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Abstract Temperature plays an important role on re-
productive physiology of vertebrates including mam-
mals, fish, and birds. It has varying effects on fish
reproduction depending on the species; higher tempera-
tures favor the spring-spawning species, while lower
temperatures stimulate reproduction in autumn
spawners. To evaluate the impact of high temperature
on the reproductive physiology of minnow Puntius
sophore, we carried out expression analysis of selected
genes associated with gamete quality (hsp60, hsp70,
hsp90, hsf1, vtg), pleuripotency (sox2, oct4, nanog),
and sex determination (dmrt1) in gonads (ovary and
testis) of P. sophore, heat stressed for different time

periods (36 °C/7 days or 60 days) using real-time quan-
titative polymerase chain reaction (RT-qPCR). Expres-
sion of most of the hsp, vtg, and pleuripotency marker
genes sox-2, oct-4, and nanog genes was downregulated
in both ovary and testis of heat-stressed fish. The ex-
pression of dmrt-1 was upregulated in testis but down-
regulated in ovary of the heat-stressed fish which could
be a male favoring effect of high temperature in
P. sophore. This study suggests that the reproductive
physiology and health of the nutrient dense P. sophore
would be negatively affected by high temperature stress.
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Introduction

Temperature plays an important role in reproductive
physiology of vertebrates including mammals, fish,
and birds (Hansen 2009; Boulangé-Lecomte et al.
2014; Sengar et al. 2017). In mammals, high tempera-
ture disrupts spermatogenesis and oocyte development,
oocyte maturation, early embryonic development, and
foetal and placental growth and lactation (Hansen 2009;
Boulangé-Lecomte et al. 2014). High temperature also
affects reproductive cycles in birds; increase in environ-
mental temperature has resulted in shifting of the egg-
laying timings (Visser et al. 2009). Similarly, in case of
fish, temperature has varied effects on reproduction,
depending upon the species; higher temperature favor
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the spring-spawning species, while lower temperature
stimulates reproduction in autumn spawners (Pankhurst
andMunday 2011). High temperature stress is the major
environmental concern in the climate change regime,
and assessing its impact on reproductive physiology of
fish species is important as selection of species that can
withstand higher temperatures with relatively lower im-
pact on their reproductive performance would be re-
quired for sustainable aquaculture (Mohanty et al.
2010).

A number of experimental studies have shown that
increase in temperature could affect reproduction in
fish; however, the nature of these effects would de-
pend on the period and amplitude and would vary
from species to species (Pankhurst and King 2010;
Pankhurst and Munday 2011). Puntius sophore is a
micronutrient dense fish with a wide distribution in
the tropical region, and it is being seen as an important
tool for fighting hidden hunger and malnutrition
(Mahanty et al. 2014). Thus, efforts are being made
by aquaculturists to standardize its breeding and in-
crease its production through aquaculture (Mohanty
et al. 2018a, b). The breeding biology of Puntius has
been reported earlier, and it has been seen that the fish
is a seasonal breeder; the spawning period is marked
by the gradual increase in the gonado-somatic index
(GSI) during the month of March and July which then
gradually starts decreasing (Choudhury et al. 2015;
Hasan et al. 2018).

In this backdrop, the present study was carried out
to investigate the impact of short-term (7 days) and
long-term (60 days) high temperature stress on the
reproductive physiology of this important species
through expression analysis of a number of hsp
genes (hsp90, hsp70, hsp60), heat-shock factor 1
(hsf1), vitellogenin (vtg), pleuripotency marker
genes (sox-2, oct-4 and nanog), and dmrt-1. Expres-
sion of heat-shock protein (hsp) and vitellogenin
(vtg) genes were carried out as there are numerous
reports which depict the important roles played by
these genes in maintenance of gonadal integrity.
Besides, hsp70 has also been reported as a possible
marker for assessing the egg quality (Kohn et al.
2015; Sullivan et al. 2015). Like the hsps, the
pleuripotency markers, SRY (sex-determining
region Y) -box 2 (sox-2) , octamer-binding
transcription factor 4 (oct-4), and nanog are also
considered as markers for assessing the quality of
oocyte (Zuccotti et al. 2011).

Materials and methods

Ethics statement

The study including sample collection, experimentation,
and sacrifice met the ethical guidelines including adher-
ence to the legal requirements of the study country. The
study was approved by the Institute Animal Ethics
Committee (IAEC) of Central Inland Fisheries Research
Institute vide approval no. CIFRI/IAEC-17/03.

Sample collection after short- and long-term thermal
exposure

P. sophore (weight 4.22 ± 0.5 g, length 6.46 ± 0.56 cm)
were collected from aquaculture ponds and were accli-
matized under laboratory conditions for 30 days in
acrylic tanks of 30 l capacity fitted with thermostats.
Fishes were fed once daily by providing laboratory
prepared feed. Feed was prepared using soybean oil
cake (290 g Kg−1), mustard oil cake (524 g Kg−1), fish
meal (50 g Kg−1), vitamin–mineral premix (20 g Kg−1),
and edible vegetable oil (15 g Kg−1). The protein and fat
contents of the feed were 34% and 5.8%, respectively.
P. sophore is found in almost all freshwater ecosystems
in the tropical countries where the water temperature
varies between 25 and 30 °C baring the peak summers.
Therefore, the fishes were acclimatized at water temper-
ature of 27 ± 0.2 °C prior to the heat-stress treatment.
The fishes were randomly assigned to three experimen-
tal groups; one of the group maintained at 27 °C during
the experimental regime served as the control. In the
other two groups, the temperature was raised from 27 °C
at the rate of 2 °C/h using a thermostat and temperature
was maintained at 36 °C for 7 days and 60 days, respec-
tively. A photoperiod of 12 h light and 12 h dark was
maintained throughout the experimental regime. The
water temperature was monitored using a calibrated
thermometer.

The critical thermal maximum temperature (CTMax)
of P. sophore has been found to be ranging between 39
and 41.5 °C depending upon the acclimatization tem-
perature and other factors (Mahanty et al. 2016a, b,
2017). Therefore, a sublethal temperature close to the
CTMax of the fish (36 °C) was chosen for this experi-
mental study.

P. sophore is a prolific breeder, and its breeding
biology has been studied by a number of researchers
(Choudhury et al. 2015; Hasan et al. 2018). It has been
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reported that the fish spawns during the months March
to July (Choudhury et al. 2015; Hasan et al. 2018). In the
present study, gonads of mature fishes were collected
during the pre-spawning period after completion of the
exposure period. Nine male and 9 female fishes from
each group were euthanized with tricaine, MS-222,
200 mg/ml, prior to dissection and collection of tissues
in RNA later (R0901, Sigma).

RNA extraction and cDNA synthesis

RNA was extracted from tissue samples (nine samples
from each experimental group, weighing approximately
50–70 mg of tissues) using RiboZol (HiMedia, India)
according to the manufacturer’s protocol. RNA integrity
was confirmed by determining their RNA integrity no.
(RIN) by a Bioanalyzer (Agilent 2100), and samples
with RIN values > 6 were processed for further analysis.
RNA samples were treated with the DNase1 (NEB, UK)
as per the manufacturer’s recommended protocol to
remove DNA contamination. One microgram of DNase
treated total RNA was reversely transcribed using M-
MLV reverse transcriptase (New England Biology, UK)
according to manufacturer’s protocols.

Primer synthesis

Expression analysis of four hsp genes: hsp90, hsp70,
hsp60, and hsf1; three pleuripotency marker genes: oct-
4, nanog, and sox-2 were carried out in both testis and
ovary of P. sophore. Primers for the hsps 90, 70, and 60
were adapted from Mahanty et al. 2016b. Primers for
oct-4 and sox-2 were adapted from Wagner and
Podrabsky (2015). Primers for nanog and vtg were
adapted from Zhendong (2009) and Henry et al.
(2009), respectively. Lyophilized primers were procured
from Integrated DNA Technologies (USA) and were
reconstituted using nuclease-free water. Information of
the sequences of the primers, annealing temperature,
and accession numbers are listed in Table 1. The spec-
ificity of the primer sets was confirmed by the presence
of a single band of appropriate size obtained after PCR
amplification.

qPCR analysis

The real-time PCR amplifications were carried out using
SYBR Green detection chemistry. cDNA were run in
triplicates on a 96-well reaction plates with the CFX

Connect real-time PCR (Bio-Rad, UK). Twenty micro-
liter of reaction mixture contained 10 μl of VeriQuest
SYBRGreenMix (Bio-Rad, UK), 1.0 μl of each 10 μM
of primers and 5 μl of diluted cDNA as template and
3 μl of RNase/DNase-free sterile water (Thermo Scien-
tific, USA).

The following amplification programs were used in
all RT-qPCR reactions: 50 °C for 2 min, 95 °C for
10 min, 40 cycles of 15 s, and 95 °C annealing and
extension for 45 s at optimized temperatures for specific
candidate genes. The specificity of each amplification
reaction was verified by a melting curve analysis after
40 cycles. No template controls (NTC) were included
for each primer pair for cross-checking any possible
contamination of assay reagents.

PCR efficiency of the genes was determined by a
standard curve analysis of cDNA samples according
to the Minimum Information for Publication of
Quantitative Real-Time PCR Experiments (MIQE)
guideline (Bustin et al. 2009). A series of 10-fold
dilution of three replicates of cDNA was made to
determine the gene-specific PCR amplification effi-
ciency for each primer pair used in qPCR experi-
ments. Standard curve was derived from the E values
by the formula E = 10–1/slope. The mean efficiency
values were obtained for each tissue samples and
were used to adjust the quantitative cycle (Ct) values
for further analysis.

Expression analysis of ten candidate reference
genes was earlier carried out, and eef1 and b2mg
were found to be the most suitable reference genes
in ovary and testis, respectively (Mahanty et al.
2017). Thus, these two genes were used for normal-
ization of expression of the target genes (hsps, sox-2,
oct-4, nanog, vtg, dmrt-1) in the respective tissues.
The comparative Cq (delta Cq) method was used to
calculate the changes in gene expression as a relative-
fold difference between the control and treated sam-
ple. MIQE guidelines were followed for the qPCR
experiments (Bustin et al. 2009).

Statistical analysis

Fold changes of gene expression are expressed in com-
parison with the control. One way analysis of Variance
(ANOVA) followed by Tukey’s test was employed to
compare the variation between the experimental groups
(p < 0.05).
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Results

Expression of hsp genes in gonadal tissues

In ovary, the expression of hsp70 and hsf1 was
found to be downregulated in both the heat-
stressed groups (both short-term and long-term).
hsp60 was found to be significantly upregulated,
whereas the expression of hsp90 was found to be
downregulated in the 7-day heat-exposed fishes. Ex-
pressions of both hsp60 and hsp90 were found to be
returning to the basal level in the fish exposed to
heat stress for 60 days.

Similar to ovary, in testis also, the expressions of
hsp70 and hsf1 were found to be downregulated in both
the heat-stressed groups. But unlike the ovarian tissues,
in testis, expressions of hsp60 and hsp90 were found to
be downregulated in both the heat-stressed groups and
no signs of recovery were found in the 60-day heat-
exposed groups (Fig. 1).

Expression of pleuripotency marker genes (sox-2,
nanog, oct-4)

In both ovary and testis, significant downregulation in
expression of sox-2, nanog, and oct-4 was observed in
the heat-stressed groups. There was a gradual decrease
in expression of these genes with increase in time period
of heat exposure (Fig. 2).

Expression of vtg and dmrt-1

Expression of vtg remained unaltered in both ovary and
testis of fishes heat stressed for 7 days while significant
downregulation was observed in gonadal tissues of fish-
es exposed to heat stressed for 60 days. In ovary, the
expression of dmrt-1 (double sex mab-3–related tran-
scription factor 1) was found to be downregulated in the
heat-stressed groups, while in testis, the expression of
dmrt-1 was upregulated in the fishes heat stressed for
7 days but found to be returning to the basal level in the
60 days exposed fishes (Fig. 3).

Discussion

Expression of hsps

Hsps play important roles in maintaining physiological
integrity by stabilizing, refolding the denaturing pro-
teins, and facilitating the proteolysis of the denatured
proteins (Sottile and Nadin 2017; Wang et al. 2015;
Zunino et al. 2016; Mahanty et al. 2016a, b). The hsps
are known to be expressed in various cell types includ-
ing gonadal cells, and studies suggest that some of the
hsps play fundamentally important roles during early
development. Hsps are known to be expressed in normal
cells, but their expression is increased during stressed
condition. However, in case of gonadal (ovary) tissues, a
number of studies have shown the decrease in

Table 1 Primer sets used for RT-qPCR analysis

Gene Primer sequence (5′–3′) Annealing
temperature

Accession no. Reference

hsp90 F: 5′-GGAAATCTTCCTCCGAGAGC-3′
R: 5′-CCGAATTGACCGATCATAGA-3′

51 °C KC962223 Mahanty et al. 2016b

hsp70 F: 5′-GCATGGTGAACCACTTTGTG-3′
R: 5′-CTCTGCCGTTGAAGAAATCC-3′

53 °C JX401427 Mahanty et al. 2016b

hsp60 F: 5′-C(C/T)GTCACCATGGG(A/G/T)CCAAAGG-3′
R: 5′-C/G/T)GCCTCTCCATCCACATCC/T)TC(A/C)GC-3′

65 °C KC844065 Mahanty et al. 2016b

vtg F: GGTGACTGGAAGATCCAAG
R: TCATGCGGCATTGGCTGG

55 °C KU533862 Henry et al. 2009

sox-2 F: CAAGACCCTCATGAAGAAGGAC
R: TBCAGTACAACTCCATGACYA

50 °C EF431920.1 Wagner and Podrabsky 2015

oct-4 F:GAGGCTCTSCARCTKAGYTTC
R:RGATGTRGTVCGWGTDTGGTT

53 °C NM_131112.1 Wagner and Podrabsky 2015

nanog F: GAGCGCTTCAATCAGCATCC
R: GTTAAGTTCCGTTCTCCACTGTC

55 °C EF550998 Zhendong 2009

dmrt1 F: ATGGTGGACGCCTCCTATTAC
R: AGGGCAGGTGCTGGGTTG

60 °C AY157562.1 Zhang et al. 2013
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abundance of the hsps as a marker of poor egg quality
(Kohn et al. 2015; Chapman et al. 2014). Kohn et al.
(2015) have reported a decrease in abundance of hsp70
in poor-quality eggs in Polyprion oxygeneios. Chapman
et al. (2014) identified hsp90 transcripts among a subset
of 233 mRNA species whose abundance had predictive
value for egg quality in striped bass. “Egg quality” has
been defined as the ability of the egg to be fertilized and

subsequently develop into a normal embryo (Bobe and
Labbe 2010), and poor-quality eggs are those which
have very less ability to get fertilized and subsequently
develop into a viable embryo (Bobe 2015). In the pres-
ent study also, we found that downregulation in the
expression of hsp70, and hsf1 could be indicative of
deteriorative changes in the ovarian functionalities that
could lead to production of poor quality eggs. Along
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Fig. 1 Expression profile of hsp genes in gonadal tissues of
Puntius sophore heat stressed for 7 and 60 days. The hsps were
found to be downregulated in the gonadal tissues of heat-stressed

fish except hsp60 in ovary. (*) above the bars indicate significant
difference in the values in comparison to control (p < 0.05)
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Fig. 2 Expression profile of pleuripotency marker genes sox2,
oct4, and nanog in gonadal tissues of Puntius sophore heat
stressed for 7 and 60 days. Downregulation in expression of the
pleuripotency marker genes was observed in the gonads of heat-

stressed fishes indicating loss of pleuripotency of gonadal cells. (*)
above the bars indicate significant difference in the values in
comparison to control (p < 0.05)
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with that, significant alterations in expression of hsp90
and hsp60 were observed in ovary of fishes exposed to
heat stress for 7 days (down- and upregulations,
respectively) which were found to be returning to basal
level after 60 days of heat exposure. This could be an
indication of acclimatization to warm temperature after
a relatively longer period of time.

In testes, all the hspswere found to be downregulated
in the heat-stressed groups. Studies have shown that
downregulation of hsps in testes lead to apoptosis of
testicular cells (He et al. 2010). The downregulation in
expression of hsps could be because of the progression
of testicular cells to apoptotic pathways. Similar to the
present findings, Domingos et al. (2013) have shown
downregulation of hsps in testes of fishes during warmer
seasons of year.

Expression of pleuripotency marker genes

The sox-2, oct-4, and nanog are transcription factors that
regulate transcription of proteins of the leukemia inhib-
itory factor (LIF) signaling pathway (Magnani and
Cabot 2009). These three transcription factors contrib-
ute to a complex molecular network necessary for main-
tenance of cellular pluripotency. Pleuripotent stem cells
are necessary for the maintenance of many adult tissues
including the gonads (Greenspan et al. 2015). Gonads
are the only organs capable of transmitting genetic ma-
terials to the offspring and are composed of both somatic
and germline stem cells (Liu et al. 2009). However,
pleuripotency of the gonadal stem cells and their self-
renewal capability largely depend on their microenvi-
ronment and any misregulation in the signaling path-
ways in this microenvironment can lead to depletion of

different stem cell pools (Greenspan et al. 2015). In
this context, we analyzed the expression profile of
three pleuripotent stem cell marker genes sox-2, oct-
4, and nanog in both testis and ovary of fish ex-
posed to heat stress. All these genes were found to
be downregulated in both ovary and testis of
P. sophore exposed to heat stress which indicates
depletion in the number of stem cells; the stem cell
could possibly be either undergoing apoptosis, or
these cells might be losing their pleuripotency.

Expression of vtg and dmrt-1

Vtg gene synthesizes vitellogenin which is the precursor
protein of yolk. Vitellogenin is a protein that is generally
synthesized in female fishes; however, in presence of
endocrine disruptive chemicals (EDC), it can be synthe-
sized in male fish also (Hara et al. 2016). Vitellogenin
has been found to be a marker of egg quality, and its
downregulation in ovary is indicative of poor egg qual-
ity (Kohn et al. 2015) and one of the markers used for
presence of endocrine disruptive chemicals (Endocrine
disruptor screening and testing advisory Committee
1998; Marin and Matozzo 2004; Klaper et al. 2006).
In the present study, we observed downregulation in
expression of vtg in ovary of fish exposed to heat stress
but its expression was inconsistent in testis. The down-
regulation of vtg in ovary indicates that, like EDCs, high
temperature stress could also disrupt the endocrine func-
tions and can hamper the egg production process. This
inference has been made on the basis of the downregu-
lation of vtg in the gonads of heat-stressed fish. How-
ever, the possibility that high temperature acts as an
endocrine disruptor merits further investigation.
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Fig. 3 Expression profile of sex determining gene dmrt1 and gene
involved in vitellogenesis vtg in gonadal tissues of heat-stressed
Puntius sophore. dmrt1 was found to be downregulated in ovary
and upregulated in the testis of heat-stressed Puntius sophore

indicating that high temperature might favor production of higher
number of males. (*) above the bars indicate significant difference
in the values in comparison to control (p < 0.05)
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Sex in fish is plastic and in several species can be
influenced by environmental factors (Díaz and Piferrer
2015). Thus, we studied the expression of dmrt-1 in
both the gonads of fish exposed to high temperature
stress to know whether high temperature supports mas-
culinization or feminization. In case of zebrafish, which
is also a cyprinid likePuntius, dmrt-1 plays an important
role in male sex determination and testis development
(Webster et al. 2017; Lambeth et al. 2014).Webster et al.
have shown that the mutations in dmrt-1 gene result in
complete sex reversal from male to female in zebrafish.
It not only plays a role in genotypic sex determination
but also plays important functions in environmental sex
determination especially in temperature-dependent sex
determination (Fernandino et al. 2008). The expression
of dmrt1was upregulated in testes and downregulated in
ovary of the heat-stressed fishes which could be possi-
bly because of a masculinization supportive role of high
temperature. In many fish species, temperature-
dependent sex determination (TSD) has been observed
along with genetic sex determination (GSD) which
varies among the species (Baroiller et al. 2009). In some
species like tilapia, high temperature above 32 °C favors
feminization (Baroiller et al. 2009), whereas in species
like Danio rerio, Oryzias latipes, and Onchorhynchus
nerka, high temperature favors masculinization. The
present study suggests that high temperature could favor
masculinization in P. sophore like its close relative
D. rerio (Ospina-A lvarez and Piferrer 2008). However,
fish in general have a weak genetic component of sex
determination and the mechanisms of sexual differenti-
ation may vary among fish species. Thus, this merits
further investigation to see if dmrt-1 is involved in sex
determination in Puntius also and if the upregulation in
its expression has any male favoring effect.

The present study showed that even though ex-
pression of some of the genes had recovering ten-
dency with prolonged period of temperature stress,
most of the genes had altered expression indicating a
negative impact on the reproductive physiology of
the fish. As observed in the present study, anoma-
lous temperature has been found to be having an
inhibitory effect on reproductive physiology of the
fish Takifugu niphobles through suppression in ex-
pression of a number of genes like kisspeptin and
gnrh (Shahjahan et al. 2017). Similarly, Díaz and
Piferrer (2017) have reported that temperature has a
masculinizing effect which is overridden by estrogen
exposure.

Conclusion

The present study showed that with increasing temper-
ature, there was a downregulation of hsps indicating that
high temperature can affect the quality of gametes pro-
duced. Similarly, the downregulation of pleuripotency
marker genes in the heat-stressed fish suggests that the
gonads could lose their pleuripotent cells thereby affect-
ing the gonadal integrity. This study suggests that the
reproductive physiology and health of the nutrient dense
P. sophore could be negatively affected with rise in
environmental temperature.
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