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Abstract Water quality encompasses the water physi-
cal, biological, and chemical parameters. It generally
affects the fish growth and welfare. Thus, the success
of a commercial aquaculture project depends on supply-
ing the optimum water quality for prompt fish growth at
the minimum cost of resources. Although the aquacul-
ture environment is a complicated system, depending on
various water quality variables, only less of them have a
critical role. One of these vital parameters is dissolved
oxygen (DO) level, which requires continuous oversight
in aquaculture systems. In addition, the processes of
natural stream refinement require suitable DO levels in
order to extend for aerobic life forms. The depletion of
DO concentration (called hypoxia) in pond water causes
great stress on fish where DO levels that remain below

1–2 mg/L for a few hours can adversely affect fish
growth resulting in fish death. Furthermore, hypoxia
has substantial effects on fish physiological and immune
responses, making them more susceptible to diseases.
Therefore, to avoid disease outbreak in modern aqua-
culture production systems where fish are intensified
and more crowded, increasing attention should be taken
into account on DO levels.
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Introduction

The dissolved oxygen (DO) is a main limiting factor in
fish farming because fish have aerobic metabolism re-
quiring DO at efficient levels. The DO concentration in
fish ponds depends generally on many factors including
photosynthesis of phytoplankton, respiration of aquatic
organisms, and/or the diffusion of atmospheric O2. The
solubility of O2 in pond water relies on environmental
conditions such as O2 partial pressure, water tempera-
ture, and salinity (Campbell 1990; Withers 1992). Hyp-
oxia is known as DO level low enough to negatively
affect fish behavior, physiology, immunology, and
growth (Jobling 1995; Lovell 1998; Mallya 2007; Pol-
lock et al. 2007; Thorarensen et al. 2010; Burgos-
Aceves et al. 2018). Most fishes have some capability
to acclimate with fluctuations in DO levels, but if severe
hypoxia persists, fishes will eventually die (Fitzgibbon
et al. 2007; Cook and Herbert 2012). Hypoxia has been
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shown to induce primary, secondary, and tertiary stress
responses in fish (Bernier and Craig 2005; Welker et al.
2007; Bernier et al. 2012; Segner et al. 2012). In cap-
tivity, fish always face repetitive and chronic stress
situations (e.g., confinement, crowding, handling, vari-
able water quality including hypoxia) from which they
cannot escape. Hence, fish have to acclimate to any of
these husbandry stressors. Therefore, the DO level
should be maintained near the saturation level to en-
hance fish growth and feed intake, and increase the
overall fish performance (Mallya 2007; Thorarensen
et al. 2010). Brett (1979) suggested that a DO level of
about 5 mg/L is critical for acceptable fish growth and
feed utilization, and as DO level decreases, respiration
and feeding activities also decrease. As a result of hyp-
oxia, the physiological or metabolic activities of farmed
fish would be negatively influenced (Wedemeyer 1996).
Jobling (1995) suggested that the DO levels which
limit the growth and feed intake in fish are usually
50–70% of air saturation. The prolonged exposure to
hypoxia, regardless of the reason, causes low feed
intake, growth retardation, and high tendency to dis-
ease (Kestemont and Baras 2001; Fitzgibbon et al.
2007; Portner 2010).

Effect of hypoxia on fish behavior

The swimming behavior of fish varied when held under
hypoxic or normoxic conditions depending on fish spe-
cies, rearing conditions, and the length and/or the level
of DO and so on. Some fishes under hypoxic condition
did not show any special activity to escape away from
the hypoxic environment, and did not move upward to
the water surface to resort to air breathing and remain
static at the bottom of the tank to save their energy for
facing the hypoxic condition (Israeli and Kimmel 1996;
Wu 2002; Wu et al. 2007; Douxfils et al. 2012). This
behavior may be due to frequent damage in gills of fish
reared at hypoxic conditions (Araújo-Luna et al. 2018).
In some other cases when the DO level was at its lowest,
fish could be seen swimming rapidly in a circular mo-
tion with a wide mouth gape. This behavior attenuated
to normal swimming behavior over time as DO returned
to normoxic level (Bowyer et al. 2014). This behavior
may be due to gills adaptation to hypoxia, including
reduced gas diffusion distance (Saroglia et al. 2000) as
well as increased total respiratory surface (Saroglia et al.
2002). In most of predatory fishes, the mouth

intermittently gaped and the operculum over the gills
stayed incompletely open (Svobodova et al. 1993). On
the other hand, Cook and Herbert (2012) reported that
the swimming speed of yellowtail kingfish did not in-
crease in response to inescapable hypoxia, but the fish
show a rush and rest swimming behavior. This rush/rest
behavioral response was related to anaerobic stress,
obvious as increases in plasma lactate, glucose, and
cortisol (Cook and Herbert 2012). The sensitiveness of
fishes to hypoxia indicates that they may require a high
DO concentration to ensure their survival. It has been
perceived, in natural habitats, that hypoxia stress could
have a strongly inverse impact on fish habitat quality
and induced fish migrations (Breitburg 2002; Arend
et al. 2011; Aboagye and Allen 2018).

Effect of hypoxia on gills performance

Fish gills are responsible for several physiological ac-
tivities requiring behavioral, morphological, and physi-
ological adaptations to hypoxic conditions (Randall and
Daxboeck 1984; Olson 1991; Perry and McDonald
1993). However, fish gills are responsible for gas trans-
fer, which is regulated by Fick’s diffusion equation
(Jobling 1994), their respiratory surface area (RSA) as
well as their functional respiratory surface (FSA), and
gas diffusion distance (GDD); all these factors are high-
ly correlated with lifestyle and habitat of fishes (Perry
and McDonald 1993). The GDD does not only vary
considerably within fish species, but it also varies within
the gill apparatus of the same fish species (Hughes and
Morgan 1973). Prasad (1986) has shown a positive
correlation between fish body mass and GDD in Indian
flying barb (Esomus danricus). Environmental factors,
such as water hardness (Greco et al. 1996) and water
temperature and dissolved oxygen (Kisia and Hughes
1992; Randall and Daxboeck 1984; Saroglia et al.
2000), could also affect GDD. Similarly, the surface
area of the lamella and the number of lamellae vary
not only from fish species to another, but also within
the same species, according to their size (Hughes 1984).
Changes in the anatomy of the gill respiratory surface
area during body development appears to be related to
routine metabolism in Nile tilapia, Oreochromis
niloticus (Kisia and Hughes 1993). Only a part of the
total respiratory surface is perfused by blood during
“quiet” ventilation (Booth 1978), compared with
“strong” ventilation (Nilsson 1986), when the oxygen
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uptake rate is increased. Duthie and Hughes (1987)
observed that in rainbow trout, O. mykiss, whose func-
tional gill area had been reduced by cauterization, when
forced to swim showed a significant proportional reduc-
tion in maximum oxygen consumption. Oxygen con-
sumption at rest and at subcritical swimming speeds was
not affected. The authors concluded that the total gill
area is utilized for oxygen uptake only under conditions
of maximum aerobic demand and a direct limit is im-
posed on oxygen uptake at the gills independent of
environmental oxygen partial pressure (PO2), when el-
evated above normoxia.

The DO demand and PO2 fluctuation in water could
be compensated by adapting the RSA, as well as FSA,
and GDD in fish gills. In this regard, a positive correla-
tion was found in European sea bass, Dicentrarchus
labrax, between environmental DO and both GDD and
RSA (Saroglia et al. 2000, 2002, 2007, 2010). However,
sea bass reared under hyperoxic condition represented
significantly higher GDD than fish reared under normal
oxygen concentrations. This also occurred when an
improvement in O2 solubility was due to a decrease in
seasonal water temperature. The increase in FSA causes
a rise in water loss and ionic gain through the gills in fish
in a hypertonic environment such as water salinity
(Evans 1993). Fish respond to this by increasing their
water intake, which requires an increase in energy in
order to excrete the excess ions through the gills. In
contrast, a higher ion loss occurs when fish are accli-
mated to a hypotonic environment such as freshwater
and respond with adequate mechanisms consisting in an
enlarged water uptake and elimination of excess water
and ions via the kidney.

Hypoxia may lead to asphyxiation and fish mortality,
relying on the DO requirements for each fish species and
to a lesser extent on their rate of adaptation. The main
pathological-anatomic alterations of fish gills involve a
very pale skin color, congestion of the cyanotic blood in
the gills, adherence of the gill lamellae, and small hem-
orrhages at the anterior of the ocular cavity and in the
skin of the gill covers (Mallya 2007). In this regard,
Rinaldi et al. (2005) reared sea bass, D. labrax, at mild
hypoxia, normoxia, and mild hyperoxia conditions (re-
spectively, 60–70%, 90–100%, and 120–130% of the
saturation value), and modifications to PO2 levels were
studied with morphological and immune-histochemical
techniques. In normoxia and mild hyperoxia conditions,
the gills had the typical structure with rows of parallel
filaments; nevertheless, hyperoxia condition altered the

pillar cell structure, leading to an enlargement of the
vascular lumen. In hypoxia condition, gills lost all their
regular structure and were disorganized, where the vas-
cular lumen was reduced and the lamellae were disor-
ganized, were twisted, and showed frequent apical bleb.
Araújo-Luna et al. (2018) found that the most frequent
damage in gills registered for primary parameters was
hyperplasia and cellular anomalies (degeneration and
necrosis), whereas for the secondary parameter was
congestion in the secondary lamellae.

Effect of hypoxia on osmo-respiratory compromise
in fish

The osmo-respiratory compromise in fish is the balance
between “need of oxygen” and “need of osmotic regu-
lation” (Nilsson 1986). There are two major scenarios in
which the osmo-respiratory compromise may interfere
with osmotic homeostasis: (1) when oxygen demand is
high, and gill perfusion must be increased to favor gas
exchange at the expense of ion regulation; and (2) when
the epithelium must be thickened to defend ion balance
at the expense of gas exchange. The osmoregulatory
compromise within fish species was generally affected
by changes in environmental conditions, such water
temperature, salinity, and exercise (Sardella and
Brauner 2007). In general, elevated metabolism associ-
ated with high temperature results in a partial loss of
osmoregulatory control, and in other cases, exposure to
condition requiring an upregulation of osmoregulatory
characteristic of the gills (e.g., exposure to dilute water)
could result in morphological changes in the gill that
impair gas exchange (Henriksson et al. 2008). Randall
et al. (1972) indicated that a large, permeable gill mem-
brane is required for efficient gas transfer but that a
small, impermeable epithelium is needed to minimize
diffusive ion losses. They also demonstrated that rain-
bow trout accelerate Na+ loss with an increase in oxygen
consumption during exercise, which they attributed
mainly to an increased FSA of the gills during activity.

It can be also argued that the different O2 concentra-
tions may cause an acid-base disturbance, affecting
blood pH and gill morphology. In this regard, Cecchini
and Caputo (2003) published a study on the acid-base
balance in sea bass in relation to water oxygen concen-
tration. Their study was carried out for 5 weeks under
controlled conditions, the PO2 conditions being assayed
at 64, 97, 150, and 250% of the saturation values and at
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a salinity and temperature. They found no significant
differences in Na+ concentrations and blood PO2

existed, whereas the blood pH was only significantly
reduced by the hypoxia condition and not in the range
from “normoxia” to the highest hyperoxia experienced.
The study of Saroglia et al. (2010) shows an important
relationship between PO2 and the efflux of Na

+ and Cl−

in fishes exposed to a hypo-osmotic challenge together
with manipulation stress; the Na+ and Cl− efflux was
elevated 1.9- and 2.5-fold, respectively, in fishes previ-
ously acclimatized at the low PO2 conditions. This can
be explained by the studies of Saroglia et al. (2000,
2002), who reported that hyperoxia is associated with
discrete changes in morphology of the gill, including
reduced RSA and increased GDD in the gills of sea
bass; the reduced attitude to exchange gases with water
(O2 and CO2) also caused a reduction in the ion efflux
rate. Brauner (1999) and Brauner et al. (2000) found a
dramatic change in acid-base equivalent exchanges
across the gills during hyperoxia exposure in freshwater
fishes and also found that hyperoxia impaired hypo-
osmoregulation following seawater transfer of Atlantic
salmon smolts.

The overall picture of osmotic regulation for both
freshwater and marine fishes is reasonably clear since
the osmoregulatory organs and tissues have been iden-
tified as digestive tract, gill, kidney, urinary bladder, and
liver for ureotelic regulators. Both passive and active
flux of solutes, mainly NaCl plus urea, in ureotelic
tissues have been assessed in many species. The chlo-
ride cells, or mitochondria-rich cells, in the teleost gills
have been shown to play an important role in ionic
homeostasis by compensating passive epithelial ion flux
through appropriate active ion uptake and excretion
(Evans 1993). Interactive effects of salinity on physiol-
ogy and behavior also have to be taken into account
including, among others, tissue permeability to water
and ions, gill ventilation, perfusion, and functional sur-
face area (Swanson 1998).

Such studies support the hypothesis that the en-
ergy cost for osmoregulation is lower in an isosmot-
ic medium, where the gradients between blood and
water are minimal, and that these energy savings are
substantial enough to increase growth. For instance,
it was estimated that osmoregulation might consume
as much as 54–68% of the non-swimming metabolic
output in two species of tunas (Bushnell and Brill
1992). Even in species with lower metabolic rates,
osmoregulation appears to use a high proportion of

the available energy (Nilsson 2007), while Boeuf
and Payan (2001) reported that it ranges from 20
to 50% of the total energy expenditure, roughly
100–150 mL/h/kg O2 depending on the environmen-
tal salinity. Theoretically, a gill ideally designed to
absorb oxygen for energy requirements should be
highly permeable, with quite a large surface area,
leading to an ascending metabolic cost of osmoreg-
ulation (Grau et al. 1994). These conflicting de-
mands may represent the major constraint in the
overall metabolic capacity of all fishes, which ap-
pear to be limited by the need for an “osmo-respi-
ratory compromise” (Nilsson 1986).

A central process in osmotic regulation is active Na+

transport; a great deal of energy is consumed in moving
ions through a Na+ and K+ pump on the basolateral side
of the transporting epithelia. The ratio of Na+

transported to ATP consumed in this process is generally
known for most transport epithelia (Boeuf and Payan
2001). It would also be possible to take into account the
cost of Cl− extrusion through the gill, involving com-
plex mechanisms (Marshall et al. 1999; Chen et al.
2001). Morgan and Iwama (1999) specified that the
energy required by freshwater and saltwater gills only
represents a relatively small (4%) portion of the fish’s
total energy budget. However, it is important to consider
potential problems posed by only using Na+ flux data to
calculate associated ATP usage. For instance, it can be
questioned whether Na+ transport is 100% efficient.
NaCl transport by mitochondria-rich chloride cells in
the gills has not yet been fully elucidated. Na+ is not
thought to be directly and exclusively excreted by Na+

and K+-ATPase, but rather via the basolateral tubular
network, through either diffusion or an active bulk flow
mechanism; thus, Boeuf and Payan (2001) argued that
the energy required could be underestimated. Many of
the ions transported by ATPases may simply diffuse
back out of the basolateral network into body fluids or,
if the bulk flow hypothesis is correct, the energy needed
to drive it would also have to be estimated. Another
element reported by the latter authors is that accepting a
low cost for osmoregulation mechanisms would contra-
dict the demonstrated effect of water salinity, especially
in the case of saltwater, on the growth of teleosts
(Imsland et al. 2001).

Under severe hypoxia, fish reduce locomotion or
feed intake to conserve energy, which may not be suffi-
cient. This can result in the slowing down of ATP
production through aerobic respiration, forcing the
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animal to utilize anaerobic pathways to contribute to its
energy requirements (Pichavant et al. 2002). But anaer-
obic metabolism is not as efficient as aerobic respiration
and a significant raise in the glycolytic flux is needed to
avoid a detrimental fall in cellular ATP (Routley et al.
2002; Chabot and Claireaux 2008). To that, blood glu-
cose level rises for anaerobic fuel supply in many tele-
osts subjected to environmental and functional hypoxia
and anaerobic metabolism further results in lactate ac-
cumulation in muscle tissue (Pichavant et al. 2002;
Routley et al. 2002; Lushchak et al. 2005). When juve-
nile sea bass subjected to chronic hypoxia, glycogen
content and lactate concentration in the liver decreased,
and the expression of phosphoenolpyruvate carboxy
kinase raised, indicating a stimulation of anaerobic gly-
colytic pathways (Cadiz et al. 2017).

Effect of hypoxia on fish performance
and production

Great concern has been paid to DO levels in ponds'
water, as low ambient DO levels are known to affect
growth, feed consumption, and physiological status of
fish (Jobling 1994). In coho salmon, Oncorhynchus
kisutch, and sockeye salmon, O. nerka, largemouth
bass, Micropterus salmoides, and common carp,
Cyprinus carpio, growth is affected when DO concen-
trations were < 4–5 mg/L (Brett 1979; Brett and
Blackburn 1981). In terms of managing fish ponds, it
is always suitable to increase the aeration when fish start
to swim near the surface, opening their mouth. The
aeration of fish ponds will rise the DO level to be satis-
factory and of course make the environmental conditions
more comfy for fish. According to Mallya (2007), the
minimum DO requirements are as follows: cold water
fish, 6 mg/L; tropical freshwater fish, 5 mg/L; and trop-
ical marine fish, 5mg/L. It is worthy tomention that these
values are minimum requirements for healthy growth,
tissue repair, and reproduction (Svobodova et al. 1993).
Lovell (1998) reported that DO requirements per unit of
fish weight significantly decline with increasing the indi-
vidual weight and this reduction for common carp, C.
carpio, may be represented by the subsequent ratios:
yearling = 1, two-year-old carp = 0.5–0.7, marketable
carp = 0.3–0.4 mg DO/g. Significant differences in DO
requirement were also found for different fish species.
Using a coefficient of 1.0 to represent the oxygen demand
of common carp, relative values for few species else are

as next: trout 2.83, peled 2.20, pike perch 1.76, roach
1.51, sturgeon 1.50, perch 1.46, bream 1.41, pike 1.10,
eel 0.83, and tench 0.83 mg DO/g (Lovell 1998).

Growth is commonly related to the quantity of
feed intake in fish, which is reflected by inhibition
of weight gain due to low feed intake caused by
hypoxia in post-smolt Atlantic salmon (Remen et al.
2012); big sea bass, Micropterus salmoides; com-
mon carp, C. carpio; turbot, Scophthalmus maximus;
silver salmon, O. kisutch (Brett and Blackburn 1981;
Pichavant et al. 2001; Ruyet et al. 2003); and Nile
tilapia, Oreochromis niloticus (Tran-Duy et al. 2008;
Abdel-Tawwab et al. 2014, 2015; Li et al. 2018).
Studies examining the impact of hypoxic conditions
on fish production have shown that even partial
periods of hypoxia could lead to a decline in fish
growth (Pichavant et al. 2000, 2001; Foss et al.
2002). Fish under hypoxic conditions tend to de-
crease their feed intake although some studies have
reported that reduced DO levels did not affect feed
conversion (Caldwell and Hinshaw 1994; Thetmeyer
et al. 1999). Other studies have reported variable
feed conversion efficiencies (Pichavant et al. 2000,
2001; Foss et al. 2002) suggesting that the fish
capability to utilize feeds under hypoxic conditions
may be compromised. However, some fish species
are much more resistant for low DO than others,
causing in differential survival (Poon et al. 2007).

Randolph and Clemens (1976) discussed that the
feeding style of channel catfish, Ictalurus punctatus,
differs with DO availability and found that when the
DO content dropped below 59% saturation, fish started
to lose their appetite. The rainbow trout, O. mykiss,
appetite reduced when oxygen saturation dropped be-
low 60% saturation (Jobling 1995). Similar results have
been observed in the case of European sea bass,
D. labrax (Thetmeyer et al. 1999); blue tilapia,
O. aureus (Papoutsoglou and Tziha 1996); channel cat-
fish, I. punctatus (Buentello et al. 2000); juvenile turbot,
S. maximus (Pichavant et al. 2001); and Nile tilapia,
O. niloticus (Tsadik and Kutty 1987; Tran-Duy et al.
2008; Abdel-Tawwab et al. 2014, 2015; Li et al. 2018).
All those fishes showed reduced growth when exposed
to low DO levels. Likewise, at different temperatures,
the DO levels changed over increasing the water tem-
perature. Bowyer et al. (2014) investigated the effects of
water temperature (21, 24, or 27 °C) and DO regime
(normoxic vs. hypoxic) on growth, feed intake, and
digestive enzyme activity of the yellowtail kingfish,
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Seriola lalandi, for 5 weeks. They notified that specific
growth rate (SGR) of fish exposed to hypoxia at 21, 24,
and 27 °C were 13, 20, and 17% lower, respectively,
than SGR recorded for the fish reared under normoxic
conditions. This study also clearly demonstrated that
growth rate and feed intake of yellowtail kingfish were
negatively affected by hypoxic conditions. Hansen et al.
(2015) compared the impact of decreasing DO levels
from 100 to 70% of air saturation (hypoxia condition)
on parameters of production performance (feed intake,
growth, feed conversion ratio, mortality) in triploid ver-
sus diploid Atlantic salmon kept at high seawater tem-
perature (19 °C) for 51 days. They found that triploidy
fish showed low feed consumption and growth more
than diploid fish by reducing DO from 100 to 70%.
Araújo-Luna et al. (2018) reared gilthead seabream,
Sparus auratus (316.3 ± 1.73 g), at DO levels of 44.3,
65.0, and 84.1% for 6 weeks. They found that fish
growth was significantly lower in low DO level than
other DO levels; meanwhile, a negative linear relation-
ship was observed between FCR and increasing DO
levels indicating to better food conversion at higher
DO levels.Also, under hypoxia conditions, fish
reproduction is restrained, and both fertilization
success and larval survival are compromised. Fish,
under this situation, reduce their activity, feeding
reproduction, and so on. Bera et al. (2017) exposed
goldfish, C. auratus (25.0 ± 0.5 g), to four cyclic hyp-
oxia (H) and normoxia (N) treatments of 6 h H/8 h N,
9 h H/15 h N, 12 h H/12 h N, and 24 h H. The control
groups (C) were maintained at 24-h N condition (6.4 ±
0.2 mg O2/L). They found that cyclic hypoxia (0.8 ±
0.2 mg/L DO) for 9 h or more per day suppressed
ovarian growth and viable spermatozoa production.
They also found that plasma steroid concentrations par-
ticularly of 17α-hydroxyprogesterone (17-HP), estradi-
ol (E2), and testosterone (T) in female fish, and T and
11-ketotestosterone (11-KT) in male fish, were attenu-
ated under diel hypoxic conditions. The reduced
gonadosomatic index, decreased number of tertiary oo-
cytes, and motile spermatozoa in hypoxic fish clearly
indicate suppression of gametogenesis. Thereby,
prolonged diel cyclic hypoxia may affect valuable fish-
ery resources and fish population structure by impairing
reproductive performances and inducing estrogenic ef-
fects in fish males.

All these responses are aimed to preserve cellular
oxygen homeostasis and reduce energy expenditure,
thereby augmenting fish survival during hypoxia. To

keep away from this, aquaculture systems must be sup-
plied with sufficient DO saturation via artificial aeration
or oxygenation. Besides aeration or oxygenation to
overcome hypoxia effects on fish farming, diets with
high carbohydrate and fat contents should be given to
fish; that may help in reducing negative effects of crit-
ical hypoxia stress. Fish could use carbohydrate and
lipids as fundamental energy sources during acute hyp-
oxia stress, and metabolize more lipid during long-term
hypoxia stress (Li et al. 2018).

Effect of hypoxia on fish biochemistry
and physiology

The biochemical and physiological status of cultured
fish is an essential part of evaluating their health status
where their changes might be an evidence for unsuitable
environmental conditions or the existence of stressing
factors such as feed restriction, crowding, toxic
chemicals, excess organic compounds, and even usual
procedures in aquaculture (Barcellos et al. 2004; Cnaani
et al. 2004; Bartoskova et al. 2013; Abdel-Tawwab
2016; Abdel-Tawwab and Wafeek 2017; Aliko et al.
2018; Faggio et al. 2018; Gobi et al. 2018; Sehonova
et al. 2018). In many fish species, sub-lethal hypoxic
level leads to a complicated sequence of neural, behav-
ioral, and physiological modifications through the pri-
mary and secondary stress responses in an attempt to re-
establish homeostasis (Caldwell and Hinshaw 1994;
Delaney and Klesius 2004; Welker et al. 2007; Terova
et al. 2008), for example, common carp, C. carpio, rised
breathing frequency (Glass et al. 1990) and rainbow
trout, O. mykiss, rised hemoglobin concentration levels
(Soivio et al. 1980).

Douxfils et al. (2012) investigated the physiological
responses of two generations (F1 and F5) of Eurasian
perch, Perca fluviatilis (68 ± 28 g), exposed to 4-h hyp-
oxia or normoxia conditions as follows: F1 + normoxia,
F1 + hypoxia, F5 + normoxia, and F5 + hypoxia. For
each of these experimental conditions, DO concentra-
tion in hypoxia was stabilized to 2.0 ± 0.5 mg/L and in
normoxia was stabilized to 7.44 ± 0.37 mg/L during the
trial period. They found that in both generations, single
and repeated hypoxia resulted in glucose elevation and
reduction of spleen somatic index. On the other hand,
Muusze et al. (1998) studied effects of progressive and
stepwise hypoxia in Amazon fish (Astronotus ocellatus)
and detected no differences in cortisolemia, while
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significant impacts on lactate concentration and meta-
bolic rate were observed. Contrariwise, other studies on
Siberian sturgeon (Acipencer baeri), spotted wolffish
(Anarhichas minor), and crucian carp (Carassius
carassius) reported rapid and significant cortisol rise
following an acute hypoxic disturbance (Maxime et al.
1995; Lays et al. 2009; Sula and Aliko 2017). In Eur-
asian perch, it has been found that cortisol peaked earlier
than 1.0 h following an intense stressor and quickly
returned to pre-stress level within 1–6 h (Acerete et al.
2004; Milla et al. 2010; Douxfils et al. 2012). In turbot,
Pichavant et al. (2002) did not find any cortisol raise
during a 6-h period of slight or moderate hypoxia but an
increase of cortisolemia was seen under severe hypoxia
throughout the 6-h period and up to 6 h after healing in
normoxic water. Thus, the severity of hypoxic stress
may be an important contributing factor of the cortisol
release.Many studies demonstrated rapid increases in
red blood cells (RBCs), hemoglobin (Hb), and/or he-
matocrit (Ht) following hypoxia in fish (Affonso et al.
2002; Wells and Baldwin 2006; Abdel-Tawwab et al.
2014, 2015). Araújo-Luna et al. (2018) found that
gilthead seabream reared at normoxic condition
(85.4% DO) presented significantly lower levels of Ht
when compared to fish at low DO level, meanwhile no
significant differences in Hb, glucose, and cortisol
among DO levels. The increase in RBCs count, under
hypoxic condition, may be because fish spleen contracted
releasing a considerable amount of RBCs into the circu-
lating blood system to enhance its oxygen carrying ca-
pacity (Douxfils et al. 2012). Interestingly, it appeared
that RBC counts have high metabolic maintenance costs
that are fueled by both glucose and lactate (Wells and
Baldwin 2006). Use of these molecules by metabolically
active erythrocytes is expected to contribute to the main-
tenance of an efficient Hb-oxygen transport system
(Wells and Baldwin 2006). Consequently, the raised glu-
cose detected in fish under hypoxia stress might also be
explained by the release of spleen erythrocytes requiring
glucose substrate for optimal oxygen transport activity.

Myoglobin (Mb) is an oxygen-binding hemopro-
tein that was once thought to be exclusively
expressed in oxidative myocytes of skeletal and
cardiac muscle where it serves in oxygen storage
and facilitates intracellular oxygen diffusion. Qi
et al. (2018) reported that severe hypoxia induced
significant expression of Mb at the mRNA and pro-
tein levels in the heart of schizothoracine fish spe-
cies, Schizopygopsis pylzovi, which suggests Mb had

a major role in the supply of oxygen to the heart of
Tibetan Plateau fish.

Acute hypoxia was recognized to elevate the levels of
catecholamines, activating glycogenolysis and gluco-
neogenesis with a net result of increasing plasma glu-
cose levels (Wright et al. 1989). Similar results were
found on gilt-head seabream, Sparus aurata (Henrique
et al. 1998); Nile tilapia, O. niloticus (Delaney and
Klesius 2004; Abdel-Tawwab et al. 2014, 2015); chan-
nel catfish, I. punctatus (Thomas et al. 2007); and grass
carp, Ctenopharyngodon idella (Gan et al. 2013),
stressed by hypoxic condition. The rise in glucose con-
centrations was due to the mobilization of energy stor-
age under fatigued conditions of low DO, as a source of
fuel for anaerobic metabolism (Faggio et al. 2016;
Prokic et al. 2018). On the other hand, through fish
exposure to acute hypoxia, cardiac ATP concentration
of tilapia (Oreochromis hybrid sp.) was unchanged com-
pared with normoxia and anaerobic glycolysis contrib-
uted to ATP supply as evidenced by considerable accu-
mulation of lactate in the heart and plasma (Speers-
Roesch et al. 2010). Gracey et al. (2001) observed that
when longjaw mudsucker, Gillichthys mirabilis, was
exposed to short hypoxia, genes involved in the glyco-
lytic metabolic pathway, muscle contraction, and
locomotion were all downregulated in the muscle cells.

On the other hand, Bowyer et al. (2014) noticed that
the digestive enzyme activities (i.e., trypsin, lipase, and
amylase) were not affected by DO concentrations.
Hansen et al. (2015) compared the impact of lowering
DO from 100 to 70% of air saturation (hypoxia) on
parameters of physiological status (plasma K+, Cl−,
Na+, osmolality, glucose, creatinine (Cr), bilirubin, tri-
acylglycerol (TAG), and alkaline phosphatase (ALP)
levels in triploid versus diploid Atlantic salmon kept at
high seawater temperature (19 °C)). They reached that
analysis from blood samples pulled drawn on day 51
shows that plasma levels of Cl−, TAG, ALP, and biliru-
bin were lowered in triploids in general, and that plasma
Cr levels trebled and plasma K+ levels declined in
triploids exposed to 70% DO for 29 days.

The hypoxia stress could disorder the physiological
homeostasis where a complex process of physiological
and biochemical changes is involved in fish to cope with
hypoxia stress (Welker et al. 2007; Terova et al. 2008),
including declined metabolic rate, high ventilation and
anaerobic respiration, and high Hb-O2 affinity (Rahman
and Thomas 2007). Hypoxia also affects nutrient me-
tabolism (Mahfouz et al. 2015; Polymeropoulos et al.
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2017). When DO in water is insufficient to the oxygen
demands for aerobic glycolysis, the normal physiologi-
cal function and metabolic rate cannot be maintained
(Richards 2011). Under hypoxia stress, fish usually
decline oxygen consumption by slowing down move-
ment and improving oxygen-carrying capacity through
the increase of RBCs and Hb values (Cossins and
Crawford 2005; Roesner et al. 2006; Xia et al. 2016).
Moreover, hypoxia is correlated with the activation of
anaerobic metabolism, and anaerobic glycolysis would
meet the high energy requirement of fish during hypoxia
stress (Muusze et al. 1998; Bartrons and Caro 2007;
Speers-Roesch et al. 2010). Because of the low ATP
yield of anaerobic glycolysis, the substrates such as
glycogen and glucose will be substantially consumed,
leading to accumulation of lactate (Richards 2011; Genz
et al. 2013). In this regard, Li et al. (2018) exposed Nile
tilapia, O. niloticus (6.3 ± 1.2 g), to acute hypoxia stress
with DO of 0.7 ± 0.1 mg/L for 6 h and chronic hypoxia
stress with DO of 1.1 ± 0.1 mg/L for 4 weeks to evaluate
its reaction towards nutritional metabolic pathways.
They noticed that fish in the acute and chronic trials
had various adaptive mechanisms. At stress of acute
hypoxia, glycogen contents either in liver or in muscle
tissues decreased significantly; however, there was no
significant difference in triglycerides (TG). The lactate
dehydrogenase (LDH) activity was excessed subse-
quently with acute hypoxic stress. Nevertheless, the
response of fish to long-term hypoxia stress was differ-
ent from acute hypoxia. On the other hand, the crude fat
in fish decreased in the hypoxia fish group; furthermore,
TG either in the liver or in the muscle tissues were
significantly lower. Beta oxidation of the liver tissues
was elevated under the hypoxic conditions, whereas the
hepatic glycogen content increased in the hypoxia-
treated fish. Transcriptomic test displayed that the gene
expression regarding the synthesis of carbohydrate and
lipolysis increased in the hypoxia group, while genes
responsible for either carbohydrate catabolism or fat
synthesis exhibited the reverse action. The mRNA ex-
pression of genes involved in glycolysis and glycogen-
olysis was significantly upregulated by acute hypoxia
stress.Under hypoxic or anoxic conditions, the metabol-
ic inhibition stratify well to fish, where aerobic metab-
olism of fish declines and the fish depend upon anaero-
bic glycolysis for energy production (Virani and Rees
2000). In this concern, Mahfouz et al. (2015) studied the
effect of short term for 1.0 day (trial 1) and long term for
1-month hypoxia (trial 2) on some glycolytic enzyme

activity andmRNA expression in liver andwhite muscle
of Nile tilapia (10 ± 1.2 g) that was subjected to 0.5, 1.0,
or 2.0 mg DO/L for comparison with a normoxia group
(8 mg DO/L). They concluded that, in fish liver, subse-
quent to short-term hypoxic exposure, the particular
activities of phosphofructokinase (PFK) and pyruvate
kinase (PK) decreased, while lactate dehydrogenase
(LDH) activity was elevated at all DO concentrations
compared to normoxia. This may be proportionate with
a primary function of this organ in glucose export during
hypoxia in order to supply fermentative fuel to other
vital organs. It has been proposed that through short-
term hypoxia, catecholamines regulate glucose avail-
ability in rainbow trout by inhibiting PK activity in the
liver; that suggests an activation of gluconeogenesis and
an inhibition of glycolysis (Wright et al. 1989). Further-
more, the raising in liver LDH activity is in accordance
with Kraemer and Schulte (2004) who reported a sig-
nificant increase in liver LDH activity of the teleost
killifish after 48 h of hypoxic exposure. On the other
hand, no changes in liver LDH activity of the common
estuarine fish Leiostomus xanthurus were shown after
exposure to different levels of hypoxia for 12 h (Cooper
et al. 2002), and a slight decrease in LDH activity in Nile
tilapia exposed for 10 h to severe hypoxic exposure
(Ishibashi et al. 2002).

Previous studies reported that exposure to long-term
hypoxia increases liver LDH activity of the killifish
through the first 28 days of exposure up to here to
hypoxia (Greaney et al. 1980), PFK, PK, and LDH
activities of tench (Tinca tinca) throughout the first
42 days of exposure to hypoxia (Johnston and Bernard
1982) and gulf killifish after 4 weeks from exposure to
hypoxic stress (Martinez et al. 2006). Even though PK
and PFK enzymes are specific to catabolic reactions
(glycolysis) under hypoxia, LDH enzyme is shared be-
tween catabolic and anabolic reactions (glycolysis and
gluconeogenesis) and rising increased activities of all
these enzymes imply a futile cycle whose net result is
ATP turnover (Martinez et al. 2006). The increased
activity of the examined enzymes in the white muscles
following long-term hypoxia is in accordance with
Johnston and Bernard (1982) and Martínez et al.
(2011) who concluded that activity of PFK in skeletal
muscle of tench, subjected to hypoxic conditions for
6 weeks and African fish Barbus neumayeri exposed
to hypoxia for a month, was higher than that of
normoxic fish. This reflected an adaptation response
for enhanced anaerobic glycolysis during exposure to
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hypoxic water. In contrast, some previous studies re-
ported that exposure to long-term hypoxia either de-
creases PFK, PK, and LDH activities in skeletal muscle
of gulf killifish after a month from exposure to hypoxia
(Martinez et al. 2006) or have no change on LDH
activity of killifish during hypoxic for 28 days
(Greaney et al. 1980). Bera et al. (2017) found that
cyclic hypoxia (0.8 ± 0.2 mg/L DO) for 9 h or more
per day caused such alterations in plasma lipid and sex
steroid profiles in hypoxed fish, which in turn directly or
indirectly suppressed ovarian growth and viable sper-
matozoa production. They also found that hypoxia de-
creased significantly total cholesterol and high-density
lipoprotein, while it elevated significantly triglycerides
in both fish sexes. Plasma steroid concentrations partic-
ularly of 17α-hydroxyprogesterone (17-HP), estradiol
(E2), and testosterone (T) in female fish, and T and 11-
ketotestosterone (11-KT) in male fish, were attenuated
under diel hypoxic conditions. Intriguingly, both diel
and continuous hypoxia elevated plasma E2 and vitel-
logenin levels in males.

Effect of hypoxia on fish immunity and bacterial
infection

The DO level in pond water is especially important
because it is closely related to disease outbreaks (Null
et al. 2017; Domenici et al. 2017; Gallage et al. 2016,
2017). As a result of hypoxic condition, fish growth and
production will be reduced and the possibility of a
disease outbreak increases (Lovell 1998; Shoemaker
et al. 2000). Adverse water quality in terms of anthro-
pogenic activity or adverse environmental conditions
including hypoxia may prejudice the immune system,
leading to lowered resistance to pathogen infections (Di
Marco et al. 2008). Hypoxia has shown to modify the
innate and adaptive immune responses in fish (Boleza
et al. 2001; Cecchini and Saroglia 2002; Ortuno et al.
2002; Cuesta et al. 2003; Kvamme et al. 2013; Abdel-
Tawwab et al. 2014, 2015). For example, previous re-
ports demonstrated high mortality as a result of strepto-
coccal infection in tilapia Oreochromis sp. subjected to
hypoxic conditions (Bunch and Bejerano 1997; Evans
et al. 2003). Fukuda et al. (1997) and Evans et al. (2003)
demonstrated that long periods of low DO in water up to
1.0 mg DO/L increased a stress response in yellowtail
jacks, Seriola lalandi, and Nile tilapia leading to weak-
ening immune response and reduced their resistance

versus pathogenic bacteria Enterococcus seriolicida
and Streptococcus agalactiae, respectively. Cecchini
and Saroglia (2002) confirmed that antibody responses
against human γ-globulin in hypoxic European sea
bass, D. labrax, were weaker than those in hyperoxic
ones. Air exposure–induced hypoxia lowered the respi-
ratory burst in gilthead seabream, S. auratus (Ortuno
et al. 2002), and also retarded head kidney natural
cytotoxic cell activity in gilthead seabream (Cuesta
et al. 2003).Reduction in lysozyme activity and abun-
dance of C3 components in the serum of hypoxia-
stressed fish may have resulted from the energetic de-
mand associated with long-term stress responses. Ad-
mittedly, if a portion of the fish’s energy budget is
required to cope with stressors, then less energy will
be available for other biological functions, including
immunity (Douxfils et al. 2012; Segner et al. 2012). It
now remains to be determined whether these immune
changes would have harmful effects on the fish overall
resistance to disease through achievement of bacterial
challenge tests. Furthermore, since the effects of
stressors might be tissue-specific (Milla et al. 2010),
not only serum immune actors but defense mechanisms
in inner organs (e.g., head kidney, spleen, thymus) and
on the primary barrier (i.e., gut, gills, mucus, and skin)
should also be assessed to go through the immunolog-
ical results of hypoxia. Even if harmful immune modi-
fications occur at the circulatory level, this may not
necessarily result in an increased susceptibility to dis-
ease depending on the integrity and immune capabilities
in these abovementioned tissues. In the study of Ni et al.
(2014), fish subjected to hypoxia stress (6 h after hyp-
oxia stress) showed a significant rise in the levels of the
serum total protein. It is speculated that fish may in-
crease specific proteins such as lysozyme or comple-
ment to enhance the immunity level to cope with stress
(Abdel-Tawwab et al. 2014, 2015).

Previous studies have reported that the innate immu-
nity and specific antibody titer decreased as DO level
decreased when fish were exposed to pathogenic bacte-
ria Edwardsiella ictaluri, Aeromonas hydrophila, or S.
agalactiae (Welker et al. 2007; Abdel-Tawwab et al.
2014, 2015; Gallage et al. 2016, 2017). The immune
parameters and defensive competence vary greatly be-
tween fish species, even between closely related species
(Schrøder et al. 1998). Abdel-Tawwab et al. (2014,
2015) studied the effect of different DO levels on innate
immunity of Nile tilapia, which were reared at 0.1–1.5
(low), 3.0–3.5 (medium), and 6.5–7.0 mg/L (high) for
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12 weeks and further injected by pathogenic bacteria (A.
hydrophila). They found that nitroblue tetrazolium
(NBT) values and lysozyme activity as well as fish
resistance to A. hydrophila infection decreased as DO
level decreased.

Wang et al. (2018) investigated the effect of intermit-
tent hypoxia under different temperatures on the
immunomodulation in vaccinated Nile tilapia. Fish
(20.0 ± 3.0 g) were acclimatized to intermittent hypoxic
(4.0 ± 1.0 mg DO/L) or normoxic (8.0 ± 0.5 mg DO/L)
conditions at 30 ± 0.5 or 35 ± 0.5 °C. Interleukin-1 beta
(IL-1β), tumor necrosis factor alpha (TNF-α), and gam-
ma interferon (IFN-γ) mRNA expressions in spleen and
head kidney were significantly lower in vaccinated hyp-
oxic fish compared to those in the vaccinated normoxic
fish. The activities of superoxide dismutase, catalase,
and glutathione peroxidase were significantly lower,
while malondialdehyde levels were significantly higher
in vaccinated hypoxic fish. Additionally, the phagocytic
activity of peripheral blood leucocytes (PBLs) and in-
tracellular reactive oxygen species (ROS) production in
head kidney cells declined significantly, while nitric
oxide levels in tissues cells increased significantly
under hypoxic at either 30 or 35 °C conditions. Taken
together, intermittent hypoxia at 30 °C and 35 °C
could suppress immunomodulation in vaccinated Nile
tilapia resulting in higher cumulative mortality due to
S. agalactiae infection. The results of Wang et al.
(2018) suggest fish were not getting the expected
level of protection from vaccination when vaccinated
fish kept at intermittent hypoxic under different tem-
perature conditions.

Effect of hypoxia on DNA and genes expression

In hypoxed fish, a complex set of biochemical and
physiological alterations is employed to cope with hyp-
oxia stress (Nikinmaa 2002). Many of these adjustments
depend on a large extent on changes in the expression of
genes that encode diverse groups of physiologically
relevant proteins. Gracey et al. (2001) recently identified
alterations in the expression of over 120 genes in hyp-
oxic longjaw mudsucker, Gillichthys mirabilis. Genes
that are induced by hypoxia appear to share a common
mode of transcriptional regulation. This induction de-
pends upon activation of a transcription factor, the
hypoxia-inducible factor-1 (HIF-1). HIF-1 is a hetero-
dimer composed of α and β subunits. HIF-1β is

generally found to be constitutively expressed in the
nucleus and to be insensitive to changes in O2 availabil-
ity, whereas stabilization of HIF-1α and its nuclear
accumulation are acutely regulated by hypoxia
(Uchida et al. 2004). Since the initial characterization
of HIF-1α in humans, several additional cDNAs have
been isolated in different vertebrates, whereas
orthologues from fish have only been identified in a
few species. On the other hand, although recent techno-
logical developments have made it possible to measure
patterns of gene expression, only few published reports
are available on tissue expression patterns of HIF-1α in
fish exposed to hypoxia. Terova et al. (2009) utilized the
real-time PCR technology to monitor dynamic changes
in levels of HIF-1α transcripts, in response to acute and
chronic hypoxic stress. They found that the number of
HIF-1α mRNA copies increased significantly in re-
sponse to both acute (1.9 mg/L, DO for 4 h) and chronic
(4.3 mg/L, DO for 15 days) hypoxia in European sea
bass, whereas it remained unchanged in fish exposed to
hyperoxic (DO 13.5 ± 1.2 mg/L) conditions.

The capability of a fish to tolerate hypoxic conditions
is a complex trait, governed by multiple genes (Terova
et al. 2008; Majmundar et al. 2010; Jha et al. 2015).
Therefore, to understand the regulation of gene expres-
sion, collections of differentially expressed cDNA under
stressed conditions would be a useful genomic resource
(Rodrigues et al. 2012). This acclimatization process,
during physiological and metabolic changes in organ-
isms prompted by hypoxic stress, is mediated by
hypoxia-inducible factors (HIFs) (Majmundar et al.
2010). These factors bind to the regulatory regions of
the hypoxia-inducible genes, which results in HIF-
regulated gene activation (Ortiz-Barahona et al. 2010).
The two alpha subunits, i.e., HIF1-alpha and HIF2-
alpha, have unique and complementary roles in adaptive
response to tissue hypoxia (Mohindra et al. 2013, 2016;
Tripathi et al. 2013) and provide a distinctive mecha-
nism for hypoxia tolerance in Atlantic croaker (Rahman
and Thomas 2007) and grass carp (Law et al. 2006).
Poon et al. (2007) evaluated the response of the intact
liver of common carp,C. carpio, to hypoxia, for 42 days
at 0.5 mgDO/L, and realized an extensive DNA damage
in liver cells, especially during the first week of expo-
sure. The authors attributed their results to cellular
mechanisms that seemed to be directed towards
preventing apoptosis in the face of DNA damage and
promoting DNA repair. Al-Salahy (2006) found that
hypoxia significantly increased DNA fragmentation in
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the liver but not in the white muscles of African catfish,
Clarias gariepinus, exposed to hypoxic conditions
(from 5.1 to 0.6 mg DO/L). Mahfouz et al. (2015) also
confirmed an increase in DNA damage that was directly
proportional to increasing hypoxic concentrations in a
concentration-dependent manner. The hypoxia impact
was more noticeable in short-term exposure than in
long-term. They also explained that the liver was more
vulnerable to hypoxic effect than the muscle where the
latter appears to be relatively hypoxia-tolerant compared
to the liver as a guide to the reduction in the percentage
of DNA tail and tail moment. They suggested that Nile
tilapia cope better with long-term hypoxic conditions,
possibly as an adaptive response.

The heme oxygenase (HO)-1 is a cytoprotective
enzyme that can be involved in cytoprotection
against hypoxia stress. In the study of Guan et al.
(2017), they cloned duplicated HO-1a and HO-1b
cDNAs in hypoxia-sensitive blunt snout bream
(Megalobrama amblycephala). HO-1a and HO-1b
encode peptides with 272 amino acids and 246 ami-
no acids, respectively, and they share a low se-
quence identity of 55%. HO-1a and HO-1b mRNAs
were maternally deposited in the zygote, and the
mRNAs decreased to the lowest levels at 8 hpf.
Both mRNAs were significantly expressed from
12 hpf and fluctuated but maintained a high level
after 16 hpf. Using in situ hybridization, HO-1a and
HO-1b mRNAs were ubiquitously expressed in em-
bryos at 12 hpf. At 24 and 36 hpf, HO-1b transcripts
were detected in the mid- and hind-brain, respec-
tively, whereas HO-1a was mainly transcribed in the
eyes and endoderm at 24 hpf and in the brain at
36 hpf. In adult fish, HO-1a was abundantly
expressed in the heart, liver, gill, kidney, spleen,
and brain, while HO-1b mRNA was detected mainly
in the kidney. After exposure to hypoxic stress, both
HO-1a and HO-1b mRNAs were upregulated signif-
icantly in the gill and liver but downregulated sig-
nificantly in the brain. These findings suggest that
duplicated HO-1 genes have evolved divergently
and yet play overlapping biological roles in regulat-
ing the response to hypoxia in blunt snout bream,
M. amblycephala. In addition, HO-1 genes can ef-
fectively mediate respiratory responses to hypoxia in
goldfish (Tzaneva and Perry, 2014). Since teleosts
experience an additional genome-wide duplication
event (Taylor et al. 2003), it is possible that many
teleost genomes have two HO genes.

Interaction between DO and husbandry conditions

The response of fish to hypoxic stress differed from one
species to another depending on their response to the
husbandry conditions. The hypoxic stress might disturb
the balance and harmony between fish and the husband-
ry conditions, causing a stress response in fish (Barton
and Iwama 1991; Barton 2002; Pollock et al. 2007;
Douxfils et al. 2012; Fazio et al. 2012). Tran-Duy
et al. (2008) studied the effect of different levels of
DO and fish size on growth and feed utilization of Nile
tilapia, O. niloticus (L.), which was exposed to two
levels of DO either 3.0 or 5.6 mg/L and two fish sizes
(21 and 147 g). The results of this study displayed that
feed intake and fish growth at high DO level were
significantly higher than those at low DO level. It is also
proposed that the limitation of the gill surface area due
to DO limitation caused an increase in gill respiratory
surface with a reduction in gas diffusion distance
(Saroglia et al. 2000, 2002, 2007, 2010); this results in
lower feed intake and lower fish growth.

Duan et al. (2011) investigated effects of DO con-
centration and stocking density on growth, energy bud-
get, and body composition of juvenile Japanese floun-
der, Paralichthys olivaceus. Fish (14 ± 2.1 g) were sub-
jected to a normal and a high DO of 5.5 ± 0.5 and 14 ± 2
mg/L, as well as four stocking densities per each DO
concentration (100, 200, 300, and 400 fish/m2 for the
normal DO and 200, 400, 600, and 800 fish/m2 for the
high DO). They found that feed utilization increased
significantly with increasing DO concentration irrespec-
tive to the fish density. They also noted that the maxi-
mum fish weight was achieved under a high DO level.
Bowyer et al. (2014) evaluated the interactive impacts of
water temperature (21, 24, or 27 °C) and DO regime
(normoxic vs. hypoxic) on growth, feed consumption,
and digestive enzyme activity of yellowtail kingfish,
Seriola lalandi, for 5 weeks. They stated that SGR of
fish exposed to hypoxia at 21, 24, and 27 °C were 13,
20, and 17% lower, respectively, than SGR recorded for
the fish reared under normoxic conditions. Abdel-
Tawwab et al. (2014) examined the effect of different
levels of DO and fish density on the performance of Nile
tilapia, O. niloticus (L.). Fish were exposed to 0.8 ± 0.1,
2.5 ± 0.3, and 6.5 ± 0.5 mg/L and two stocking densities
(15 and 30 fish per 100-L aquarium) for 12 weeks. They
found that fish growth and feed consumption increased
significantly with increasing DO levels irrespective to
fish density. They also reported that glucose, activities
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of ASTand ALT, creatinine, and uric acid in fish plasma
decreased significantly with increasing DO levels.
Meantime, total protein and total lipid in plasma in-
creased significantly by increasing DO. These results
indicate that high DO could improve fish performance;
however, the optimum level of DO is 6–6.5 mg/L diet.

Abdel-Tawwab et al. (2015) studied the impact of
different levels of DO and fish size on growth, feed
utilization, physiological alterations, and innate immu-
nity of Nile tilapia,O. niloticus (L.), which was exposed
to 0.1–1.5, 3.0 ± 3.5, and 6.5 ± 7.0 mg/L and two fish
sizes (3.7 and 12.9 g) for 12 weeks. They found that
final weight, weight gain, and feed intake increased
significantly with increasing DO level irrespective to
fish size. Thay also reported that glucose, activities of
AST and ALT, creatinine, and uric acid in plasma de-
clined significantly with raising DO concentration.
Meanwhile, total protein and total lipid in fish plasma
increased significantly by increasing DO level. The fish
resistance to A. hydrophila infection and NBT values
and lysozyme activity increased as DO level increase.
These results displayed that high DO and low FS could
improve fish performance; however, the optimum level
of DO is 6–6.5 mg/L diet.Ni et al. (2014) examined the
effects of stocking density and hypoxia on the immune
and physiological responses of juvenile Amur sturgeon
(Acipenser schrenckii). In this investigation, fish (42.0
± 2.3 g) were cultured in nine square concrete ponds at
three stocking densities (3.7, 6.9, and 9.0 kg/m3) for
50 days and DOwas maintained at 7, 5, or 3 mg/L for 0,
0.5, 1.5, 3, and 6 h after hypoxia stress. The results
pointed that the levels of cortisol, glucose, and hemato-
logical parameters elevated significantly after hypoxia
stress. The count of RBCs in this study also elevated
significantly after hypoxia stress. Rapid elevations in
RBC count were also observed in hypoxia in juvenile
Tambaqui (Colossoma macropomum; Affonso et al.
2002) and silver trevally (Pseudocaranx dantex; Wells
and Baldwin 2006). The increase in RBC counts may
raise blood oxygen capacity and improves oxygen
delivery to the tissues. Furthermore, Ni et al. (2014)
found significant increases of serum cortisol and glu-
cose levels during the period of hypoxia stress similar to
observations in Siberian sturgeon (Acipencer baeri;
Maxime et al. 1995) and spotted wolffish (Anarhichas
minor; Lays et al. 2009). This may indicate a mobiliza-
tion of these metabolites to overcome the hypoxia dis-
turbance. Guo et al. (2018) evaluated the effects of
feeding frequency on growth performance of juvenile

Dolly Varden char Salvelinus malma (9.40 ± 0.30 g) and
its challenge to hypoxia stress challenge. They assigned
fish randomly to one of six feeding frequencies (1, 2, 3,
4, 5, and 6 times/day) for 8 weeks; after that, fish were
exposed to hypoxia stress (1.5 mg/L) and fish mortality
was recorded on 0, 15, 30, and 45 min. They confirmed
that, at the hypoxia challenge test, cumulative fish
mortality increased significantly as feeding frequency
or hypoxia time increased. The results of Wang et al.
(2018) suggest fish were not getting the expected level
of protection from vaccination when vaccinated fish
kept at intermittent hypoxic under different temperature
conditions.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.
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