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Abstract Immunostimulants are widely applied in
aquaculture practice and may have beneficial effects
on the immune system and physical functions allowing
higher tolerance to stress. In the current study, the im-
pact of four (i–iv) dietary active ingredients on the
immune and stress response of turbot was examined in
two experiments (I and II). A basal low fish meal (FM;
32%) diet was formulated and supplemented with (i)
yeast β-glucan and mannan oligosaccharide (GM), (ii)
alginic acid (AC), (iii) yeast nucleotides and RNA (NR),
or (iv) Bacillus strains (BS). The basal diet (C-LF) and a
high FM (59%) control (C-HF) were maintained. All six
diets were fed to juvenile turbots for 84 days in exper-
iment I and for additional 28 days prior to experiment II.
Immunological and hematological parameters were de-
termined in experiment I. In experiment II, physical
stress response to a typical short-term (<1 day) aquacul-
ture handling procedure (combination of capture, net-
ting/transfer, and crowding) was investigated. For this,
turbot blood was sampled before and at 0.5, 1, 4, and
24 h post stress. Plasma lysozyme activity, neutrophil

reactive oxygen species (ROS) production, and total
plasma protein levels did not significantly differ be-
tween treatment groups; however, plasma cholesterol
increased significantly in fish fed GM, AC, NR, and
C-HF compared to C-LF (I). A significant increase in
plasma glucose and triglyceride was observed in GM
and NR treatments, while glucose levels were signifi-
cantly higher in C-HF compared to C-LF. Moreover, the
immunostimulant-supplemented diets exhibited signifi-
cantly lower cortisol levels compared to controls C-LF
(at 0.5 h) and C-HF (at 1 h) post stress, respectively (II).
According to our findings, FM substitution did not
modulate the innate immune response but was associat-
ed with reduced levels of cholesterol. Dietary
immunostimulants were not effective enough to boost
the immune response, but we believe they might be
helpful to trigger metabolic advantages during stressful
handling events on fish farms.
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Introduction

Fish health and welfare in aquaculture is a key issue in
the provision of high quality, consumer-orientated, and
sustainable fish products (Naylor et al. 2000; Focardi
et al. 2005; Huntingford et al. 2006; Ashley 2007; Kiron
2012). Handling, feeding, transport, vaccination, water
quality, and high stocking densities in aquaculture are
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potential stressors affecting the physiology and health
condition of fish (Barton 2002; Ashley 2007; Segner
et al. 2012). Severe or long-lasting stress is found to be
detrimental to animal health and welfare, affecting the
physiology and performance in fish such as energy
metabolism, oxygen uptake, immune function, growth,
disease resistance, and survival (Mugnier et al. 1998;
Gregory and Wood 1999; Barton 2002; Laiz-Carrión
et al. 2003; Verburg-Van Kemenade et al. 2009). The
organism has to deal with an energy-demanding process
by synthesizing stress-related proteins and other com-
pounds to fuel cellular processes (Tort 2011; Segner
et al. 2012).

Assuring an optimal nutritional status and efficient
immune system in farmed fish can help to reduce sus-
ceptibility to stress and diseases. At present, the use of
preventative measures is central to disease control in
aquaculture production. Vaccinations are known to be
effective prophylactic methods but, as earlier men-
tioned, can be stressful for fish and remain costly and
labor-intensive for the producers (Lillehaug 1989;
Horne 1997; Gudding et al. 1999; Thorarinsson and
Powell 2006). The application of immunostimulants to
counter stress and diseases has been increasingly pro-
moted in aquaculture (Anderson 1992; Sakai 1999;
Merrifield et al. 2010). Injection of immunostimulating
compounds seemed to be an effective method; however,
bath immunization and oral administration showed to be
less invasive and stressful for fish; in particular, the
dietary uptake is a simple and time-saving way
(Anderson 1992; Sakai et al. 2001; Peddie et al. 2002;
Selvaraj et al. 2005).

Immunostimulants can be synthetic compounds or
biological extracts derived from bacteria, fungi, or
plants commonly in the form of polysaccharides.
Alginic acids, β-glucans, mannan oligosaccharides
(MOSs), nucleotides, and probiotic bacteria have essen-
tial physiological and biochemical functions in mediat-
ing energy metabolism, cell signaling, encoding and
deciphering genetic information, or modifying intestinal
microbial communities (Carver and Walker 1995;
Dalmo and Bøgwald 2008; Kesarcodi-Watson et al.
2008; Holdt and Kraan 2011; Jung-Schroers et al.
2015). They are reported to strengthen the immune
system, protecting fish against physiological stress and
susceptibility to infections (Bagni et al. 2005; Staykov
et al. 2007; Yoo et al. 2007; Ai et al. 2011; Peng et al.
2013). The fish’s innate immune system is the first line
of defense against disease vectors and is considered a

fundamental mechanism in fighting all kinds of patho-
gens (Magnadóttir 2006; Whyte 2007).

Dietary inclusion of β-glucans, MOSs, algal deri-
vates, nucleic acids, and probiotics has been shown to
modulate immune defense, stress response, and survival
in various fish species (Balcázar et al. 2006; Ringø et al.
2010, 2012). Immunostimulants can promote the pro-
duction of antibacterial peptides, such as lysozyme, and
the phagocytic activity of macrophages. Elevation in
serum lysozyme activity has been found in various fish
species, such as sea bass, Dicentrarchus labrax (Bagni
et al. 2005); Nile tilapia, Oreochromis niloticus (El-
Boshy et al. 2010); sturgeon, Huso huso (Heidarieh
et al. 2011); and rainbow trout, Oncorhynchus mykiss
(Staykov et al. 2007), which were fed on β-glucan-,
MOS-, or alginic acid-supplemented diets. Dietary up-
take of β-glucan in combination with a feed stimulant
(BAISM) was able to improve the lysozyme activity in
juvenile olive flounder, Paralichthys olivaceus (Yoo
et al. 2007). Phagocyte respiratory burst was enhanced
with dietary ribonucleic acid in rohu (Labeo rohita;
Choudhury et al. 2005) and β-glucan in sea bass
(Bonaldo et al. 2007). Dietary supplementation of β-
glucan and MOS enhanced respiratory burst and surviv-
al of juvenile turbot, Scophthalmus maximus (Li et al.
2008). However, Ogier de Baulny et al. (1996) observed
no effect of β-glucan on the lysozyme activity in turbot.

Information on the effect of immunostimulants on
stress response in fish is scarce. Alginic acid-enriched
(Gioacchini et al. 2008) and nucleic acid-enriched
(Leonardi et al. 2003; Tahmasebi-Kohyani et al. 2012;
Palermo et al. 2013) diets can suppress stress response
(expressed as plasma cortisol levels) in rainbow trout
and sole (Solea solea) exposed to different stressors
(vaccination, virus disease, handling, and crowding).
Recent attempts to minimize the fish meal (FM) content
in formulated finfish feeds due to economic and envi-
ronmental concerns may increase susceptibility to stress
and infections potentially as a result of the reduction of
high-quality animal proteins and lipids in diets (Burrells
et al. 1999; Urán et al. 2008; Bonaldo et al. 2014;
Khosravi et al. 2015).

Diets for carnivorous fish species, such as turbot
(S. maximus), are yet to be optimized. In particular, the
adverse effects of dietary plant substitutes and stressful
husbandry conditions must be overcome. The interac-
tion of immunostimulants and plant proteins acting as
FM substitutes as regards immune and stress response
remains, however, poorly studied. The influence of
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immunostimulant supplementation in FM-reduced diets
on plasma cortisol levels after an acute stress challenge
remains unstudied for turbot. Therefore, the current
study aims to evaluate the effect of commercially ap-
plied and piloted immunostimulants with the following
active ingredients: (i) yeast β-glucan and mannan oli-
gosaccharide (GM), (ii) alginic acid from brown algal
extracts (AC), (iii) purified yeast nucleotides and ribo-
somal RNA (NR), and (iv) probiotic bacteria strains
Bacillus subtilis and Bacillus licheniformis (BS), on
the immune and stress responses in juvenile turbot fed
low fish meal content diets.

Materials and methods

Fish species and experimental setup

The feeding experiment was conducted at the aquacul-
ture facilities Zentrum für Aquakulturforschung (ZAF)
at the Alfred Wegener Institute Helmholtz Center for
Polar and Marine Research (AWI) in Bremerhaven,
Germany. Juvenile turbots were obtained from
Maximus A/S (Bedsted Thy, Denmark). Fish were ex-
amined for infectious diseases before and at the end of
the experiment to monitor health conditions of experi-
mental animals. The experiment was performed under
the guidelines of the local authority (Department of
Food Safety, Veterinary Affairs and Plant Protection)
in Bremen with the permission to carry out animal
experiments (522-27-11/02-00(112)).

The rearing system consisted of 36 tanks (0.8 m2

bottom surface, 500 l total water volume). Tanks were
connected to a recirculating aquaculture system (RAS;
total water volume 40 m3) and equipped with a drum
filter, protein skimmer, moving bed biofilter, and disin-
fection unit (ozone generator; Sander Aquatec GmbH,
Uetze-Eltze, Germany). The photoperiod was main-
tained at a 12 h light/12 h dark cycle throughout. Phys-
ical water parameters were monitored constantly (tem-
perature 17.3 ± 0.5 °C, salinity 28.6 ± 1.4 g l−1, dis-
solved oxygen 9.3 ± 0.5 mg l−1; SC 1000 Multi-
parameter Universal Controller, Hach Lange GmbH,
Düsseldorf, Germany). Chemical water parameters am-
monia, nitrite, and nitrate were determined in a 3-day
interval before feeding (NH4-N 0.01 ± 0.02 mg l−1,
NO2-N 0.04 ± 0.03 mg l−1, NO3-N 80.6 ± 16.7 mg l−1;
photometer DR 2800; Hach Lange GmbH, Germany).

Experimental diets

Six diets were formulated with regard to an
isonitrogenous (565 ± 7 g CP kg−1) and isocaloric
(22 ± 0.5 g MJ kg−1 DM) content (Table 1). Four
experimental diets were supplemented with active in-
gredients of commercially applied or piloted feed addi-
tives: (1) a yeast (Saccharomyces cerevisiae) product
consisting of 20% beta-1,3/1,6 glucan and 17% mannan
oligosaccharide (ProEnMune, ProEn Protein and
Energie GmbH, Soltau, Germany) (GM), (2) an alginic
acid product of brown algal extracts containing 99%
Laminaria digitata and 1% Ascophyllum nodosum
(Ergosan®, Intervet/Schering-Plough Aquaculture, Saf-
fron Walden, UK) (AC), (3) a product of purified yeast
nucleotides (cytidine-5V-monophosphate (CMP),
disodium uridine-5V-monophosphate (UMP),
adenosine-5V-monophosphate (AMP), disodium
inosine-5V-monophosphate (IMP), disodium
guanidine-5V-monophosphate (GMP)) and ribosomal
RNA (Vannagen®, Chemoforma Ltd., Augst, Switzer-
land) (NR), and (4) a probiotic product of bacteria
strains B. subtilis and B. licheniformis (Probiotic-
plus.ru, Russia) (BS). Two control diets, a FM-based
diet (C-HF; 585 g FM protein kg−1 feed) and a FM-
reduced diet (C-LF; 320 g FM kg−1 feed), were addi-
tionally investigated. The protein content in C-LF and
the supplemented diets (GM, AC, NR, and BS) was
partly replaced with soy protein concentrate (SPC) and
wheat gluten (WG) including 56% protein from plants.
All diets were extruded to floating pellets of 5 mm in
diameter, manufactured by the Institute of Food Tech-
nology and Bioprocess Engineering (BILB-ttz Bremer-
haven, Germany).

Experiment I: feeding trials

During the acclimatization period, fish were fed with a
commercial dry feed with 55% crude protein and 16%
crude fat (R Europa 15, 2 mm diameter; Skretting ARC,
Stavanger, Norway). For the experiment, 900 turbot
individuals were weighed (initial mean body weight
95.8 g ± 17.7 g) and measured in total body length
(initial mean length 18.0 cm ± 1.1 cm) and randomly
stocked in the 36 experimental tanks (25 individuals
tank−1; 3.0 kg m−2 stocking density). Fish were starved
24 h prior to weighing. The feeding trial was designed to
contain six fish groups consisting of six replicates each.
The turbots were hand-fed until apparent satiation twice
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Table 1 Ingredients (in g kg−1 dry matter (DM)), proximate composition (g kg−1 DM/MJ kg−1 DM), and amino acid composition (g
16 g−1 N) of the experimental diets

Diets

C-HF C-LF GM AC NR BS

Ingredients (g kg−1)

Fish meala 585 320 320 320 320 320

Soy protein concentratea 125 250 250 250 250 250

Corn glutenb 30 40 40 40 40 40

Wheat glutenc 20 147 146.7 146.8 146.9 147

Wheat starchc 184 160 154.3 155.2 158.1 159.4

GM 0 0 6 0 0 0

AC 0 0 0 5 0 0

NR 0 0 0 0 2 0

BS 0 0 0 0 0 0.6

Fish oild 45 72 72 72 72 72

Vitamin/mineral mixturee 10 10 10 10 10 10

Titanium dioxidef 1 1 1 1 1 1

Nutrient compositiong (g kg−1)

Moisture 72 70 66 65 74 64

Crude protein 553 567 571 569 562 571

Crude fat 117 112 112 112 118 113

Crude ash 108 76 75 77 71 77

Calcium 18 11 11 11 11 11

Phosphorus 15 10 10 10 10 10

Gross energy (MJ kg−1)h 21 22 22 21 22 22

Essential amino acids (g 16 g−1 N)

Arginine 4.5 4.3 4.4 4.4 4.3 4.4

Cystine 1.2 1.5 1.5 1.6 1.5 1.5

Histidine 3.0 2.7 1.9 2.6 2.4 2.7

Isoleucine 3.3 3.2 3.4 3.4 3.2 3.5

Leucine 5.9 6.2 6.2 6.1 6.0 6.2

Lysine 5.9 4.8 4.8 4.8 4.5 4.6

Methionine 2.1 1.9 1.9 1.9 1.9 1.8

Phenylalanine 3.4 3.8 2.6 3.8 3.7 3.8

Threonine 3.2 3.0 3.0 3.0 3.0 2.9

Valine 3.7 3.5 3.7 3.7 3.5 3.8

Non-essential amino acids (g 16 g−1 N)

Alanine 4.5 4.0 3.9 3.8 3.7 3.9

Aspartic acid 6.7 6.2 6.3 6.4 6.2 6.2

Glutamic acid 7.9 10.4 10.7 10.4 10.1 10.6

Glycine 4.3 3.8 3.8 3.7 3.5 3.8

Proline 4.1 5.9 6.1 5.6 5.5 5.8

Serine 3.3 3.8 3.8 3.7 3.7 3.6

Tyrosine 2.5 2.6 2.7 2.6 2.7 2.5

Additive concentrations were recommended by the manufacturers and literature (Burrells et al. 2001a, b; Merrifield et al. 2011)

C-HF high fish meal control, C-LF low fish meal control, GM β-glucan/MOS, AC alginic acid, NR nucleotides/RNA, BS Bacillus spp.
a Köster Marine Proteins GmbH, Hamburg, Germany
b Cargill Deutschland GmbH, Krefeld, Germany
cKröner Stärke, Ibbenbüren, Germany
dVereinigte Fischmehlwerke Cuxhaven GmbH & Co KG, Cuxhaven, Germany
e Spezialfutter Neuruppin GmbH & Co. KG, Neuruppin, Germany
f Kronos Titan GmbH & Co.OHG, Nordenham, Germany
gWeender analysis (Dumas): moisture (VDLUFABd. III 3.1), crude protein (VDLUFABd. III 4.1.2), crude fat (VDLUFABd. III 5.1.1), and
ash (VDLUFA Bd. III 8.1); ICP-mass spectrometry: calcium and phosphor (PM DE01_018)
h Bomb calorimeter (6100, Parr Instrument GmbH, Frankfurt a. M., Germany)

1504 Fish Physiol Biochem (2017) 43:1501–1515



a day (10:00 a.m. and 2:00 p.m.) over an 84-day period.
The effect of fishmeal substitution and feed additives on
feed conversion and growth performance was reported
in a previous communication (Fuchs et al. 2015).

At the end of the experiment, 108 individual fish (3
fish tank−1) were selected randomly and placed into a
500 mg l−1 solution of tricaine methanesulfonate (MS
222; Sigma-Aldrich Co. LLC., Munich, Germany) until
death (Neiffer and Stamper 2009). Subsequently, blood
was drawn from the caudal vein into disposable syringes
pre-filled with a lithium-heparin bead (Sarstedt AG &
Co. KG, Nümbrecht, Germany), centrifuged at 2.000g
for 15min to collect the supernatant plasma. Plasmawas
stored at −80 °C for biochemical analysis. Furthermore,
head kidneys of another fish per tank (6 fish treatment−1,
36 fish in total) were isolated and placed in centrifuge
tubes (50 ml; Sarstedt AG & Co. KG, Germany) filled
with 15 ml of washmedium (RPMImediummixed with
10,000 IU sodium heparin; Sigma-Aldrich Co. LLC.,
Germany). Head kidney samples were processed imme-
diately to measure the production of the reactive oxygen
species (ROS).

Experiment II: handling simulation (capture, netting/
transfer, crowding)

Prior to experiment II, the remaining turbots from all six
tanks of the six treatment groups were restocked in three
replicate tanks (35 fish tank−1, 630 in total). Turbots
were kept in 500-l tanks, and feeding (twice a day)
was continued for additional 28 days with the before-
mentioned experimental diets. In this experiment, the
influence of a typical short-term (<1 day) aquaculture
handling procedure (combination of capture, netting/
transfer, and crowding) on physical stress response in
turbot was determined. After 28 days, the mean initial
stocking density of fish was 16.1 kg m−2 (C-HF),
13.5 kg m−2 (C-LF), 13.3 kg m−2 (GM), 13.3 kg m−2

(AC), 12.6 kg m−2 (NR), and 13.3 kg m−2 (BS), respec-
tively. Fish were starved 24 h prior to sampling as
feeding has shown to influence plasma cortisol levels
(Arends et al. 1999). As a pre-treatment control, three
fish were simultaneously taken from each tank (nine fish
per treatment), immediately anesthetized with a lethal
dose of MS 222 and bled using lithium-heparinized
syringes (Sarstedt, Germany). Subsequently, all other
fish were subjected to handling treatment, which
consisted of netting from the rearing tanks, and trans-
ferred into aerated 90-l tanks (0.3 m−2 bottom surface,

72 cm length × 42 cmwidth × 30 cm depth) at a stocking
density of 39.4 kg m−2 (C-HF), 32.9 kg m−2 (C-LF),
32.4 kg m−2 (GM), 32.4 kg m−2 (AC), 30.8 kg m−2

(NR), and 32.5 kg m−2 (BS). Fish were kept there in
crowded conditions for 5 min before relocating them
into the rearing tanks. At 0.5 h, 1 h, 4 h (11:30 a.m.,
12:00 a.m., 3:00 p.m.), and 24 h after the end of the
handling simulation, three fish per tank (nine fish per
treatment and time point) were simultaneously captured,
while ensuring minimal disturbance to other tank occu-
pants, placed into anesthetic, and bled as described
above. Only three treatment groups (C-HF, GM, and
AC) were subjected to handling stress on the same day
to allow equal timing for blood sampling (11:30 a.m.,
12:00 a.m., 3:00 p.m.) during this narrow time frame.
All samples (pre-treatment control and post stress) of the
three treatments were taken directly before stress and
within 24 h. The following day, the same procedure was
applied to the other three groups (C-LF, NR, and BS).
Blood samples were stored on ice and centrifuged at
2.000g for 15 min at 4 °C. The supernatant plasma was
frozen for storage at −80 °C to determine the cortisol
and glucose concentrations in fish at resting condition
and after handling.

Immunological analysis

Generation of ROS by head kidney leucocytes (HKLs)
was measured by a nitro blue tetrazolium salt (NBT)
reduction assay (Pick et al. 1981; Verburg-van
Kemenade et al. 1996) as described before by Skouras
and Steinhagen (2003). Leucocytes were collected by
pressing and washing the HK tissue through a 100-μm
nylon mesh with three times 5 ml of wash medium
(RPMI medium with 10,000 IU l−1 sodium heparin;
Sigma-Aldrich Co. LLC., Germany). The isolated cells
in medium were centrifuged at 580g for 10 min at 4 °C.
After decanting the supernatant, cell pellets were resus-
pended with 15 ml of wash medium and centrifuged a
second time. Subsequently, pellets were resuspended
with culture medium (RPMI medium supplemented
with 10% fetal bovine serum; Sigma-Aldrich Co.
LLC., Germany). The viable cell concentration was
determined by trypan blue staining and cell counting
using a hemocytometer. Cells were adjusted to
106 cells ml−1 in the culture medium. To measure ROS
generation, cell suspensions were incubated in 96-well
flat-bottom microtiter plates (106 cells per well in a final
volume of 175 μl medium) in triplicate with and without
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a stimulator. Therefore, the culture medium, the indica-
tor NBT (1 g l−1; Sigma-Aldrich), the stimulator phorbol
myristate acetate (PMA, 0.15 mg l−1; Sigma-Aldrich),
and cell suspension were added per well to induce ROS
production. Additionally, cells were incubated without a
stimulator to determine spontaneous ROS generation of
cells. The solutions were discarded after 2 h of incuba-
tion at 22 °C. Cells were fixed for 10 min with 125 μl of
100% methanol (Carl Roth GmbH & Co. KG, Karlsru-
he, Germany), and subsequently, wells were washed
twice with 125 μl of 70% methanol. Plates were stored
in the dark to allow air-drying of the fixed cells for 24 h
at room temperature. On the following day, the reduced
NBT (formazan) was solubilized in 125 μl of 2 M KOH
and 150 μl DMSO (Carl Roth) per well (Rook et al.
1985). The optical densities were recorded immediately
at 650 nm in a microplate reader (TriStar LB 941;
Berthold Technologies, Germany) at 22 ± 0.5 °C.

Plasma biochemical analysis

Plasma lysozyme (LZY) activity was analyzed by a
turbidimetric assay according to Parry et al. (1965),
adapted for the measurement in microtiter plates
(Skouras et al. 2003). A 0.2 g l−1 suspension of Micro-
coccus lysodeikticus was prepared with 0.05 M sodium
phosphate buffer (pH 7.4) (chemicals: Sigma-Aldrich
Co. LLC., Munich, Germany). The bacterial cell sus-
pension was added to a 96-well microtiter plate and
mixed with 25 μl plasma to receive a total volume of
200 μl per well. The optical density (OD) was measured
after 0.5 and 4.5 min at 530 nm in a microplate reader
(TriStar LB 941; Berthold Technologies GmbH & Co.
KG, Bad Wildbach, Germany) at a temperature of
23 ± 1 °C. The lysozyme activity was calculated accord-
ing to the decrease in absorbance, defining 1 unit of
lysozyme activity as the amount of sample causing a
decrease in absorbance of 0.001 OD min−1. As an
external standard, hen egg-white lysozyme (Sigma-Al-
drich Co. LLC., Germany) was used (Hutchinson and
Manning 1996). Analysis of total protein (TP), choles-
terol (CHO), glucose (GC), and triglyceride (TG) was
performed using an automatic biochemical analyzer
(Pentra 400, Horiba Medical, Kyoto, Japan).

Plasma cortisol levels were measured by solid-
phase enzyme-linked immunosorbent assay
(ELISA; RE52611, IBL International, Hamburg),
which was already used for turbot (Reiser et al.
2010). Before ELISA, plasma samples were treated

with heat denaturation; 200 μl of plasma was
denatured at 80 °C for 1 h, subsequently vortexed
for 20 s, diluted with phosphate-buffered saline
(PBS), vortexed for 20 s, and centrifuged at
13,000g for 20 min for separation of the superna-
tant. Duplicate aliquots (50 μl) of diluted plasma
were then used in the assay. The accuracy of heat
treatment was evaluated by cold spiking with cor-
tisol (40 ng ml−1) to determine the recovery
(recovery = 94%).

Statistics

Data are presented as a mean ± standard deviation (SD)
for each treatment. The SigmaPlot 11 for Windows
(Systat Software, Inc., San Jose, CA, USA) software
package was used for statistical evaluations. All data
were tested for normal distribution by the Shapiro-Wilk
test. If normality and homogeneity of variances were
confirmed, multiple comparisons for the immune and
hematological data were done by one-way analysis of
variance (ANOVA). A non-parametric Kruskal-Wallis
test was used when the normality assumption was not
met. Data from acute stress measurements were ana-
lyzed by two-way ANOVAwith two independent vari-
ables, treatment (diet) and time (hours), and cortisol or
glucose concentration as dependent variables. Tukey’s
post hoc (HSD) or Dunn tests were carried out to iden-
tify significantly different groups. Differences between
sets of comparisons were considered significant at a
probability of error at p < 0.05.

Results

Overall survivorship during the experimental period
was high with a total of 0 and 0.7% mortalities in
treatments C-HF, C-LF, AC, and BS and treatments
GM and NR, respectively (p < 0.05; one-way ANOVA).
No signs of infections were observed during the exper-
iments. The final weight (299.5 ± 92.0 g) of fish fed the
high FM diet (C-HF) was significantly higher (p < 0.01)
c o m p a r e d t o t h a t o f l o w FM g r o u p s
(NR = 246.3 ± 71.1 g, GM = 251.9 ± 69.6 g,
BS = 254.0 ± 72.0 g, C-LF = 254.2 ± 77.9 g,
AC = 257.5 ± 70.4) (Fuchs et al. 2015). Feed additives
had no significant influence (p > 0.05) on growth
performance.
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Experiment I: plasma biochemistry and immunology

The mean lysozyme activity (units ml−1 plasma)
did not differ significantly (p > 0.05) between
treatments (Table 2). However, all fish treated with
dietary immunostimulants or high FM (C-HF)
showed a tendency towards increased lysozyme
act iv i t ies between 1006 ± 133 (BS) and
1108 ± 106 (AC), compared to an activity of
971 ± 118 in fish fed the low FM control diet
(C-LF) (Table 2).

The values of the baseline reactive oxygen spe-
cies production (OD), 0.02 ± 0.01, indicated no
significant differences (p > 0.05) among all treat-
ments (Table 2). Head kidney phagocytes from
turbots could be stimulated by phorbol ester
(PMA) and cells responded with a high NBT
reduction. Stimulated ROS activities were mea-
sured between 0.53 ± 0.19 (NR) and 0.78 ± 0.38
(C-HF)/0.78 ± 0.53 (BS), while phagocytes in fish
fed the low FM control diet (C-LF) showed a
mean activity of 0.66 ± 0.34 (Table 2). However,
upon cell stimulation, the mean production of ROS
was not significantly different (p > 0.05) between
all fish groups.

Mean concentrations of total plasma protein (mg
ml−1) ranged between 29.0 ± 2.7 (C-LF) and
31.7 ± 3.3 (AC) and did not significantly differ between
dietary treatments (Table 2). However, plasma choles-
terol (mg dl−1) was significantly higher, between

43.7 ± 3.1 (AC) and 58.6 ± 7.4 (C-HF), in fish fed diets
supplemented with GM, AC, NR, and the high FM
control diet (C-HF) compared to the low FM control
diet, 36.8 ± 2.8 (C-LF) (Table 2). Significant increases
in plasma glucose (mg dl−1), 44.4 ± 3.8 and 43.7 ± 4.5,
and triglyceride (mol dl−1), 105.5 ± 15.3 and
90.6 ± 19.2, were recorded under GM and NR supple-
mentation compared to C-LF, 34.8 ± 2.4 and
38.3 ± 10.2, while glucose levels were significantly
higher in C-HF, 45.4 ± 7.3.

Experiment II: stress indicators

Plasma cortisol concentrations (ng ml−1) in unstressed
turbots ranged between 4.9 ± 3.6 (NR) and 16.5 ± 14.9
(C-HF) (mean 10.0 ± 5.4) and can be defined as baseline
levels (Fig. 1). At experimental outset, cortisol levels
were not significantly different (p > 0.05) among dietary
treatments. Cortisol levels in fish rose rapidly after
handling, peaked by 0.5 and 1 h, and returned to basal
concentrations in fish plasma 4 h after handling (Fig. 1).
Fish fed the low fish meal control diet C-LF showed
significantly higher levels (60.1 ± 10.0; p < 0.05) at
0.5 h post handling compared to all other fish groups
(Fig. 1). In contrast, fish of the high fish meal control
group C-HF exhibited significantly higher levels
(59.4 ± 7.8; p < 0.05) at 1 h post handling. All other
groups treated with supplemented diets showed the
highest plasma cortisol concentrations between
23.7 ± 8.1 (BS) and 32.6 ± 13.5 (NR) 0.5 and 1 h after

Table 2 Immunological and physiological parameters measured in the blood plasma or head kidney of turbot juveniles fed the six
experimental diets

Parameters Diets

C-HF C-LF GM AC NR BS

Immunological parameters

LSZ (units ml−1 plasma) 1034 ± 93 971 ± 118 1009 ± 117 1108 ± 106 1080 ± 132 1006 ± 133

ROS (OD) 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

PMA stimulated ROS (OD) 0.78 ± 0.38 0.66 ± 0.34 0.74 ± 0.39 0.71 ± 0.17 0.53 ± 0.19 0.78 ± 0.53

Physiological parameters

TP (mg ml−1) 30.8 ± 2.8 29 ± 2.7 31.1 ± 2.4 31.7 ± 3.3 29.7 ± 1.9 31.1 ± 2.1

CHO (mg dl−1) 58.6 ± 7.4a 36.8 ± 2.8b 49.4 ± 4.4a 43.7 ± 3.1a 55.0 ± 6.5a 41.3 ± 3.2ab

GLC (mg dl−1) 45.4 ± 7.3a 34.8 ± 2.4b 44.4 ± 3.8a 39.9 ± 4.2ab 43.7 ± 5.4a 37.4 ± 3.7ab

TG (mol dl−1) 69.9 ± 34.1ab 38.3 ± 10.2b 100.5 ± 15.3a 80.0 ± 46.3ab 90.6 ± 19.2a 61.2 ± 18.3ab

Data are presented as mean ± SD (n = 6). Different superscript letters within a line denote significant differences (p < 0.05)

LSZ lysozyme, ROS reactive oxygen species, OD optical density, TP total protein, CHO total cholesterol, GLC glucose, TG triglycerides
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the handling procedure (Fig. 1). At 4 and 24 h post
handling, cortisol levels were not significantly different
(p > 0.05) in turbot plasma among all fish groups.
Plasma glucose concentrations (mg dl−1) ranged be-
tween 31.8 ± 2.3 (AC) and 38.4 ± 4.8 (C-HF) (mean
34.9 ± 1.4) under initial resting condition (Fig. 2). Glu-
cose concentrations were significantly increased up to
50.0 ± 5.0 in fish group C-HF following handling stim-
uli at 1 h post stress (Fig. 2). Only a trend towards
elevated glucose concentrations was visible in the fish
of the other groups at 0.5, 1, and 4 h post stress, although
changes were not significant.

Discussion

The use of immunostimulating substances in fish and
shellfish feeds has been widely accepted in the aquacul-
ture industry despite their exact modes of action inside
the organism remaining far from fully understood. Any
prophylactic measures that have nutritional value and
can support stress tolerance and defense mechanisms
against pathogens are likely to be of commercial interest
for producers of feed and fish. The current results pro-
vides new insight into the immunostimulant activity
among common diet supplements and their effect on

Fig. 1 Plasma cortisol
concentrations in nanograms per
milliliter after stress treatment
collected from turbots of the six
dietary treatments. Data are
presented as mean ± SD (n = 6).
Different letters denote significant
differences within the same
treatment, and asterisk and
section sign denote significant
differences between treatments at
the same time point (p < 0.05)

Fig. 2 Plasma glucose
concentrations in nanograms per
milliliter after stress treatment
collected from turbots of the six
dietary treatments. Data are
presented as mean ± SD (n = 6).
Different letters denote significant
differences within the same
treatment, and asterisk and
section sign denote significant
differences between treatments at
the same time point (p < 0.05)
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stress response in juvenile turbot maintained on reduced
fish meal (FM) diets.

A FM reduction to 320 g kg−1 diet (44% protein
derived from FM) did not affect innate immune activity
in turbot, indicating that dietary SPC and WG do not
compromise the potential of lysozyme and leucocyte
ROS production to fight pathogens. Similar trends were
observed in immune activities of Atlantic salmon
(Salmo salar), gilthead sea bream (Sparus aurata), and
turbot feeding on plant protein (PP)-rich diets (Bransden
et al. 2001; Sitjà-Bobadilla et al. 2005; Kokou et al.
2012; Zheng et al. 2013). Stimulated respiratory burst
of head kidney leucocytes did not show any changes in
sea bream fed diets reduced to 350 and 110 g kg−1 FM,
respectively (Sitjà-Bobadilla et al. 2005; Kokou et al.
2012). In general, plasma lysozyme activities between
971 and 1108 U ml−1 reveal relatively high values
compared to activities between 8.8 and 9.4 U ml−1

(Zheng et al. 2013), between 500 and 900 U ml−1 (Sun
et al. 2016), and between 900 and 1500 U ml−1 (Ogier
de Baulny et al. 1996) in turbots, indicating an intact
function of innate immune response in fish. No sign of
inflammation was observed in the current study, unlike
previous studies where high inclusion of PP in diets also
increased immune responses in fish, an effect
interpreted as either immunostimulating or inflammato-
ry effects (Gabrielsen and Austreng 1998; Krogdahl
et al. 2000).

Previous investigations proved capabilities of sea-
weed extracts and β-glucan products to enhance a re-
spiratory burst activity of phagocytes in turbot, gilthead
sea bream, Atlantic cod (Gadus morhua), and Atlantic
salmon, after in vitro stimulation (Castro et al. 1999,
2004; Bridle et al. 2005; Caipang et al. 2011), although
positive findings were not confirmed in vivo, feeding
salmon β-glucan for 1 week. A short-term administra-
tion of dietary β-glucan and alginic acid (15 to 30 days)
and that of oligonucleotides (42 to 56 days) improved
some innate immune responses in fish (D. labrax,
Morone chrysops × Morone saxatilis hybrid) (Li et al.
2004; Bagni et al. 2005). However, increased immune
activities did not last for 112 weeks after long-term
feeding of hybrid sea bass. Similarly, dietary supple-
mentation with immunostimulating substances did not
have any significant effects on lysozyme and ROS ac-
tivities in turbot after an apparent long-term feeding of
84 days in this study, although a clear tendency towards
increased activities is observable. In accordance with
this finding, nucleotides in low fish meal diets

(400 g kg−1 FM) did not affect activities of serum
superoxide dismutase and catalase in juvenile turbot,
although improved the antioxidative capacity after
60 days (Meng et al. 2016). Only tendencies of higher
serum lysozyme activity and neutrophil oxidative radi-
cal anion production were found in red drum (Sciaenops
ocellatus) with increasing nucleotide levels, 0.5 and 1%,
in diets of 580 g kg−1 FM (Cheng et al. 2011). Similarly,
dietary fructooligosaccharide (FOS) supplementation
did not significantly improve turbot’s innate humoral
parameters, like lysozyme, and hematology when fed
at 50% PP diets for 63 days at 15 and 20 °C water
temperature (Guerreiro et al. 2014). On the other hand,
dietary supplementation with yeast (S. cerevisiae) did
improve the immune response in RAS-reared turbot
(151 g mean initial weight) after 72 days (Li et al.
2008). Recent investigations on the effect of nucleotides
and B. subtilis supplementation, respectively, in FM-
reduced diets revealed positive effects on some immune
parameters, either lysozyme or respiratory burst activity,
in turbot and yellow croaker (Larimichthys crocea) (Ai
et al. 2011; Peng et al. 2013). However, turbot individ-
uals of another age/size class (9.2 vs. 96 g mean initial
weights in the present study) were used and fed diets
with increasing soy bean meal content for 60 days.
Stressful farming conditions, e.g., vaccination, can im-
pair physiological conditions and immune response. As
an example, a β-glucan administration showed no effect
in turbot, but combined with a vaccine, adjuvants in-
creased immune activities compared to single vaccina-
tion (Ogier de Baulny et al. 1996; Figueras et al. 1998).
Burrells et al. (2001b) confirmed this finding for vacci-
nated salmon whose immunity and survival were sup-
ported by a combined inclusion of 0.03% nucleotides
that significantly enhanced the efficacy of vaccination.
Obviously, the value of certain feed supplements varies
not only between fish species and between methods of
application, but is also highly dependent on the nutri-
tional and physiological status of fish. Therefore, the
influence of immunostimulants on fish has to be
interpreted carefully, because many factors can change
physical reactions to stimulants. Researchers assume
that active compounds of dietary immunostimulants,
like β-glucans, act as a ligand and may bind to specific
β-glucan receptors on macrophages and neutrophils in
fish influencing the functional status of phagocytes
(Engstad and Robertsen 1993; Ainsworth 1994). At
present, however, an uptake of particulate compounds,
e.g., yeast β-glucans, in intestinal cells and the blood
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system of fish to stimulate immune cells and compo-
nents has not been proved yet (Dalmo and Bøgwald
2008).

A balance of essential amino acids (EAAs) in diets
with high PP content, meeting the requirements of tur-
bot, is essential for optimal growth and likely immune
response in fish. Previous studies have shown high
substitution with SPC and WG reduces growth perfor-
mance in juvenile turbot (Bonaldo et al. 2011; Fuchs
et al. 2015). However, these alternative ingredients did
not affect turbot’s immune capacity in the current study.
Therefore, turbots tolerate relatively high contents of
dietary SPC and WG associated with a balanced EAA
profile to maintain normal immune function. It can,
however, be assumed that gross energy demand for
maintenance increases with dietary PP inclusion as
indicated by Dietz et al. (2012) and, hence, affects the
capacity to regulate immune responses.

In contrast of the unchanged immune functions, tur-
bot’s physiological status declined with FM replacement
in terms of reduced plasma cholesterol levels. However,
dietary supplementation of NR, GM, and AC showed a
positive physiological change of juvenile turbot, as in-
dicated by elevated cholesterol and triglyceride (NR,
GM) concentrations. Plasma protein levels were not
found to be modified with reduced FM content. Similar
findings were reported for turbot and sea bream fed diets
high in corn, wheat, or soy proteins (Regost et al. 1999;
Sitjà-Bobadilla et al. 2005; Bonaldo et al. 2014).

At present, little has been published on the influence
of dietary PP inclusion on stress response in fish
(Bonaldo et al. 2014). High blood cortisol levels, above
50 ng ml−1, are accepted as indicators of stress in fish
(Barton and Iwama 1991; Wendelaar Bonga 1997).
Base cortisol levels (4.9–16.5 ng ml−1) of most turbots
in the current study were similar to reported values for
turbots at resting condition (Waring et al. 1996; Mugnier
et al. 1998). Individual turbots in all replicate tanks of
the six treatments exhibit higher base cortisol levels
(>8 ng ml−1) resulting in high variability in tanks (coef-
ficient of variation: C-HF = 11, 36, and 75%; C-LF = 71,
87, and 118%; GM= 65, 78, and 84%; AC = 40, 70, and
71%; NR = 33, 61, and 61%, BS = 73, 117, and 125%).
Discrepancies in basal cortisol levels between different
studies may be the result of differential methods of
killing, capture, or differences in overall holding condi-
tions. In other studies, turbots were either killed using
ice water (Reiser et al. 2010) and a blow to the head
(Van Ham et al. 2003) or kept alive and cannulated

(Waring et al. 1996; Mugnier et al. 1998). Holding
conditions, e.g., temperature, stocking rate, or feeding,
can modify cortisol resting values in fish and incidences
of a stress response (Van Ham et al. 2003; Davis 2004).
It is also possible that a visual contact with the sampler
elicited a slight cortisol elevation in some fish, perhaps
in anticipation of feeding in the morning. Among dietary
treatments, stocking density was highest in C-HF which
might have caused higher base cortisol levels in fish and
higher variances between tanks.

A primary stress reaction induced by capture, netting,
and crowding was clearly evidenced by significantly
elevated cortisol values at 0.5 and 1 h. These were
comparable to post-stress cortisol levels in turbot and
gilthead sea bream (Van Ham et al. 2003; Ganga et al.
2011; Tahmasebi-Kohyani et al. 2012). But, cortisol
levels in turbots remained quite low, in particular for
t h e immunos t imu l an t - t r e a t ed f i s h . On ly
unsupplemented fish fed the control diets reached corti-
sol levels (59 and 60 ng ml−1) above the 50 ng ml−1

threshold. During the repeated sampling at 0.5, 1, 4, and
24 h post stress, care was taken that all turbots from a
particular tank were collected quickly to avoid further
handling disturbance that may raise cortisol levels of the
remaining tank occupants. According to Van Ham et al.
(2003) and Mugnier et al. (1998), turbots are relatively
insensitive to repeated handling disturbances. The peak
stress responses, though with differences between the
low fish meal groups C-LF and GM, AC, NR, and BS,
were already recorded at 0.5 h post stress when no
further disturbances had occurred. Cortisol levels
returned to resting levels within 4 h, indicating an acute
stress reaction after a short-term stress incidence. Post-
exercise recovery was faster than the 24 h reported
following capture and 9 min net confinement for turbot
(Waring et al. 1996). However, concentrations of blood
cortisol can vary between fish species, time of sampling
depending on fish’s circadian rhythm, and type and
severity of stress (Pickering and Pottinger 1989;
Barton and Iwama 1991). To our knowledge, no studies
evaluating the influence of daytime on cortisol and
glucose levels in turbot have been published. Compared
to circadian rhythms of fish species, our data detected no
similar pattern of stress response affected by these
rhythms (Cerdá-Reverter et al. 1998; Montoya et al.
2010; Oliveira et al. 2013). In general, fluctuations of
cortisol values due to a circadian rhythm show to be
marginal during the course of the day when fish were
not fed. Ferrari et al. (2015) also observed differences in
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an individual behavior of fish held in groups identified
as divergent coping styles that affect the intensity of
stress response and release of corticosteroids.

Blood glucose level, a typical secondary stress re-
sponse (Barton and Iwama 1991), increased parallel to
those of cortisol in fish of the high FM control diet. In
contrast, tendencies of increased blood glucose levels in
low FM groups after 0.5, 1, and 4 h of handling expo-
sure were apparent but did not reflect the pattern of
cortisol release as a physiological stress response. Dif-
ferences in magnitudes of the secondary stress response
may be due to a higher stocking density of the high FM
group due to higher individual weight at the end of the
previous feeding trial. However, previous studies have
detected that turbot did not exhibit a strong plasma
glucose response when compared to other finfish, which
may represent a fundamental difference in turbot stress
physiology (Waring et al. 1992, 1996; Van Ham et al.
2003). Apparently, plasma cortisol is a more sensitive
indicator of handling stress for turbot than plasma glu-
cose changes.

All additives proved beneficial in suppressing stress
response modifying the metabolism in turbot. Similarly,
positive effects were noted in mannan oligosaccharide
(MOS)-, Ergosan-, and nucleotide-treated European sea
bass (D. labrax), rainbow trout, and sole (S. solea)
subjected to stressors such as vaccination, bacterial or
viral infection, and handling/crowding, respectively
(Leonardi et al. 2003; Gioacchini et al. 2008;
Tahmasebi-Kohyani et al. 2012; Torrecillas et al. 2012;
Palermo et al. 2013).

Repeated stressors in routine husbandry procedures
can affect strong physiological stress responses in turbot
associated with impaired homeostasis and immunosup-
pression and changes in the energy metabolism
(Mommsen et al. 1999; Costas et al. 2013). Particularly,
stress response is associated with energetic costs to cope
with stress, while consequently, less energy is available
for other biological functions, including defense mech-
anisms (immune system) and physiological processes
(e.g., growth) (Wendelaar Bonga 1997). Therefore, pre-
ventive methods and technologies have to be developed
to ensure fish welfare and health to maintain profitable
fish production.

In conclusion, juvenile turbot diets containing
320 g kg−1 FM and mixed PP (SPC and WG;
560 kg−1 diet) for juvenile turbots did not significantly
affect the important innate immune mechanisms (lyso-
zyme activity and reactive oxygen production of

neu t r oph i l s ) . D i e t a ry supp l emen t a t i on o f
immunostimulants (β-glucan/MOS, alginic acid, nucle-
otides/RNA, Bacillus strains) failed to enhance immu-
nity; however, all effectively diminished an increase of
blood cortisol levels in turbot subjected to handling
stress. Further studies are required to determine an op-
t ima l i n c l u s i on l eve l o f PP tha t enab l e s
immunostimulants to activate immune responses in fish.
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