block cell-cell communication and exoproduct for-
mation hence inhibiting its pathogenicity. Also, the sup-
plementation of AiiAAI96 into fish feed by oral admin-
istration decreased A. hydrophila infection in zebrafish
significantly (Cao et al. 2012, 2014). Many other studies
have reported the QQ ability of Bacillus (Chu et al.
2014; Torabi Delshad et al. 2018; Wee et al. 2018) in
aquaculture; hence, Bacillus species produce enzymes
(using aiiA gene) that interfere with the QS of pathogens
thereby inhibiting their virulence.

Production of lytic enzymes

The genus Bacillus is known to produce various hydro-
lytic enzymes which have different substrate specificity
and possess antimicrobial properties (Urdaci and
Pinchuk 2004). These lytic enzymes have antibacterial
and antifungal activities (Kim et al. 1999; Biziulevièius
and Þukaitë 2002). The hydrolytic enzymes excreted
degrade the cell wall components of pathogenic mi-
crobes. For instance, chitinases, proteases, cellulases,
and β-1,3-glucanases are lytic enzymes which play a
significant role in the lysis of the cell wall of pathogens
since proteins, chitins, cellulose, and β-1,3(1,6)-glucans
are important components of the cell walls of these
pathogenic microbes (Urdaci and Pinchuk 2004;
Jadhav et al. 2017).

The excretion of the above mentioned enzymes by the
genus Bacillus has been reported by many researchers in
the field of aquaculture. Although these enzymes are
mostly linked with digestion, they may also be involved
in the fight against pathogens which in turn results in the

overall resistance of the reported fishes against the chal-
lenged pathogenic microbes. Protease (Liu et al. 2009;
Ramesh et al. 2015; Thankappan et al. 2015; Mitra et al.
2018; Zaineldin et al. 2018; Cai et al. 2019), cellulase
(Doroteo et al. 2018; Kavitha et al. 2018; Midhun et al.
2018), and glucanase (Kim et al. 2013) of Bacillus spe-
cies have been reported in relation to fish; hence, attention
needs to be paid to their ability to lyse the cell walls of
pathogenic microbes instead of their traditional role as
digestive enzymes. Also, the potential adverse effects of
these lytic enzymes on other beneficial microorganisms
need to be investigated since it is not clear whether these
enzymes act against only the pathogenic microbes.

Production of antibiotics

As indicated by Stein (2005),B. subtilis devotes approx-
imately 4–5% of the genome to antibiotic production. In
earlier studies by Béahdy (1974), it was observed that
167 antibiotics were produced by Bacillus genus, in-
cluding 23 from B. brevis and 66 different peptide
antibiotics from B. subtilis. Afterward, many other anti-
biotics have been isolated from Bacillus and applied in
pharmacology and veterinary as well as the food indus-
try (Urdaci and Pinchuk 2004). For example, B. subtilis
2335 has been demonstrated to synthesize the antibiotic
amicoumacin which was effective against Helicobacter
pylori (Pinchuk et al. 2001). Common antibiotics pro-
duced by the genus Bacillus were summarized in
Pinchuk et al. (2001).

Antibiotics synthesized byBacillus species exhibit wide
range of antimicrobial properties against gram-positive
(bacitracin, laterosporin, gramicidin, and tyrocidin) and
gram-negative (polymyxin) bacteria as well as against
fungus (mycobacillin and zwittermicin) including antiviral
properties (surfactin, subtilin, ericin A, and ericin S)
(Urdaci and Pinchuk 2004; Suva et al. 2016). Antibiotic
production by genus Bacillus is well elucidated by Urdaci
and Pinchuk (2004). However, yet to be understood is
whether these antibiotics synthesized by Bacillus could
result in antibiotic resistance or not. Perhaps there is lesser
chance of antibiotic resistance since Bacillus uses diverse
ways to combat pathogenic microbes. Nonetheless, re-
search in this area is recommended.

Stimulation of the host’s immune system

Another mechanism used by Bacillus in protecting the
host against pathogenic microbes is the stimulation of
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the host’s nonspecific and specific immunity.
Immunostimulatory effects of Bacillus have been re-
ported in many studies in relation to aquaculture. Re-
gardless of the form, whether vegetative cells or spores,
Bacillus trigger the humoral and cell-mediated immune
response of fish. The main components of specific and
nonspecific immunity of fish are well elucidated (Tort
et al. 2003; Magnadóttir 2006; Uribe et al. 2011;
Thompson 2017; Wilson 2017).

Some studies have provided strong evidence that the
administration of Bacillus species stimulates the im-
mune (specific and nonspecific) system of fish. The
interaction between Bacillus species and phagocytic
activity of fish has been reported. For example, higher
phagocytic activity has been reported in striped catfish
(Pangasianodon hypophthalmus) after a mixture of
B. amyloliquefaciens and B. pumilus diet supplementa-
tion (Thy et al. 2017). In parrotfish (O. fasciatus), de-
creasedmortality was recorded after Vibrio alginolyticus
challenge which was attributed to increased phagocytic
activity after feeding with a diet supplemented with
B. subtilis E20 (Liu et al. 2018). Enhanced phagocytic
activity in Haliotis discus hannai Ino, Epinephelus
coioides, and L. rohita was also observed after
B. licheniformis, B. pumilus SE5, and Bacillus
aerophilus diet supplementation, respectively (Yan
et al. 2016; Ramesh et al. 2017; Gao et al. 2018).
Lysozymes which are known for the destruction of the
cell walls of certain bacteria have also been reported to
be enhanced after Bacillus supplementation in L. rohita
(Nandi et al. 2017a), O. niloticus (Abarike et al. 2018b,
a), red sea bream (Zaineldin et al. 2018), and European
sea bass (D. labrax) (Acosta et al. 2016). Other immune
parameters of fish such as IgM (Nandi et al. 2017a;
Ramesh et al. 2017), respiratory burst (Ramesh et al.
2017; Thy et al. 2017), pro-inflammatory cytokines (IL-
8 and IL-1β) (Yan et al. 2016), and the modulation of
genes related to immunity (He et al. 2011, 2013;
Abarike et al. 2018a; Midhun et al. 2019) have been
implicated with Bacillus diet supplementation in fish.
He et al. (2013) also related the immunostimulatory
effects of their B. subtilis C-3102 to the production of
β-glucan and bacteriocins. Components of the innate
and the adaptive immune system play crucial roles in the
host’s defense against infectious agents (Esteban et al.
2014; Munir et al. 2016); thus, enhancement of these
components by Bacillus species suggests that Bacillus
helps fish fight infectious agents by enhancing the im-
munity of the fish.

Competition for adhesion sites

Although pieces of evidence are available, competition
for adhesion sites is another generally proposed mecha-
nism by which probiotics inhibit the proliferation of
pathogens (Sahu et al. 2008; Ige 2013; Addo et al.
2017b). In vitro methods have been used to support this
claims but yet to be supported with in vivo methods
(Kesarcodi-Watson et al. 2008).

Adhesion of bacteria to tissue surface is significant
during the early stages of pathogenic infection. Compe-
tition for adhesion receptors with pathogens may be an
inherent probiotic characteristic thus depriving patho-
genic microbes of adhesion to cause infections (Addo
et al. 2017b). Colonization of the gut and other tissue
surfaces and competition for space for adhesion is one of
the mechanisms used by probiotics to fight against
harmful pathogens (Ringø et al. 2007). Many studies
have proven the ability of probiotics to adhere to intes-
tinal mucus using in vitro methods, but the competitive
exclusion effects of these probiotics are not well eluci-
dated (Kesarcodi-Watson et al. 2008). Lalloo et al.
(2010) indicated that the basis of competitive exclusion
by probiotics is through competition for available ener-
gy or chemicals or by the higher growth rate of the
probiotics compared with the pathogenic microbes.
They drew this conclusion from their experiment where
B. cereus outcompeted A. hydrophila and inhibited its
growth. In another study by Brunt and Austin (2005), it
was demonstrated that the inhibition of pathogenic
L. garvieae and Streptococcus iniae by their Bacillus
species was not as a result of antibiosis or production of
antimicrobial compounds. This supports Luis-
Villaseñor et al. (2011) who indicated that Bacillus
spp. possess higher adhesion abilities. Hence, competi-
tion for adhesion sites leading to the exclusion of path-
ogenic microbes is partially due to the higher growth
rate of the probiotic microbes relative to the pathogenic
microbes. Nevertheless, many factors such as adhesins,
lipoteichoic acids, passive forces, hydrophobic, steric
forces, and electrostatic interactions play a significant
role in the adhesion capacity of microbes (Lara-Flores
and Aguirre-Guzman 2009; Mohapatra et al. 2013).

Competition for nutrients and energy

Probiotic bacteria, as well as pathogenic microbes, use a
similar source of energy and nutrients; thus, probiotic
effects are attributed to competition for nutrients and
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energy sources (Verschuere et al. 2000a; Hassanein and
Soliman 2010). Heterotrophs, which are abundant in the
aquatic ecosystems, contest for organic substrates such
as carbon and other energy sources (Mohapatra et al.
2013). Probiotics utilize nutrients available for patho-
genic microbes thus starving the pathogenic microbes.
Bacillus species show higher organic carbon utilization
and are capable of synthesizing siderophores (low mo-
lecular weight chelating compounds) which expedite
competitive uptake of iron for growth (Verschuere
et al. 2000b; Winkelmann 2002; Lalloo et al. 2010).
Iron and carbon are important requirements for the
growth of most microbes; hence, limiting their availabil-
ity can result in growth suppression (Braun and
Killmann 1999). Under iron-limiting conditions,
siderophore-producing probiotics deprive pathogens of
iron (Kesarcodi-Watson et al. 2008). In a glucose and
iron uptake studies, it was revealed that B. cereus had
significantly higher growth in limited glucose or iron
than pathogenic A. hydrophila which was attributed to
siderophore production by the B. cereus isolates (Lalloo
et al. 2010). Several Bacillus species have been shown
through in vitro methods to use a variety of carbon
sources for energy (Ramesh et al. 2015; Lee et al.
2017; Meidong et al. 2017; Kavitha et al. 2018) indicat-
ing their ability to deprive pathogens of these energy
sources. It is notable that competition for nutrient and
energy leads to competitive exclusion.

Production of organic acids

Inhibition of pathogenic microbes has been associated
with the production of organic acids by probiotic LAB
(González et al. 2007; Maeda et al. 2014). These organic
acids are produced during lactic fermentation, and the
type of organic acids produced is dependent on the type
and strain of the LAB (Lindgren and Dobrogosz 1990).
The production of organic acids by LAB results in
antimicrobial effects through the reduction of pH, as
well as the undissociated form of the molecules. The
low pH causes acidification of the cell cytoplasm, and
the undissociated acid diffuses passively across the
membrane to collapse the electrochemical proton gradi-
ent or to modify the cell membrane permeability
resulting in disruption of substrate transport systems
(Ammor et al. 2006;Musikasang et al. 2009). Therefore,
organic acids have strong inhibitory activity against
pathogenic bacteria (Musikasang et al. 2009). Recently,
Etyemez and Balcazar (2016) proposed that

antibacterial activity of B. mojavensis against
Edwardsiella piscicida was as a result of the production
of organic acids or pH-dependent compounds by the
Bacillus species. This suggests that like LABs, Bacillus
species also produce organic acids which are antagonis-
tic against fish pathogens.

Conclusion and future perspectives

Beneficial use of Bacillus in aquaculture has been well
established. Mitigation of pathogenic microbes is one of
the most important benefits of probiotic Bacillus. Re-
ducing the incidence of diseases leads to healthy pro-
duction and less mortality thus higher yields and more
income to the farmer. Quorum quenching, production of
bacteriocins, antibiotics and lytic enzymes, stimulation
of immunity, competition for adhesion sites, nutrients
and energy, and improvement of the rearing water qual-
ity are known mechanisms used by Bacillus in the
mitigation process. It has been shown that probiotic
Bacillus is useful in curbing the adverse effects of path-
ogens ranging from bacterial to viral infections in aqua-
culture. Other antipathogenic benefits of Bacillus in-
clude prevention of food spoilage thereby increasing
shelf life and less wastage. This, in turn, results in the
consumption of healthy fish by the consumer and also
saves energy used for storage thus more income.

Although research in the use of Bacillus species
against pathogens in aquaculture is advancing, other
groups of equally significant aquatic pathogens namely
Yersinia, Flavobacterium, Edwardsiella, Acinetobacter,
Clostridium, WSSV, and IHHNV are less explored;
therefore, much research in this direction regarding the
use of Bacillus is recommended. The use of Bacillus to
protect fish against viral infections and the production of
antibiotics which have antiviral effects have been re-
ported; nonetheless, this has not been fully exploited in
fish. Also, probiotic Bacillus use to confer protection in
fish against tilapia lake virus (Tattiyapong et al. 2017;
Senapin et al. 2018), a newly emerging virus threatening
tilapia culture can be explored. More research into the
mechanisms employed by Bacillus against fish patho-
gens should be carried out to better understand and
improve their efficacy. Finally, the relationship between
antimicrobial compounds produced by Bacillus in
in vitro studies and their in vivo immunostimulation
must be well investigated, and the exact mechanism
underlying the antiviral effects of Bacillus must be
explored.
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