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Abstract Effects of the pyrethroid lambda-cyhalothrin
(LCH) were investigated in matrinxa Brycon
amazonicus, a non-target freshwater teleost. The fish
were submitted to a single-pulse exposure (10% of
LC50; 96 h, 0.65 μg L−1), followed by 7 days of
recovery in clean water. Hematologic parameters indi-
cated impairments in oxygen transport, which were not
recovered. Plasma [Na+], [Cl−], and protein were dimin-
ished, and only [Na+] remained low after recovery. Gill
Na+/K+ATPase activity was increased and recovered to
basal values. Brain acetylcholinesterase activity was not
responsive to LCH. Liver ascorbic acid concentration
was not altered, and reduced glutathione levels
remained augmented even after recovery. LCH inhibited
hepatic superoxide dismutase (SOD), catalase (CAT),
and glutathione peroxidase (GPx) activities, while
glutathione-S-transferase (GST) and glucose-6-
phosphate dehydrogenase (G6PDH) activities were

steady. After recovery, SOD remained low, and GPx
was augmented. Liver depicted lipid peroxidation,
which was not observed after recovery. Hepatic mor-
phology was affected by LCH and was not completely
recovered. These responses, combined with the persis-
tence of changes even after recovery span, clearly show
the feasibility of these biomarkers in evaluating LCH
toxic potential to non-target organisms, highlighting the
importance of pyrethroids’ responsible use.
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Introduction

Biocides are chemical compounds largely employed in
anthropogenic activities, which often results in high
ecological impacts. These xenobiotics reach freshwater
bodies, threatening both animal life and human health.
Synthetic pyrethroids (SP) are pyrethrin-derived insec-
ticides that can be classified as types I and II, depending
on cyano-radical absence or presence, respectively
(Haya 1989; Kumar et al. 2009). They interfere with
voltage-dependent Na+ channels of nervous cells,
preventing membrane repolarization and avoiding ter-
mination of nervous impulse transmission (Soderlund
et al. 2002; Prusty et al. 2015). These biocides arose as
an alternative to organochlorines and organophosphates,
due to their high efficiency in agricultural and domestic
pest control, and being less harmful to birds and
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mammals (Soderlund et al. 2002; Corcellas et al. 2015).
In addition, SP are also used to control fish ectoparasites
in a concentration range of 2.0–5.0 μg L−1 (SEPA.
Scottish Environment Protection Agency 2008; Van
Geest et al. 2014; Aznar-Alemany et al. 2017), which
contributes to their presence in all environments. Not-
withstanding the benefits, these xenobiotics are ex-
tremely toxic to fishes.

Exposure to SP can result in physiologic, metabolic,
and morphological injuries to freshwater fish (Muranli and
Güner 2011; Guardiola et al. 2014; Narra 2016). Blood
alterations in fish are often related to SP exposure (Fawole
and Yekeen 2014). In unraveling these biocide effects,
some key enzymes are also widely used, such as acetyl-
cholinesterase (AChE), which is responsible for terminat-
ing neurotransmission (Tilton et al. 2011), and Na+K+/
ATPase (NKA), pivotal in fish osmolality balance mainte-
nance (Begum 2011). Recent findings report that SP act as
endocrine disruptors, and their metabolites exhibit great
estrogenic activity (Wielogórska et al. 2015; Brander et al.
2016). Studies on bioaccumulation in aquatic organisms
questioned SP safety, raising concerns on human con-
sumption of contaminated fish (Corcellas et al. 2015; Tu
et al. 2016; Muggelberg et al. 2017).

Detoxification mechanisms might contribute to the
observed imbalances of antioxidant metabolism in tele-
osts exposed to SP (Marigoudar et al. 2013; Bacchetta
et al. 2014; Abdelkhalek et al. 2015). Some organs are
highly responsive to chemical exposure, such as gills,
which are the first organs in contact with the surround-
ing water, and liver, which plays a vital role on metab-
olism and detoxification of chemical stressors. Hepatic
responses are normally fast and efficient to cope with
stressors, but SP can affect regulatory mechanisms and,
besides the organ’s high plasticity, lead to structural
injuries (Kan et al. 2012; Marigoudar et al. 2013).

Lambda-cyhalothrin (LCH) is a type II SPwidely used
worldwide (Fonseca-González et al. 2011; Muranli and
Güner 2011; Kumar et al. 2014), and often observed in
water bodies (Marino and Ronco 2005; Jabeen et al.
2015). Cypermethrin and LCH are reported in soy pro-
duction areas of Argentina, Brazil, and Paraguay at con-
centrations able to cause acute toxicity in aquatic organ-
isms (Hunt et al. 2016). Matrinxa Brycon amazonicus
(Spix & Agassiz 1829) presents high commercial rele-
vance in South American countries, since it is one of the
main aquaculture species produced. Additionally, it is
sensitive to xenobiotic exposures (Avilez et al. 2013;
Moraes et al. 2018), meeting toxicology model needs.

In this context, the aim of this study was to evaluate
LCH impacts on B. amazonicus, considering antioxi-
dant metabolism, osmoregulation, and morphological
changes. Such experimental design was able to test the
responsiveness of these biomarkers to SP contamina-
tion. Since xenobiotics presence in water bodies is in-
termittent (Handy 1994), fish recovery was also
accessed, enabling a wide frame on this pyrethroid’s
impact on a freshwater species. The proposed investi-
gations are critical in understanding LCH effects in non-
target organisms, besides shedding light on the out-
comes of water contamination by this unreasonable
insecticide use.

Material and methods

Chemicals

The commercial formulation Trinca Caps® (DVA),
containing 250 g L−1 of the active ingredient
lambda-cyhalothrin (LCH) was used. Butylated hy-
droxytoluene, pyrogallol, NADP+, NADPH++H+,
1,1,3,3-tetramethoxypropane, and reduced glutathi-
one were from Sigma-Aldrich; all other reagents
were from Merck.

Fish maintenance and experimental design

Juvenile B. amazonicus were kindly donated by
Polettini Fish Farm (Mogi-Mirim, Sao Paulo, Brazil).
Fish were acclimated for 2 weeks at 2500-L tanks, filled
with dechlorinated tap water, in a flow-through water
system, under a 12–12-h photoperiod and fed daily with
commercial pellets. Afterward, 48 fish (82.6 ± 18.6 g)
were equally divided into 12 250-L tanks, under the
same acclimation conditions, remaining undisturbed
for 6 days. Feeding was discontinued 24 h before the
beginning of the experimental span and animals were
not fed until the end of the experiment. Six tanks were
assigned as exposure and received 0.65 μg L−1 of LCH,
which corresponds to 10% of the LC50;96 h (Moraes
et al. 2013), ensuring a sub-lethal exposure. The remain-
ing tanks, assigned as control, remained in xenobiotic-
free water. After the pesticide was added, the water flow
was interrupted and the whole system (exposed and
control tanks) was kept static for 96 h.Water parameters
were monitored daily and remained stable over the
experiment: pH (7.3–7.5); T °C (27.3 ± 0.8); pO2
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mg L−1 (6.0–7.0); [NH3-NH4
+] μmol L−1 (0.38–0.42);

hardness as mg L−1 HCO3
−/CO3

2− (19–20); alkalinity as
CaCO3 mg L−1 (22–24).

After 96 h, three exposure and three control tanks
from the 12 experimental ones were randomly chosen.
Four fish from each of them were sampled (n = 12, per
condition, exposure and control), blood was withdrawn,
and liver, brain, and gills were excised as detailed below.
The water of the six remaining tanks was renewed, and
kept in continuous water flow for 7 days. This period
corresponded to the recovery span. After recovery,
blood and tissues were sampled as explained below.

Blood and tissue sampling

At the end of experimental spans (96 h of exposure and
7 days of recovery), fish were anesthetized into eugenol
solution (Inoue et al. 2003) and blood was drawn from
the caudal vein. A blood aliquot was centrifuged for
3 min at 13,400×g for plasma obtainment. Fish were
then killed by spinal cord section for liver, brain, and
gills excision. These organs were immediately rinsed
with cold saline solution (NaCl 0.9%). Liver and brain
were flash frozen in liquid nitrogen, while gills were
immersed in SEI buffer (sucrose-EDTA-imidazole,
pH 7.4) before freezing. Tissues and plasma were stored
in − 80 °C until analyses. Liver slices (3 mm) were fixed
in buffered 2.5% glutaraldehyde solution for histology.

Blood and plasma parameters

Hematocrit (Hct%) was determined in heparinized
microcapillaries after centrifugation for 3 min at
13,400×g. Red blood cells (RBC, cells mm−3) were
counted in a Neubauer chamber. Total hemoglobin con-
centration (Hb, g dL−1) was determined according to
Drabkin (1948). Mean corpuscular volume (MCV),
mean corpuscular hemoglobin (MCHb), and mean cor-
puscular hemoglobin concentration (MCHC) were cal-
culated from hematimetric data (Wintrobe 1934).

The ions Na+, K+, and Cl−were determined in plasma
after dilution in distilled water (1:100 v/v). A flame
photometer was used to estimate Na+ and K+ concen-
trations, against standard solutions of 140 mEq of Na+

and 5.0 mEq of K+. Chloride anion was quantified at
480 nm using 0.9% mercury thiocyanate diluted in
ethanol and 0.4 M nitric acid at 3:10 v/v (APHA
1980), against NaCl standard solution. Plasma protein
concentrations were determined with Bradford reagent

against a standard solution of bovine serum albumin
(BSA) (Kruger 1994).

Cell-free extracts

Liver was homogenized in 5% TCA (trichloroacetic
acid) at 1:50 (tissue: TCA) for 1 min, in a Turrax®
T10-Ika homogenizer at 1000 rpm under ice-bath, and
centrifuged at 13,400×g for 3 min at 4 °C. Supernatants
were used for ascorbic acid quantification. Tissue ex-
tracts for GSH determinations followed similar proce-
dure using liver pieces at 1:20 (tissue: 0.2 M PO4

2−

buffer pH 7.0).

Cell homogenates

Hepatic tissues were homogenized as described above
in 0.1M PO4

2− buffer pH 7.0 with 0.25M sucrose at 1:1
tissue:buffer. Homogenates were centrifuged for
10 min, at 15,000×g at 4 °C. The supernatant was used
as a crude antioxidant enzyme source. Brain samples
were homogenized in 0.1 M PO4

2− buffer pH 7.0 in
anhydrous glycerine (v/v) at 1:1 tissue:buffer and
centrifuged at 13,400×g for 3 min at 4 °C. The
supernatant was used as a crude AChE-enzyme
source. Gill filaments were thawed, homogenized
in SEI (sucrose-EDTA-imidazole) buffer pH 7.4, as
reported above and centrifuged at 10,000×g for 5 min at
4 °C. Supernatant (0.7 mg protein) was used as a crude
NKA-enzyme source.

Hepatic antioxidant biomarkers

A s c o r b i c a c i d wa s qu a n t i f i e d w i t h 2 , 6 -
dichlorophenolindophenol in meta-phosphoric/sulfuric
acid medium and dinitrophenyl hydrazine at 524 nm,
against ascorbic acid standard solution (Carr et al.
1983). Reduced glutathione (GSH) concentration was
determined through the interaction of GSH with 5,5′-
dithiobis-2-nitrobenzoic acid in 0.1 M PO4

2− buffer
pH 8.0, resulting in 2-nitro-5-thiobenzoate, which was
read at 412 nm (Beutler 1984).

SOD was assayed by pyrogallol self-oxidation,
which is inhibited in the presence of SOD (Beutler
1984, modified). Absorbance readings were performed
at 420 nm, considering that 1.0 UI inhibits 50% the
pyrogallol self-oxidation. CAT activity was assayed by
reading H2O2 decay at 230 nm (Beutler 1984). One unit
of CAT was defined as the amount of enzyme required
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in 1.0 μmol of H2O2 min−1 oxidation, and the molar
absorptivity used was (H2O2)ελ230 = 0.071 mM cm−1.
GPx was assayed through NADPH+H+ extinction, read
at 340 nm with glutathione reductase as an auxiliary
enzyme (Beutler 1984). Molar absorptivity used was
(NADPH+H+/NAP)ελ340 = 6.20 mM cm−1. GST assay
was based in GSH conjugation to 1-chloro-2,4 dinitro-
benzene (CDNB), catalyzed by GST, and read at
340 nm (Habig and Jakoby 1981). Molar absorptivity
used was (CDNB)ελ340 = 9.6 mM cm−1. G6PDH was
assessed through NADP supply to antioxidant enzymes,
which was performed reading NADP+ extinction, at
340 nm (Beutler 1984). Molar absorptivity used was
(NADPH+H+/NADP)ελ340 = 6.3 mM cm−1.

TBARS were determined as Draper and Hadley
(1990). Liver aliquots were homogenized in 5% (w/v)
TCAwith 0.5 g L−1 of butylated hydroxytoluene (BHT).
The homogenates were boiled for 30 min, cooled
in ice, and centrifuged at 1000×g for 10 min.
Thiobarbituric acid (TBA) was mixed to the super-
natants (1:1 v/v) and mixture was boiled again for
30 min. The samples were read at 532 nm against
a standard curve of tetramethoxypropane.

Acetylcholinesterase (AChE) and Na+K+/ATPase
(NKA) assays

Brain AChE was assayed in 100 mM PO4
2− buffer

pH 7.0 with acetylthiocholine as substrate and 5,5-
dithiobis-2-nitrobenzoic acid as a reagent (Ellman
et al. 1961). AChE activity was recorded at 412 nm
(ελ412 = 16,950 M−1 cm−1). Gill NKA activity was de-
termined with ouabain as inhibitor through optical de-
tection of phosphate, read at 620 nm (Quabius et al.
1997).

Protein

Protein was determined with Bradford reagent against a
standard solution of BSA (Kruger 1994).

Histological analysis

After fixation, samples were dehydrated in ethanol and
embedded in Historesin® (Leica, Heidelberg, Germa-
ny). Liver sections of 2 μm were stained with toluidine
blue and basic fuchsin. Ten random microscopic fields
of each section were observed with an optic microscope
(Olympus BX51). Images were captured with a digital

camera and analyzed with the Motic Images Plus 2.0
software. Histopathological index (HI) was calculated
as Camargo and Martinez (2007), modified from
Poleksic and Mitrovic-Tutundzic (1994). It is based on
location, type, and severity of tissue lesions, which are
classified into four groups: parenchymal lesions; cyto-
plasmic and nuclear modifications; blood vessel chang-
es and necrosis. After the environmental stressor is
withdrawn, the damages are classified into three pro-
gressive stages considering the organ recovery: stage I
(SI), the lesions are not severe, do not affect organ
normal function, and are reversible; stage II (SII), mod-
erate to severe lesions, can affect the organ function,
might be reversible when the environment is improved;
stage III (SIII), very severe lesions, great impairment of
organ function, irreversible evenwith environment ame-
lioration. Estimative of HI is based on the sum of tissue
lesions times the stage index, accordingly HI =
100ΣSI + 101ΣSII + 102ΣSIII (Poleksic and Mitrovic-
Tutundzic 1994), in which ΣSI, ΣSII, and ΣSIII are
the sum of alterations in each stage and 100, 101, and 102

are the calculated factors, based on lesion severities. The
HI values are grouped into the following categories: 0–
10 = structurally normal organ; 11–20 = slight to mod-
erate organ injuries; 21–50 =moderate to severe organ
injuries; 51–100 = severe organ injuries; and > 100 =
irreparably injured organ.

Statistical analysis

The normality of data was tested by Kolmogorov-
Smirnov test. Then, the parametric test t of Student or
the non-parametric test of Mann-Whitney was used,
accordingly. The statistical significances of differences
among control × exposure and control of recovery ×
recovery are reported accepting a confidence interval of
95% (p < 0.05). The used software was GraphPad
Prism, 5.0.

Results

After LCH exposure, there was an increase of Hct
(10%), Hb (31%), RBC (18%), MCHb (26%), and
MCHC (17%). Hematocrit and Hb remained high after
recovery, at 9.5% and 24%, respectively. Concerning
plasma ionic balance, Na+ and Cl− concentrations di-
minished due to LCH exposure, in 15% and 19%,
respectively. No changes were observed in plasma K+
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concentrations (4.57 ± 0.6 mEq mL−1). After recovery,
only Na+ was held low at 5%. Plasma protein was 13%
lower in LCH-exposed fish, while no changes occurred
after recovery. The activity of gills NKA was raised in
43% after sub-lethal exposure, while no differences
were observed in recovered fish. Table 1 brings blood
and osmoregulatory outcomes.

Brain AChE activity was unchanged at nearly
0.22 mUmin−1 mg protein−1 in both experimental spans.

Hepatic ascorbic acid concentration remained steady
at both evaluations, being not responsive to LCH. On the
other hand, GSH augmented 41% after sub-lethal expo-
sure, and 29% after recovery. The antioxidant enzymatic
activities of SOD, CAT, and GPx presented decreases of
37%, 35%, and 32%, respectively, while GST and
G6PDH remained stable after LCH exposure. After re-
covery, SOD activity diminished 19% and GPx activity

increased 141%. Enzyme activity of CATwas recovered
to control values. In spite of G6PDH activity being not
directly linked to ROS scavenging and no significant
changes were observed in the experiment, its role is
discussed moving forward. Lipid peroxidation (LPO)
occurred in the liver of B. amazonicus after LCH expo-
sure, as shown by a 22% increment of TBARS in ex-
posed animals. There was no hepatic TBARS generation
after recovery. Table 2 presents the aforementioned data.

Liver of exposed fish presented blood vessel hyper-
plasia, cellular deformation, hepatic cell cord disorgani-
zation, nuclear and cytoplasmic vacuolization, eosino-
philic aggregates, and lipid accumulation. The HI of
exposed groups was indicative of moderate to severe
organ injuries (HI control 11.0 ± 1.2 and HI exposed
45.8 ± 2.5; Fig. 1). Recovered fish presented hepatic
cellular and nuclear hypertrophy, cellular deformation,

Table 1 Blood and osmoregulatory parameters of Brycon amazonicus exposed to 0.65 μg L−1 of lambda-cyhalothrin and recovered

Control Exposure Control of recovery Recovery

Hct (%) 24.47 ± 2.6 26.52 ± 2.6* 25.43 ± 1.3 27.88 ± 3.0*

Hb (g 100 mL−1) 5.90 ± 0.9 7.78 ± 0.6* 7.10 ± 1.3 8.81 ± 1.0*

RBC (106 mm−3) 1.43 ± 0.2 1.69 ± 0.3* 1.38 ± 0.5 1.74 ± 0.3

MCV (μm3) 173 ± 24.7 174.1 ± 33.4 167.9 ± 32.3 157.14 ± 19.6

MCHb (pg cell−1) 41.27 ± 6.4 48.70 ± 8.9* 49.70 ± 1.2 50.19 ± 5.0

MCHC (%) 24.21 ± 3.5 28.35 ± 5.6* 28.91 ± 6.2 31.82 ± 4.3

Na+ (mEq mL−1) 161.02 ± 12.0 136.25 ± 17.2* 156.44 ± 9.6 147.92 ± 7.1*

Cl− (mEq mL−1) 131.24 ± 4.7 105.9 ± 33.7* 139.41 ± 11.1 140.44 ± 6.0

Plasma protein (mg of protein mL plasma−1) 47.68 ± 5.8 38.24 ± 10.4* 40.98 ± 3.7 44.01 ± 4.0

NKA (g Pi.h−1 mg protein−1) 0.043 ± 0.01 0.061 ± 0.01* 0.053 ± 0.02 0.055 ± 0.03

*Significantly different from control (p < 0.05). Data are presented as mean ± standard deviation (n = 12). Hematocrit (Htc), mean
corpuscular hemoglobin concentration (MCHC), hemoglobin (Hb), red blood cells (RBC), mean corpuscular volume (MCV), mean
corpuscular hemoglobin (MCHb), Na+K+ /ATPase activity (NKA)

Table 2 Hepatic antioxidant biomarkers in Brycon amazonicus exposed to 0.65 μg L−1 of lambda-cyhalothrin and recovered

Control Exposure Control of recovery Recovery

GSH (μmol g tissue −1) 1.24 ± 0.4 1.72 ± 0.4* 2.61 ± 0.7 3.37 ± 0.7*

SOD (IU mg protein−1) 4.06 ± 1.3 2.54 ± 0.9* 4.08 ± 0.6 3.29 ± 0.5*

CAT (IU mg protein−1) 0.31 ± 0.1 0.20 ± 0.07* 0.52 ± 0.2 0.54 ± 0.2

GPx (IU mg protein−1) 0.62 ± 0.2 0.42 ± 0.2* 0.80 ± 0.2 1.93 ± 0.4*

GST (IU mg protein−1) 8.04 ± 1.2 8.19 ± 1.7 9.49 ± 1.8 10.38 ± 2.0

G6PDH (IU mg protein−1) 65.79 ± 18.6 52.70 ± 16.5 33.67 ± 15.5 33.70 ± 14.9

TBARS (nmol g tissue −1) 17.14 ± 1.9 20.95 ± 4.4* 14.33 ± 3.2 15.33 ± 2.2

*Significantly different from control (p < 0.05). Data are presented as mean ± standard deviation (n = 12). International units (IU), reduced
glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glucose-6-
phosphate dehydrogenase (G6PDH), thiobarbituric acid reactive species (TBARS)
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cell cord disorganization, cytoplasmic and nuclear
vacuolization, eosinophilic aggregates, and cytoplasmic
and nuclear degeneration. The recovery span was not
enough for hepatic recovery, as can be inferred
from the HI values (HI control of recovery 15.3 ±
1.5 and HI recovery 44.7 ± 3.1; Fig. 1). Table 3 brings
the frequency of alterations, and Fig. 2 exhibits the
histopathological observations.

Discussion

Toxic effects caused by synthetic pyrethroids in
non-target organisms are not always lethal, and
yet they can cause serious sub-lethal effects, lead-
ing to impairments in individual and population
fitness and survival. The LCH concentration here
reported is environmentally relevant, already found
at water bodies and recommended for fish parasite treat-
ment (Marino and Ronco 2005; Hunt et al. 2016; United
Kingdom 2017). B. amazonicus exposed to LCH pre-
sented hematologic parameter alterations, imbalances in
antioxidant metabolism, and changes in liver structure; a
physiological frame that was not recovered even after
1 week under clean water.

The energetic cost to metabolize xenobiotics is a
critical point in detoxification processes (Hammer
1995; Geeraerts and Belpaire 2010) and the energy
demanded comes preferentially from aerobic metabo-
lism. For this reason, cell strategies aiming to achieve
uptake and transport of oxygen are usually enhanced

after poisoning by xenobiotics. It is well known that one
of the major routes of toxicant entry into the fish body is
through the gills, a relevant interface between blood and
water. Lipophilic compounds, such as SP, rapidly per-
meate this barrier for their chemical affinity with cell
membranes. This mechanism is reported as mainly re-
sponsible for the body burden of these xenobiotics
(Randall et al. 1998). Gills are the main organs for gas
exchange in fish, and accumulation of lipophilic com-
pounds might interfere with the permeability of cell
membranes, impairing transports executed by these
structures (Payne et al. 1978). Moreover, gill morpho-
logical changes reported in fish exposed to SP, e.g., cell
hyperplasia, augment the water-blood barrier, hindering
gas exchange (Yildirim et al. 2006; Cunha et al. 2018;
Moraes et al. 2018). Along these lines, LCH presence in
water can impair oxygen uptake, which would lead to
the compensatory blood changes observed in
B. amazonicus (augmented Hb, Htc, and RBC). These
responses are also seen in fish submitted to environmen-
tal hypoxia (Moraes et al. 2002; Gaulke et al. 2014).

Stress related to LCH intoxication might also explain
the blood outcomes. Stress for SP exposure is reported
to increase blood cortisol in fish (Saravanan et al. 2009;
Firat et al. 2011), a potential reason for RBC enhance-
ment. The recovery period of 7 days was not enough to
eliminate the stress caused in B. amazonicus by LCH.
This fact is central considering the health status of fish
that inhabit water bodies close to agricultural lands, as
this pesticide is heavily used in crop farms.

In freshwater fish, ionic and hydric balances are held
by glomerular filtration rates and urine flow, associated
with active reabsorption of ions by branchial epithelium
(Evans et al. 2005). Ion transfer through gills is mediat-
ed by NKA activity in chloride cells. NKA is a target for
SP toxicity, as seen upregulated NKA encoding genes in
liver of Atlantic salmon Salmo salar L. exposed to
deltamethrin, which are downregulated in gills (Olsvik
et al. 2014). Additionally, structural changes of
ATPases are supposed to be partially responsible
for the neurotoxic action of these xenobiotics
(Kakko et al. 2003; Riar et al. 2013). Hemodilution
presented by B. amazonicus exposed to LCH might
happen due to an inhibition of active ion uptake by
NKA, resulting in a decrease of plasma concentrations
of anions and cations (Wendelaar Bonga and Lock
1992). Nevertheless, the rise of NKA activity in fish
exposed to LCH might also be a result of high levels of
blood catecholamines, due to intoxication stress.

Fig. 1 Liver histopathological index (HI) of Brycon amazonicus
exposed to 0.65 μg L−1 of lambda-cyhalotrhin and recovered. C,
control; E, exposed; CR, control of recovery; R, recovery. Asterisk
indicates differences between control and exposed groups and
between control of recovery and recovery groups (p < 0.05). Data
are presented as mean ± standard error (n = 12)
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Increases of NKAwould work as a compensatory adap-
tation to cope with low plasma ion concentration, al-
though such compensatory response was not enough to
keep normal patterns of blood Na+ and Cl−.

Increases in enzyme expression, as observed in
NKA, can worsen the metabolic syndrome associated
with xenobiotic exposure. Proteins can be the main
energy source in detoxification processes, leading to
hypoproteinemia, as reported in Clarias batrachus L.
exposed to SP (Kumar et al. 2011). Moreover, osmo-
regulation disturbances inferred from low concentra-
tions of Na+, Cl−, and protein can also be attributed to
kidney and/or intestine dysfunction, particularly consid-
ering SP nephrotoxicity (Haya 1989; Mohapatra et al.
2012). In addition, impairment of oxygen uptake caused
by LCH, just discussed above, would cause blood acid-
ification aggravated by increases of metabolic rate from
detoxification processes. A decline in Na+ and Cl− con-
centrations, as observed in B. amazonicus, would keep

the blood pH into acidic ranges, since adjustments to
recover physiological values are primarily dependent on
bicarbonate concentrations.

The decrease of plasma Na+ was the only ionic
alteration observed after 7 days of recovery; even the
NKA activity returned to basal levels. B. amazonicus
was able to re-establish normal conditions after LCH
poisoning considering these physiological parameters.
Our findings agree with those observed in C. batrachus
exposed to cypermethrin, in which NKA activity was
restored after 10 days of recovery (Begum 2009). The
osmoregulatory imbalance observed inB. amazonicus is
an early biomarker of xenobiotic injuries, enabling di-
agnosis before morphological changes are noticed.

Acetylcholinesterase activity is not the main target of
SP toxicity, nevertheless some authors suggest that its
use as a biomarker should not be limited to organophos-
phorous and carbamates, instead it might be extended to
other pollutants (Guilhermino et al. 1998). Brain AChE

Table 3 Frequency of observed histopathological lesions in the liver of Brycon amazonicus exposed to 0.65 μg L−1 of lambda-cyhalothrin
and recovered

Stage Variables Control Exposed Recovery control Recovery

I Nuclear hypertrophy + + + 0

Cellular hypertrophy ++ ++ + ++

Nuclear atrophy ++ ++ + ++

Cellular atrophy 0 0 + ++

Vascularization increase ++ +++ + +

Nuclear deformation + +++ + ++

Cellular deformation + +++ ++ +++

Peripheral nucleus +++ +++ +++ +++

Hepatic cell cord disorganization + +++ + +++

Melano-macrophage aggregates 0 0 0 0

Cytoplasmic vacuolization ++ +++ ++ +++

Eosinophil aggregates ++ +++ ++ +++

II Nuclear vacuolization (degeneration) + ++ 0 ++

Cytoplasmic degeneration ++ +++ + +++

Pyknotic nucleus 0 0 0 0

Nucleolus absence 0 0 0 0

Nucleus absence 0 0 0 0

Cellular rupture 0 0 0 0

Bile stagnation 0 0 0 0

Blood vessel rupture 0 0 0 0

Hyperemia 0 0 0 0

III Focal necrosis 0 0 0 0

Total necrosis 0 0 0 0

0 = absence; + = present; ++ = frequent; +++ = highly frequent
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in some fish is reported as an SP biomarker (Toumi et al.
2015; Singh et al. 2018); however, some studies do not
observe altered AChE activity due to SP intoxication
(Wheelock et al. 2005; Hernández-Moreno et al. 2010;
Ensibi et al. 2014). Notwithstanding its role as an im-
portant biomarker widely used in fish, AChE activity
changes due to SP exposure seem highly inconsistent.
We hypothesize that other esterases might be affected by
SP intoxication, since B. amazonicus brain AChE activ-
ity is unresponsive to this neurotoxicant action. Other
esterases might interact with pyrethroids in this fish
species, and should be considered in future studies.

Reactive oxygen species (ROS) are continually pro-
duced as a natural consequence of aerobic life, but their
overproduction brings on severe consequences.
B. amazonicus exposed to LCH depicted characteristics
of hepatic oxidative stress. Xenobiotics are able to pro-
duce high levels of oxyradicals through metabolic reac-
tions of detoxification (Kelly et al. 1998); moreover, SP
are known for inhibiting mitochondrial complex I
(Gassner et al. 1997), which would contribute to sharp

rises in cellular ROS. A plausible hypothesis for the
observed metabolic frame is that oxidative stress and
all of the injuries associated to it (LPO, enzyme inhibi-
tion, DNA injuries) were already set in 96 h, indicating
that B. amazonicus responses to LCH insults were
insufficient.

The SOD-CAT joint activities are the organism’s first
approach in dealing with ROS, being pivotal for the
proper functioning of the antioxidant enzymatic system
(Doria et al. 2018). This pair inhibition, after 96 h of
LCH exposure, might have contributed for the develop-
ment of LPO chain (e.g., TBARS increase) and conse-
quent cellular injuries. The presence of superoxide rad-
icals that were not vanished by the fish defenses would
exacerbate Harber-Weiss reaction, boosting the dam-
ages caused by hydroxyl radicals, including enzyme
inactivation (e.g., SOD, CAT, and GPx inhibitions)
and LPO. Additionally, high hepatic levels of O2

•- rad-
icals were probably responsible for CAT and GPx inhi-
bition (Odajima and Yamazaki 1972; Kono and
Fridovich 1982). Regarding SOD activity, it could have

Fig. 2 Photomicrographs of Brycon amazonicus liver sections. C,
control. Tubular arrangement of hepatocytes indicated by (H). CR,
control of recovery. Sinusoids indicated by (S). E, exposed. Simple

arrow: nuclear deformation. Double arrow: cellular deformation.
R, recovery. Triple arrow: eosinophil aggregates. Toluidine blue
and basic fuchsin. Scale bar, 20 μm
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been inhibited both by hydroxyl radicals and superoxide
radicals, which is its own substrate (Bagnyukova et al.
2006; Modesto and Martinez 2010). Moreover, some
studies link excessive H2O2 levels arisen from a lack of
CAT activity to SOD inhibition (Kono and Fridovich
1983).

Glutathione peroxidase (GPx) reduces H2O2,
preventing the expansion of chain reactions that cause
lipid peroxidation (Di Giulio et al. 1989). This enzymat-
ic defense inhibition after 96 h of exposure leads to an
augmented Fenton reaction due to a surplus of H2O2,
which induced higher HO− levels, contributing for LPO
development. When installed, LPO causes loss of mem-
brane fluidity, increased permeability, possible release
of cell and organelle content, and inactivation of mem-
brane enzymes and protein receptors (Kappus 1985;
Gutteridge 1995). Although being a potent antioxidant,
GSH by itself is not able to protect the tissue from lipid
peroxidation, even when in higher levels as observed in
B. amazonicus.

After 7 days of recovery, B. amazonicus antioxidant
metabolism was not completely restored, but it seemed
less affected by oxyradicals than after exposure, present-
ing a delayed adaptive response. SOD activity remained
lower than control, but noticeably higher than that after
exposure (inhibition of 37% and 19%, respectively).
This increase on SOD activity would provide substrate
(H2O2) for CAT and GPx activities. Indeed, CAT activ-
ity was retaken towards control levels, while GPx was
sharply increased. Both enzymes might have taken part
on the blocking of LPO chain development, since
TBARS were no longer detected, besides preventing
further enzyme inhibition. Reduced glutathione contents
were still high, accounting for the rises in GPx and tissue
protection against ROS deleterious effects.

Glutathione-S-transferase is fundamental in a partic-
ular type of detoxification mechanism, in which GSH is
chemically conjugated to the xenobiotic molecule. Elec-
trophilic metabolite conjugation to GSH is one of the
major drug detoxification pathways known (Halliwell
2006; Di Giulio and Meyer 2008). Conjugation of GSH
to toxicant molecules is a way of transforming them,
usually reducing their deleterious effects. The unaltered
activity of GST observed after LCH exposure and re-
covery was probably due to the type of mechanisms
elected to cope with this xenobiotic. Conjugation to
GSH should not be relevant to detoxify LCH in
B. amazonicus, at least over the present experimental
span. Contrastingly, GST hepatic activity is stimulated

by LCH in Nile tilapia Oreochromis niloticus L. (Piner
and Üner 2012). On the other hand, CAT and SOD
activities and GSH and TBARS levels in Prussian carp
Carassius auratus gibelio (Bloch 1782), submitted to
deltamethrin, are similar to those observed in
B. amazonicus (Dinu et al. 2010).

A couple of pentose’s pathway enzymes, such as
dehydrogenases, are critical in maintaining the cell re-
dox potential. The activity of G6PDH is key in
NADPH+H+ production, which is involved in anabolic
redox reactions. Unaltered G6PDH activity all over the
experiment indicates that LCH did not affect NADPH+
H+ supply to the metabolism of B. amazonicus. In
Oncorhynchus mykiss, G6PDH is inhibited by
cypermethrin and deltamethrin (Sentürk et al. 2009).
Considering the oxidative stress, NADPH+H+ is oxi-
dized to NADP+ by glutathione reductase to re-establish
GSH levels. The steady activity of G6PDH in
B. amazonicus should contribute in maintaining the
observed elevated levels of that peptide. The upkeep
of hepatic ascorbic acid levels could also be explained
by G6PDH regular activity maintenance, since
NADPH+H+ acts in the regeneration of vitamins C
and E oxidized forms.

Liver is a crucial organ in detoxification processes.
The histopathologic observations in B. amazonicus
evince LCH toxic effects, and have been reported in other
freshwater fish exposed to SP (Muthuviveganandavel
et al. 2013). However, the morphological frame cannot
be interpreted as a specific response to LCH intoxication;
instead, it can be attributed to xenobiotics in general. One
of the most frequent hepatic alterations observed after
exposure to xenobiotics is an increase of vascularization.
This physiologic response leads to raises in blood flux
and increases of catabolite excretion from LCH metabo-
lism, which occurs mainly through bile (Bradbury and
Coats 1989; Kolo et al. 2010). Eosinophil aggregates are
typical of inflammatory reactions from several etiologies
such as parasitism, allergies, infections, and injuries
(Ferrero-Milani et al. 2007). In particular, two possibili-
ties arise to explain eosinophil aggregates: allergic
processes, local or generalized, for the poisoning
effects; or local lesions caused directly by LCH.
Local lesions seem the most plausible hypothesis
and might be due to an exacerbated ROS production,
owing to LCH action on cell mitochondria. The influ-
ence of SP in the electron transport chain, already
discussed, could increase ROS generation, and conse-
quently enhance local cellular lesions.
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There was a clear cytoplasmic vacuolization in hepa-
tocytes of B. amazonicus linked to LCH intoxication.
This was likely associated to inhibition of protein syn-
thesis, energy depletion for detoxification processes,
and disaggregation of microtubules, as also proposed
by Hinton and Laurén (1990). In this regard, inhibition
and/or depletion of antioxidant enzymes were just
discussed above, and likewise, other proteins are also
liable of suffering the same kind of injuries. Besides
being reversible, cell and cytoplasmic degeneration are
considered severe injuries, since the metabolic active
volume is diminished (Maduenho and Martinez 2008).
Hepatic modifications observed in B. amazonicus were
enough to alter normal functions of the liver, although
being considered moderate to severe. Disorganization of
typical hepatocytes’ cords suggests that the organelle
distribution was altered, affecting the organ functions as
just proposed (Akaishi et al. 2004; Marinho et al. 2014).
Considering the range of HI estimated to B. amazonicus
in the present degree of poisoning, and the return of GPx
and GSH to normal levels, it is possible to assume that
the liver injury level can be reverted if LCH action is
withdrawn in time. Nevertheless, the recovery span was
not enough to allow complete re-establishment of he-
patic normal morphology.

Shifts in hematologic parameters and osmoregulatory
issues, combined with imbalances in hepatic antioxidant
metabolism and morphological changes, were observed
in B. amazonicus after LCH exposure, and homeostasis
was not completely restored after recovery. These are
critical alterations, since they could potentially impair
the species’ regular life cycle. Considering the risks
offered by SP contamination, reliable biomarkers are
of great interest in detecting and evaluating these xeno-
biotics’ effects on non-target species. The reported met-
abolic frame emphasizes the relevance of the responsi-
ble use of this synthetic pyrethroid, along with adequate
legislation to its use and discharge, especially consider-
ing the impairments caused in this non-target species
exposed to low LCH doses.
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