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Abstract Muscle accretion is affected by the difference
between protein synthesis and its degradation. Studies
on different species revealed that muscle proteolysis is
mediated by different pathways including the ubiquitin-
proteasome pathway in which the ubiquitin protein li-
gases play an important role. These muscle atrophy
associated ligases were not well studied in tilapia. In
this study, we characterized the ubiquitin protein ligases
MuRF1/2/3, Atrogin-1 and F-box25, members of the
ubiquitin-proteasome pathway in tilapia, Oreochromis
niloticus, and their expressions in the muscle of starved,
fed, refed, and control fish. Sequences of these genes
revealed presence of Ring finger, B-box, and Cos do-
mains in all MuRF genes, as well as F-box domain in
Atrogin-1 and F-box25 genes. Real-time qPCR data
analysis showed that expression of MuRF1/2/3,
Atrogin-1, F-box25, and proteasome complex genes
was significantly upregulated in starved fish compared
to fed fish. Concurrently, the proteasome activity was
1.7-folds elevated in the starved fish compared to fed
fish. These results confirm the important role of these
genes in muscle degradation and suggest potential usage
as markers of muscle accretion in tilapia.
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Introduction

Tilapia ranks as the second most cultivated fish in the
world, after carp. Aquaculture of tilapia provides dietary
sources of protein and minerals for millions of poor
families in the world and is an important means of the
economic and social improvements. Tilapia are among
the most profitable and easiest fish to farm due to their
fast growth, palatability, a short production interval of
6–8 months, and omnivorous low-cost dietary needs
(feeds on phytoplankton, periphyton, and aquatic
plants). Plant-based diets and fast growth reduce the
likelihood that tilapia will accumulate environmental
contaminants (Mzengereza 2016, Aanyu et al. 2017).
Most tilapia that are consumed in North America and
Europe come from Asia, Middle East, and South Amer-
ica. In America, Tilapia is considered as a new aquacul-
ture species.

Muscle yield is an important trait affecting aquacul-
ture profitability. Muscle yield decreases when muscle
protein degradation increases compared to the protein
synthesis (Bonaldo and Sandri 2013, Salem et al. 2005,
Salem et al. 2006). In many cases, the rate of protein
synthesis remained unchanged while the proteolysis that
leads to muscle atrophy increases (Okamoto et al. 2011).

The membrane-bound lysosomal enzymes, calpain
proteinases, and the ubiquitin-proteasome pathway en-
zymes are important proteolytic systems that are
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responsible for muscle degradation inmammals and fish
(Lecker et al. 2004, Paneru et al. 2018). However, some
reports indicated that contribution of the proteasome to
total muscle protein turnover is lower in fish muscle
than that in mammals (Seiliez et al. 2014). However, a
large part of the muscle degradation comes from the
ubiquitin-proteasome pathway which includes the
ubiquitin-activating enzymes, ubiquitin-conjugating en-
zymes, and ubiquitin ligases (Fareed et al. 2006; Paneru
et al. 2018). During ubiquitination, E1 (ubiquitin-
activating enzymes) do a series of ATP-dependent en-
zymatic steps. E2 (ubiquitin-conjugating enzymes) bind
to E3 (ubiquitin-ligating) which bind with the substrate
protein to form E2-E3_substrate complex. This complex
becomes ready to be recognized and degraded by the
proteasome (Seiliez et al. 2008). Muscle RING finger
(MuRF) and muscle atrophy atrogin-1/F-box protein-32
(F-box32) and F-box protein-25 (F-box25) are
ubiquitin-ligating enzymes (Wang et al. 2011; Bodine
et al. 2001). The genes encoding for the E3 enzymes
have characteristic domains which are RING-finger do-
main, B-box zinc finger domain and Leucine-rich
coiled-coil domain in MuRF genes and F-box domain
in F-box genes, as well as the motif sequences that are
conserved for the enzyme activity (Wang et al. 2011).
The RING finger domain and B-box zinc finger domain
are evolutionarily conserved and involved in protein-
protein interactions that mediate different functions as
gene transcription, signal transduction, differentiation,
morphogenesis, microtubule stabilization and
ubiquitination (Borden 1998). In humans, one of the
most important regulatory proteins in the ubiquitin-
proteasome proteolysis of muscle are MuRF1 and
atrogin-1 proteins (Perera et al. 2012). Atrogin-1 and
F-box25 play an important role in transferring ubiquitin
molecules to the substrate protein marking it for degra-
dation (Gomes et al. 2001). Previous studies showed
that MuRF1 plays an important role in muscle hypertro-
phy and deletion of this gene can suppress muscle
atrophy in mice (Bodine et al. 2001). Wang et al.,
(2011) suggested that MuRF genes have important role
in muscle degradation as they find the expression of
these genes were up-regulated in the starved rainbow
trout fish. Nebo and coworkers reported increased RNA
abundance of MuRF1 and atrogin-1 in fasted tilapia
(Nebo et al. 2017). Also, loss ofMuRF3 gene negatively
affects the mice cardiac muscle function (Fielitz et al.
2007). Atrogin-1/F-box32 was up-regulated in several
types of muscle degradation (Lecker et al. 2004; Clarke

et al. 2007). In fish, expression of F-box32 increases in
starved rainbow trout and leads to muscle atrophy
(Cleveland and Evenhuis 2010). It is noticed that the
knowledge of the ubiquitin ligase enzymes in tilapia is
limited. Therefore, this study was undertaken to identify
and characterize genes of the ubiquitin ligases in tilapia
and to examine their expression/activity under muscle
catabolic conditions caused by starvation.

Material and methods

Experimental design

The experiments were approved by the MTSU institu-
tional animal care and use committee (IACUC), proto-
col 17-3008. Fish fingerlings (1.4 g average weight)
were obtained from Allin’s company, Chianti, CT,
USA and were acclimated for 15 days before the start
of experiments. The study was carried out in two exper-
iments (starved against fed and refed against control).
Each experiment was conducted in triplicate tanks
(50.5 × 25.5 × 31.5 cm). Each tank contained 18 fish.
In the first experiment, fish were either starved for
2 weeks or manually fed a commercial fish diet (provid-
ed by Allin’s company) at a ratio of 5–7% of fish body
weight twice per day for 7 days a week. In the second
experiment, fish were starved for 2 weeks then fed for
two extra weeks as mentioned before. The control group
was fed for 4 weeks. Tanks were cleaned daily to get rid
of feces and remaining food particles. Water quality
parameters were measured daily and were maintained
at temperature = 28–30 °C, pH = 7–7.2, ammonia = 0–
0.25, nitrite = 0, and nitrate = 0. At the end of each
experiment, fish were euthanized using an overdose of
MS222 (Syndel USA, Ferndale, WA). Muscle samples
were collected in liquid nitrogen and immediately stored
at − 80 °C.

RNA isolation

Total RNAwas isolated from each fish (8 fish randomly
selected/tank) using TRIzol reagent (Invitrogen, Carls-
bad, CA, USA) according to the manufacturer’s instruc-
tion. The concentration of samples was measured using
a Nanodrop (Thermo Scientific, Hudson, NH, USA) by
measuring absorbance at 260 nm. Gel electrophoresis
was performed to determine integrity of the RNAs.
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cDNA library preparation

cDNAwas prepared using a verso cDNA synthesis kit
(Thermo Scientific, Hudson, NH, USA) according to
the manufacture’s instruction using a random primer.
The kit contains buffer to eliminate genomic DNA
contamination. Concentrations of cDNA samples were
measured using a Nanodrop.

Real-time qPCR

Real-time qPCR primers for MuRFs, Atrogin-1, F-
box25, and proteasome genes were designed using
primer3 software (Kõressaar et al. 2018) and the cDNA
sequence of each gene. The NCBI accession numbers of
the cDNAs are presented in Table 1. qPCR was per-
formed in duplicate using 80-fold diluted cDNA sam-
ples on Bio-Rad iCycler PCR detection system. Real-
time qPCR reaction was performed using a SYBR green
master mix (Thermo Scientific, Hudson, NH, USA) that
was added to the cDNA templates at concentration of
0.006 μg/μl and the forward/reverse primers used were
at a concentration of 10 μM/μl (Ali et al. 2018). The
denaturation stepwas done at 95 °C for 7.00min follow-
ed by 40 amplification cycles that include denaturation
at 95 °C for 0.1 min, annealing at 57–64 °C according to
each gene’s melting temperature, and final extension at
60 °C for 5 min. Tilapia β-actin gene was used as
internal control for normalization (Yang et al. 2013).
The quantification of PCR data was done using ΔCt
method. ΔCT was calculated by subtracting CT of β-
actin from CT of the gene of interest. ΔΔCT was

calculated by subtracting ΔCt of the control group
(Fed or Control) from the treated group (starved or
refed, respectively). Relative gene expression of the
treated samples to the control samples was calculated
by the formula of 2^−ΔΔCT (Paneru et al. 2018).

Proteasome activity assay

Tilapia muscle samples were homogenized in phosphate
buffer saline (PBS, pH 7.4) containing 1% triton then
centrifuged for 20 min at 10,000 rpm, and the superna-
tant was retained (Fareed et al. 2006). The protein
concentration was measured using a BCA assay kit
according to the manufacture instructions (Thermo Sci-
entific, Rockford, lL, USA). The proteasome activity
was measured using a 20S proteasome assay kit accord-
ing to the manufacture protocol (EMD Millipore Cor-
poration, Billerica, MA, USA). A Suc-LLVY-AMC
substrate was used to measure the activity (Meng et al.
1999). The fluorophore 7-amino-4-methylcoumarin
(AMC) was detected after cleavage from the substrate
at 380 and 460 nm as excitation and emission wave-
lengths, respectively. The enzyme activity was normal-
ized to the protein concentration and used to calculate
fold change in activity between the experimental
groups. Data analysis and fold change of the activity
was calculated and presented using Microsoft Excel.

Gene sequence and protein analyses

Clustal W2 was used in aligning the protein sequences
and BOXSHADE was used for printing and shading of

Table 1 Primers used for qPCR analysis

Gene name Forward primer Reverse primer NCBI accession

F-box32 ATGCCTTTTCTCGGACAGGA GTCGTCGGCTGTTGTCTTTT XP_003443717.1

F-box25 TCCAGCGCTATTCAGGACTT TCCACTCAAAGACGTCAGCT XP_005454750.1

MuRF1 CAAGCACGTGTTCTCCTTCA TCATATTTGCTGCGTGGGTA XP_003458184.1

MuRF2 TGTGCAGAAAATGTGCCAAT AACGTCCACCAGAGGTCAAC XP_003443662.1

MuRF3 CCGTGTAGTGTGTGCGATTT CTGCGACTGATGGTCAAGAA XP_005464863.1

Proteasome 26S CAAGCTGCTGAGCTCTTCCT CAGGCCTCTTGAGAGCAATC XP_003442732.1

Proteasome alpha 5 AAGGGTTTTTGGCTGAAGGT CCTGGAACAATCTTCCCTCA XP_003441568.1

Proteasome beta 3 ATGCTGAATGCAGTTGATCG CTAGTCCATCCTGGCCTTCA XP_003448021.2

Polyubiquitin GCTGTTGTGTGAGCGTCATT TTGGCTGTAGTCTTGCGATG XP_019221483.1

β-actin TCTCGGCTGTGGTGGTGAA GACCCACACAGTGCCCATCT XM_003455949
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the multiple-alignments (Sievers et al. 2011). Functional
domains were predicted by aligning each gene with the
same gene predicted in trout (Wang et al. 2011;
Cleveland and Evenhuis 2010).

Results and discussion

Changes in body weight with starvation and refeeding

After 2 weeks of starvation, fish average body weigh
was significantly less than that of the fed fish, 0.839* ±
0.154 g versus 5.621 ± 0.942 g (Table 2). In the second
experiment where fish were starved for 2 weeks then fed
for two extra weeks, fish body weight was significantly
less (3.236* ± 0.332 g) compared to the control group
(7.879 ± 1.039 g) which was fed for 4 weeks (7.879 ±
1.039 g).

Relative gene expression of MuRF1/2/3, Atrogin-1
and F-box25

The results of qPCR revealed that expression of all
tested MuRFs, Atrogin-1, and F-box25 genes were

Table 2 Significant difference in body weight between groups in
response to starvation and refeeding

Group Average final body weight Number of fishes

Starved 0.839* ± 0.154 18

Fed 5.621 ± 0.942 18

Refed 3.236* ± 0.332 18

Control 7.879 ± 1.039 18

*Represent the significant difference between the group with its
respective control (starved vs fed and refed vs control. Data
presented as mean ±SD (n = 18). The average weight for all fish
at the beginning of the experiment was 1.64 ± 0.064, fish were
randomly distributed between groups
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Fig. 1 Differential gene
expression MuRF1, MuRF2,
MuRF3, Atrogin-1, and F-box25
genes in starved versus fed and
refed versus control groups. Gene
expressions were determined by
qPCR. The data were normalized
using the β-actin gene. The
expression of genes was
presented using fold change
between starved and fed groups
and refed and control group ±
standard deviation where (n = 7)
and (p ≤ 0.05)
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significantly increased in the starved group compared to
the fed group (respective control). The expression
values of MuRF1/2/3 genes were upregulated by 4.6-,
4.2-, and 8.3-folds, respectively, in the starved fish
compared to the fed fish (respective control, p ≤ 0.05).
Meanwhile, the refed fish showed no significant differ-
ence in MuRF1/2/3, compared to the control as depicted
in Fig. 1. Similarly, expression of Atrogin-1 and F-
box25 genes were drastically increased under starvation

conditions as described in Fig. 1. Atrogin-1 was 85-fold
upregulated in the starved group compared to the fed
group and 8-fold in the refed group compared to the
control group (p ≤ 0.05). F-box25 showed 8.7-fold in-
crease in the starved group compared to the control
group and 2.8-fold increase in the refed group compared
to the control group (p ≤ 0.05).

Consistent with our data, previous studies on rain-
bow trout showed upregulation of MuRF genes in
starved fish compared to the control fish (Wang et al.
2011). A recent study showed that tilapia exposed to
starvation had more than tenfold expression increase in
Atrogin-1 after 1, 2, and 3 weeks of starvation. Similar-
ly, MuRF1 had 2–4-fold increases in starved fish com-
pared to control group (Nebo et al. 2017). In Atlantic
salmon, starved fish showed 47-, 8-, and 5-fold in-
creases in Atrogin-1, MuRF1, and Fbox25, respectively
(Tacchi et al. 2010). In mammals, starving rats for 51 h
led to an increase in the Atrogin-1 level by 5.8-folds
(Dehoux et al. 2004). Also, Atrogin-1 in human had 8.2-
and 9.8-folds increase in expression levels after 1 and
2 days of starvation, respectively (Jagoe et al. 2002).
The conserved role of these genes in muscle atrophy
suggests that these genes could be used to develop
genetic markers for muscle accretion in tilapia (Salem
et al. 2006, Macqueen et al. 2014, de Boer et al. 2007).
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Fig. 2 Differential gene
expression of the 26S proteasome
non-ATPase regulatory subunit 6,
proteasome alpha5, proteasome
beta3, and polyubiquitin genes in
starved versus fed, refed, versus
control groups. Gene expressions
were determined by qPCR. The
data were normalized using theβ-
actin gene. The expression of
genes was presented using fold
change between starved and fed
group and refed and control group
± standard deviation where n = 7)
and p ≤ 0.05
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The activity was expressed as relative fold change ± SD
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Several studies investigated the role of Atrogin and
MURFs in regulating muscle growth and atrophy.
Atrogin andMURFs target specific proteins with critical
roles in muscle growth including MyoD and eIF3-f and
ATP generation especially glycolysis. In addition,
Atrogin and MURFs can target myofibrillar proteins
including myosin-binding protein C (MyBP-C) and my-
osin light chains 1 and 2 (MyLC1 and MyLC2), and
myosin heavy chain (MyHC). For review, see Bodine
and Baehr 2014 (Bodine and Baehr 2014) who sug-
gested that Atrogins controls protein synthesis, whereas
MuRFs control protein degradation.

Relative gene expression of proteasome genes

Four genes chosen to represent the proteasome pathway
showed concurrent upregulated expression in the

starved and refed fish compared to the control groups
(Fig. 2, P ≤ 0.05). Expression of the 26S proteasome
non-ATPase regulatory subunit 6, proteasome alpha5,
proteasome beta3, and polyubiquitin genes were 19.6-,
19.1-, 9.7-, and 16.8-folds upregulated, respectively, in
the starved group compared to the fed group. The pos-
itive correlation in expression of MuRF genes, Atrogin,
and F-box25 with the proteasome genes indicates active
ubiquitin-proteasome proteolysis in muscle during star-
vation (Fig. 2). The ubiquitin-proteasome pathway is
considered a major system responsible for the bulk
proteolysis during muscle atrophy (Paneru et al. 2018).

Proteasome activity

Consistent with the starvation effect in increasing
mRNA abundance of the ubiquitin-proteasome pathway
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Fig. 4 Predominant expression
of MuRF 1,2,3, Atrogin-1 and F-
box25 genes in muscle tissues.
Three to four cDNA samples
were used in RT-PCR
amplification and one set of genes
was presented
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box25 genes in tilapia compared
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genes, results of this study also showed that the protea-
some enzyme activity was significantly higher in the
starved fish muscle by 1.7 folds compared to the fed fish
as illustrated in Fig. 3. The activity was also elevated in
the refed group by 1.5 folds compared to the control
group. Similar results were observed in rainbow trout
fish that exhibited slight but significant increase in the
hepatic proteasome activity after 3 weeks of starvation
(Salem et al. 2007).

MuRFs and Atrogin tissue distribution

Real-time qPCR was used to determine expression of
the MuRF 1,2,3, Atrogin-1, and F-box25 in 10 tissues/
organs; white muscle, red muscle, heart, skin, gill, eye,
kidney, liver, stomach, and intestine. All genes revealed
predominant expression in muscle tissues, white mus-
cle, red muscle, and heart as shown in Fig. 4. Similar
results were reported in rainbow trout fish (Wang et al.

Fig. 6 Multiple alignments of MuRF1,2, and 3 amino acids
sequences of tilapia (Oreochromis niloticus). Dark background
indicates identical amino acids, gray background indicates same
properties of different amino acids, and amino acids with no

background indicates different name and properties. The red box
indicated the amino acid sequences of zinc finger-ring type do-
main. The green box indicates the B-box type zinc finger domain,
and the blue box indicates cos domain (coiled coil)
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2011, Cleveland and Evenhuis 2010) indicating impor-
tant role of these genes in muscle physiology of fish.

Molecular characterization of MuRF1/2/3, Atrogin-1,
and F-box25

Searching the GENBANK database, muscle degrada-
tion genes, such as MuRF genes, Atrogin-1, and F-
box25 were identified. Table 1 shows the accession
numbers for MuRF 1, 2, and 3 cDNAs, where they were
found to comprise of 2264, 2258, and 2335 nucleotide
(nt) sequences, respectively. The longest ORFs were
432, 372, and 365 amino acids for MuRF1, 2, and 3,
respectively. Amino acid sequence of tilapia MuRF1
shared variable homology percentages with different
species including 52% withMaylandia zebra, 54%with
Danio rario, 62% with Gallus gallus, and 63% with
Homo sapiens. The amino acid identity similarities were
higher for MuRF2 and MuRF3; 97% and 96% identical
to Maylandia zebra, 80% and 64% identical to Danio
rario, 67% and 63% identical toGallus gallus, and 67%
and 62% identical to Homo sapiens, respectively
(Fig. 5).

Tilapia Atrogin-1/F-box32 and F-box25 cDNAs had
2459 and 3596 nt sequence. The longest ORFs were 358
and 355 amino acids for F-box32 and F-box25,

respectively. Amino acid sequences of F-box32 and F-
box25 were 99% identical toMaylandia zebra, 86% and
75%, identical toDanio rario, 75% and 67% identical to
Gallus gallus, and 74% and 66% identical to Homo
sapiens, respectively (Fig. 5).

Protein functional domains for these genes were pre-
dicted. MuRF1/2/3 protein sequences contain functional
Zinc finger domain comprising amino acids 9–65 in
Murf1/2, and 34–90 in Murf3 as shown in Fig. 6. Zinc
finger-Ring type domain is characterized by the
presence of zinc atoms and finger-like protrusions
that strongly bind enzymes with their substrates in
the degradation process. This action affects the pro-
tein transcription, transduction, differentiation, and
ubiquitination, that leads to substrate protein degra-
dation (Wang et al. 2011; Witt et al. 2005). B-box
Zinc finger domain contains amino acids 110–143 in
MuRF1/2 and 138–171 in MuRF3 as presented in
Fig. 6. B-box domain also is a protein-protein interac-
tion domain (Borden 1998). Moreover, coiled-coil do-
main contains amino acids 145–187 in MuRF1/2 and
173–215 in MuRF3 as cleared in Fig. 6. The predicted
coiled-coil domains are involved in association with
microtubules (Spencer et al. 2000). On the other hand,
Atrogin-1/F-box32 and F-box25 contain F-box domain
that contain amino acids from 163 to 211 and 165 to

Fig. 7 Multiple alignments of F-box25 and Atrogin-1 amino
acids sequences of tilapia (Oreochromis niloticus). Dark back-
ground indicates identical amino acids, gray background indicates

same properties of different amino acids, and amino acids with no
background indicates different name and properties. The red box
indicates the amino acid sequences of F-box domain

Fish Physiol Biochem (2019) 45:1321–13301328



214, respectively, as indicated in Fig. 7. The predicted
F-box domain can act with Leucine-rich repeats in
protein-substrate interaction (Cleveland and Evenhuis
2010; Gomes et al. 2001).
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