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Abstract Although protein degradation limits the rate
of muscle growth in fish, the role of proteolytic systems
responsible for degrading myofibrillar proteins in skel-
etal muscle is not well defined. The study herein aims to
evaluate the role of calpains (calcium-activated
proteases) and proteasomes (ATP-dependent proteases)
in mediating muscle protein turnover at different life
stages in wild salmonids. Protease activities were esti-
mated in Atlantic salmon (Salmo salar L.) and brown
trout (Salmo trutta L.) parr and smolts from the Indera
River (Kola Peninsula, Russia). Calpain and proteasome
activities in Atlantic salmon skeletal muscles were lower
in smolts as compared with parr. Reduced muscle pro-
tein degradation accompanying Atlantic salmon parr-
smolt transformation appeared to provide intense mus-
cle growth essential for a minimum threshold size
achievement that is required for smoltification. Calpain
and proteasome activities in brown trout parr and smolts
at age 3+ did not significantly differ. However, calpain
activity was higher in smolts brown trout 4+ as com-
pared with parr, while proteasome activity was lower.
Results suggest that brown trout smoltification does not
correspond with intense muscle growth and is more
facultative and plastic in comparison with Atlantic salm-
on smoltification. Obtained data on muscle protein deg-
radation capacity as well as length-weight parameters of

fish reflect differences between salmon and trout in
growth and smoltification strategies.
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Introduction

Atlantic salmon (Salmo salar L.) and brown trout
(Salmo trutta L.) exhibit phenotypic plasticity and life-
history variations ranging from fully freshwater resi-
dents to anadromous forms (Klemetsen et al. 2003).
Atlantic salmon and brown trout hatch in fresh water,
grow there for one to several years, and can then
smoltify. During smoltification or parr-smolt transfor-
mation, freshwater-dwelling parr undergo independent
but coordinated morphological, behavioral, physiologi-
cal, and biochemical transformations which preadapt
them for survival and growth in the marine environment
(Björnsson and Bradley 2007; Stefansson et al. 2008;
Björnsson et al. 2011). Smoltification is regulated by
environmental factors, such as photoperiod and water
temperature, as well as by endogenous ones, such as
endocrine system. Growth hormone/insulin-like growth
factor (GH/IGF) system, thyroid hormones, cortisol, and
prolactin are thought to act individually or synergistical-
ly to control food behavior, osmoregulation, metabo-
lism, and growth during smoltification (Björnsson
et al. 2011). Endocrine profiles during smoltification
have been described quite completely for Atlantic salm-
on (McCormick et al. 1995, 2000, 2002; Agustsson
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et al. 2001; Handeland et al. 2003), coho salmon (Sower
et al. 1992; Shrimpton et al. 1994), and, to a lesser
extent, brown trout (Quigley et al. 2006).

As mentioned previously, various life-history
s t ra tegies and tac t ics , some of which are
smoltification-associated, are used by different sal-
monid species (Klemetsen et al. 2003). Atlantic
salmon spend at least 1 year in fresh water, migrate
in spring as smolt, and spend at least 1 year at sea
(McCormick 1994). Salmon smoltification is a size-
dependent phenomenon (Stefansson et al. 2008).
Atlantic salmon parr populations in autumn and
winter are described by a bimodal size distribution
(lower and upper growth modes) due to the different
growth rates of individuals (Kristinsson et al. 1985;
McCormick 1994). Under favorable growth condi-
tions (food availability, water temperature, etc.) in
Atlantic salmon populations, bimodality can be ob-
served already in 0+ parr. Upper mode fish will
smoltify during the next spring, whereas lower mode
fish delay smoltification and migration for at least
one more year (Stefansson et al. 2008). Thus,
whether Atlantic salmon will smoltify or not is de-
termined soon after midsummer of the previous year
(Metcalfe et al. 1988). Brown trout as a rule spend
three or more years in fresh water before migration
(McCormik 1994); the decision to migrate is influ-
enced by environmental conditions (Olsson et al.
2006). Additionally, Jones et al. (2015) reported that
spring food availability during the current year in-
fluences smolt status in brown trout.

Individual growth in teleosts has an indeterminate
nature, which is described by a constant increase of
body length (skeletal growth) and mass (muscle
growth), albeit the rate slows until mortality
(Johnston et al. 2011). Skeletal muscle growth de-
pends on a tightly controlled balance between protein
synthesis and degradation (Johnston et al. 2011). Pro-
tein synthesis driven by hormone regulation is well
studied in Atlantic salmon (Bower et al. 2008; Bower
and Johnston 2010; Hevrøy et al. 2011), rainbow trout
(Cleveland and Weber 2010), and other teleosts
(Amaral and Johnston 2011). Protein degradation oc-
curs mainly through the actions of three distinct path-
ways: intralysosomal digestion by cathepsins,
calcium-dependent proteolysis by calpains, and the
ubiqui t in-proteasome system. The calcium-
dependent proteolytic pathway may be a major path-
way for regulating muscle turnover in fish (Salem

et al. 2004, 2005a, b; Overturf and Gaylord 2009),
while ubiquitin-targeted protein digestion by the pro-
teasome is primarily responsible for bulk protein deg-
radation (Seiliez et al. 2008). The role of protein
degradation in spawning, other life stages, and dis-
tinct growth phases in salmonids has been studied
(Mommsen 2004; Salem et al. 2004, 2005a, b;
Overturf and Gaylord 2009; Lysenko et al. 2015;
Nemova et al. 2016), but very little information on
proteolysis in salmonid smoltification is available
(Seear et al. 2010). This study aims to estimate the
enzymatic activity of proteasomes and calpains, two
proteases of muscle protein degradation pathways, in
parr and smolts of salmonid species with different
smoltification strategies: Atlantic salmon (S. salar
L.) and brown trout (S. trutta L.).

Materials and methods

Sampling

Wild fish sampling was conducted on 20 June 2015 from
the Indera River, which is located in the basin of theWhite
Sea in Kola Peninsula, Russia. Water temperature in the
Indera River was measured simultaneously with parr and
smolts sampling and varied within the range of 11.3–
11.5 °C. Atlantic salmon and brown trout parr were cap-
tured by electrofishing (Fa-2, Norway). To avoid possible
effects of electrofishing, parr were kept for 24 h in cages
located in the mainstream portion of the river. Several
studies have shown that full physiological recovery of
electroshocked fishes takes no more than 24 h (Schreck
et al. 1976; VanderKooi et al. 2001; Bracewell et al. 2004;
Woolmer et al. 2011). Atlantic salmon and brown trout
smolts were captured during their natural seaward migra-
tion at a smolt trap located in the river 300 m from an
estuary. Fish were not anesthetized. Each fish was killed
with a blow to the head prior to body weight (W) and fork
length (L) measurement. Fish age was determined by use
of scales for Atlantic salmon and sacculus otoliths for
brown trout. Fulton’s condition factor (CF) was calculated
from the formula: CF = 100 × W × L−3. Mean body
weights, fork lengths, and CF are presented in Tables 1
and 2. Fishwere then frozen in liquid nitrogen, transported
to the laboratory, and maintained at −80 °C. Tissue sam-
pling for enzymatic assay was performed by removing a
piece of muscle near the dorsal fin followed by whole-fish
thawing at 4 °C for 5 to 20 min.
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Enzyme assays

Reagents and equipment

Chemical reagents, protease inhibitors, and protein sub-
strates were purchased from Sigma-Aldrich (St Louis,
MO, USA) and of analytical grade. Technical facilities
of the Equipment Sharing Centre of the Institute of
Biology, KarRC of RAS were used, such as freezing
chamber UF 240-86 Е (Snijders Scient if ic ,
The Netherlands); homogenizer Tissue Lyser LT
(Qiagen, Germany); centrifuge Allegra 64R (Beckman
Coulter, USA); and microplate reader CLARIOstar
(BMG LABTECH, Germany).

Extraction of intracellular proteases

Samples (0.1 g each) were homogenized in 1:10 w/v
20 mM Tris-HCl (pH 7.5) with 150 mM NaСl, 5 mM
EDTA, 20mMdithiothreitol, 1 mMАТР, 5 mМMgCl2,
0.1% Triton X-100, and a protease inhibitor cocktail
(0.5 mg/mL leupeptin, 1 mg/mL pepstatin, 1 mg/mL
aprotinin, and 1 mM PMSF). Homogenates were cen-
trifuged at 15,000 rpm for 30 min to obtain the enzyme-
containing fraction.

Calpain activity assay

Calcium-dependent proteolytic activity was quantified
using a microplate assay and casein as a substrate (Enns
and Belcastro 2006). A reaction mixture with 500 mL
total volume was composed of the following: 0.4%
alkali-denatured casein, 20 mM dithiothreitol, 50 mM
Tris-HCl (pH 7.5), 5.0 mM Ca2+ (as CaCl2) or 5.0 mM
EDTA (negative control), and the enzyme-containing
fraction. Following incubation at 28 °C for 30 min,
remaining protein was quantified by Bradford assay
(1976). Enzymatic activity was expressed in activity
units (AU), defined as the amount of the enzyme that
causes an increase of 0.1 in absorbance at 595 nm per
hour. Specific calpain activity was normalized to sample
protein concentration.

Proteasome activity assay

The chymotrypsin-like activity of the proteasome was
determined in the enzyme-containing fraction using a
fluorescence assay (Rodgers and Dean 2003). Peptidase
activity against a synthetic oligopeptide substrate was
measured in a reaction mixture containing 1 mM dithio-
threitol, 5 mM MgCl2, 1 mM АТР, 30 μM Suc-LLVY-

Table 1 Length-weight parameters and condition factor of Atlantic salmon from the Indera River

Group Number Length, cm Weight, g CF

2+ (parr) 6 9.8 ± 0.7 8.2 ± 1.8 0.87 ± 0.04

2+ (smolt, female) 9 11.9 ± 0.8а 13.4 ± 3.3а 0.79 ± 0.06а

2+ (smolt, male) 5 12.1 ± 0.9а 14.9 ± 3.7а 0.84 ± 0.06

3+ (smolt, female) 5 14.1 ± 0.5а, b 21.3 ± 3.2а, b 0.76 ± 0.03а

3+ (smolt, male) 6 14.1 ± 0.9а 20.9 ± 3.4а, c 0.75 ± 0.05а

Letters indicate significant differences: “a” in comparison with parr 2+, “b” in comparison with 2+ (smolt, female), “c” in comparison with
2+ (smolt, male)

Table 2 Length-weight parameters and condition factor of brown trout from the Indera River

Group Number Length, cm Weight, g CF

3+ (parr) 6 13.4 ± 1.3 24.4 ± 7.0 1.01 ± 0.06

4+ (parr) 4 16.5 ± 0.4а 46.4 ± 4.9а 1.04 ± 0.07

3+ (smolt, female) 5 15.3 ± 1.3 29.4 ± 8.8b 0.82 ± 0.07а, b

3+ (smolt, male) 5 15.1 ± 0.4b 32.7 ± 7.4b 0.95 ± 0.13

4+ (smolt, female) 5 18.5 ± 1.2a 55.9 ± 9.1c 0.88 ± 0.04а, b

4+ (smolt, male) 4 17.5 ± 0.3a, b, d 50.8 ± 6.0d 0.94 ± 0.08c

Letters indicate significant differences: “a” in comparison with parr 3+, “b” in comparison with parr 4+, “c” in comparison with smolt (3+,
female), “d” in comparison with smolt (3+, male)
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AMC as the substrate, and 20 mM Tris-HCl (pH 7.5) in
the absence or presence of 5 μM specific inhibitor
MG132. Following incubation at 37 °C for 30 min,
proteasome activity was calculated as the difference in
fluorescence intensity between the samples with and
without inhibitor at excitation and emission wave-
lengths 380 and 440 nm, respectively. The change in
proteasome activity was normalized to sample protein
concentration and expressed as relative fluorescence
fold change (FU).

Statistical analysis

Data are expressed as the mean ± SD. Raw data were
initially checked for normality of distribution and ho-
mogeneity of variances (Kolmogorov-Smirnov and
Levene’s tests, respectively) and then analyzed with a
Kruskal-Wallis test. Differences between groups were
evaluated by Mann-Witney U test. The significance
threshold was set at 0.05.

Results

Fish length-weight parameters and condition factor (CF)

Length and weight parameters of Atlantic salmon parr
and smolts at the same age were significantly different
(Table 1). Atlantic salmon smolt CF (excepting male 2+
CF) was significantly lower than that of parr. Significant
differences in growth between brown trout parr and
smolts at ages 3+ and 4+ (excepting length data between
male smolts and parr) were not shown. In brown trout,
significant difference in CF was found between parr and
female smolts only (Table 2).

Atlantic salmon protease activities

Calpain activity was lower in smolts than in parr of the
same age group (2+). Significant differences in calpain
activity between smolts 3+ and parr 2+ were also shown
(Fig. 1). Proteasome activity was lower in smolts 3+
(both sexes) as well as in male smolts 2+ compared to
the parr 2+ (Fig. 2).

Brown trout protease activities

There were no significant differences in calpain and
proteasome activities between parrs and smolts at

the age 3+. Calpain activity in smolts 4+ was higher
than that of parr 4+ (Fig. 3). Proteasome activity in
smolts 4+ showed a significant drop compared with
those of parr 3+ and parr 4+. Both female and male
smolt proteasome activities significantly differed be-
tween studied age groups (3+ and 4+, Fig. 4).

Discussion

Results indicate different muscle protein degradation
rates throughout cytosolic degradation system (calpain
and proteasome) between Atlantic salmon parr and
smolts. Overall, calpain and proteasome activity de-
creased during parr-smolt transformation while fish size
increased. As stated by Overturf and Gaylord (2009),
muscle protein degradation management acts as the
checkpoint in directing the regulation of protein turn-
over, muscle deposition, and growth.
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Fig. 1 Calpain activity in S. salar of different age (2+, 3+), stage
(parr, smolt), and sex (m = male, f = female). Letter a indicates a
significant difference in calpain activity in comparison with parr 2+
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Fig. 2 Proteasome activity in S. salar of different age (2+, 3+),
stage (parr, smolt), and sex (m = male, f = female). Letter a
indicates a significant difference in proteasome activity in com-
parison with parr 2+
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Atlantic salmon smoltification is a size-related
process: fish that have achieved a minimum thresh-
old size will become smolts (Stefansson et al. 2008).
The difference in size of future salmon smolts and
individuals which delay smoltification for at least
one more year is so distinct that histograms of fish
size have a bimodal distribution (Thorpe 1977;
Thorpe et al. 1982; Kristinsson et al. 1985; Nicieza
et al. 1994). Size-related development of salmon is
regulated by hormone status; plasma levels of GH,
IGF-I, cortisol, and thyroid hormones differ between
upper and lower mode fish as well as between parr
and smolts (Stefansson et al. 2008). Although direct
or through IGF-I, anabolic effects of GH leading to
protein accretion have been described in Atlantic
salmon (Björnsson et al. 2002), little information
on hormonal regulation of protein catabolism is
available for teleosts (Johnston et al. 2011).

Results indicate that reduced muscle protein degra-
dation provides intense muscle growth in smoltifing
Atlantic salmon parr and confirm that fish growth de-
pends not only on protein synthesis but also equally on
protein degradation.

The present study showed no significant differences
in length and mass between brown trout parr and smolts
at the same age (excepting length data between male
smolts 4+ and parr 4+). Results are consistent with data
describing size differentiation between brown trout parr
and smolts (Leonko and Chernitskiy 1986). Moreover,
in most studies on brown trout parr, bimodality of size
distribution is not shown (Tanguy et al. 1994; Dêbowski
et al. 2010). Size variation between future smolts and
parr that delay smoltification for at least 1 year cannot be
used for predicting the number of brown trout smolts
(Dêbowski et al. 2010), unlike what is observed for
Atlantic salmon smolts (Bagliniere and Champigneulle
1986). Thus, it is unlikely that brown trout
smoltification is a size-dependent process. It should be
noted that trout smoltification and the decision to mi-
grate are affected by spring food availability regardless
of conditions in the previous autumn or winter (Jones
et al. 2015). Unlike the decision of Atlantic salmon to
smoltify depending on size and energetic threshold,
which is reached in the previous year (Stefansson et al.
2008), brown trout decide in the current spring whether
to smoltify; for brown trout, reduced food increases
smoltification and seaward migration (Jones et al.
2015). Apparently, brown trout have no need for intense
muscle growth for parr-smolt transformation. Protease
assay indicates no significant differences in both calpain
and proteasome activities between parr and smolts 3+
that corresponds with smoltification features of this
salmonid species previously discussed.

Atlantic salmon smolts CF reduction observed in the
present study supports the observations that salmon
smolts grow more in length than weight (McCormick
et al. 1998). Apparently, it indicates both an adaptive
change in morphology during smolting (e.g., increase of
swimming performance in ocean) and high energetic
demands of smolt transformation. It is known that con-
dition factor reduction is associated with a non-
proportional growth of the caudal peduncle of smolts
(Winans and Nishioka 1987) as well as with a decrease
in total lipid content (Sheridan 1989). The CF and
muscle protein degradation reduction by a similar man-
ner during salmon smoltification indicates specific fea-
tures of smolting salmon metabolism. In contrast, in
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Fig. 3 Calpain activity in S. trutta of different age (3+, 4+), stage
(parr, smolt), and sex (m = male, f = female). Letter a indicates a
significant difference in proteasome activity in comparison with
parr 4+
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Fig. 4 Proteasome activity in S. trutta of different age (3+, 4+),
stage (parr, smolt), and sex (m =male, f = female). Letters indicate
a significant difference: a in proteasome activity in comparison
with parr 3+, b in comparison with parr 4+, c in comparison with
smolt 3+ (female), d in comparison with smolt 3+ (male)
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brown trout smolts, CF either decreased (in females) or
did not change (in males) during smoltification. We did
not describe clear relationship between changes of con-
dition factor and muscle protein degradation rates in
smolting brown trout. Similar observations on negligi-
ble changes or even increases of CF in smolting brown
trout have been previously described (Tanguy et al.
1994; Quigley et al. 2006). It is known that
smoltification-induced non-proportional caudal pedun-
cle shape change is more expressed in Atlantic salmon
than in brown trout (Quigley et al. 2006). It is an
additional evidence that brown trout smoltification is
not as clear or complete as that of Atlantic salmon
(McCormik 1994; Tanguy et al. 1994).

Interestingly, brown trout 4+ smoltification is associ-
ated with increased calpain activity. Due to spontaneous
parr-smolt transitioning, brown trout need to develop
hypoosmoregulatory mechanisms in a short time. Along
with Na+/K+-ATPase upregulation—a key mechanism
of osmoregulation in fish (Marshall 2002)—a contribu-
tion of accumulated free amino acids resulting from
increased calpain-mediated protein degradation can be
attributed to trout salinity tolerance. The osmolyte role
of free amino acids has been demonstrated for several
euryhaline species, including salmonid species such as
rainbow trout (Kaushik and Luquet 1979). It should be
noted that proteasome activity decreased in brown trout
4+ following smoltification. It is known that protein
degradation in fish muscle relies more on calcium-
dependent proteolysis (Salem et al. 2004, 2005a, b;
Overturf and Gaylord 2009), while proteasomal diges-
tion does not function as the primary method of muscle
degradation in teleosts (Kolditz et al. 2008; Seiliez et al.
2008; Overturf and Gaylord 2009). Future research will
need to study specific features of proteasomal digestion
in muscle fish.

Discovered differences in calpain and proteasome
activities between brown trout pre-smolts (parr 4+) and
smolts, as well as between smolts 3+ and 4+, reflect
specific features of brown trout smoltification, which is
considered more facultative and plastic in comparison
with the process in Atlantic salmon (McCormik 1994;
Klemetsen et al. 2003). Seawater tolerance development
occurs in a shorter period for brown trout than in Atlan-
tic salmon (Tanguy et al. 1994; Quigley et al. 2006).
Atlantic salmon smolts migrate to the open seas for
feeding, whereas brown trout remain feeding in coastal
waters with variable salinity levels (Klemetsen et al.
2003; Thorstad et al. 2007).

In conclusion, these findings indicate that muscle
protein degradation systems use different mecha-
nisms to contribute to smoltification in Atlantic
salmon and brown trout. Results indicate underlying
mechanisms of Atlantic salmon parr-smolt transfor-
mation depend on size threshold achievement as
well as on flexibility of brown trout smoltification.
Obtained results enhance our knowledge of such
mechanisms and the regulation of salmonid growth
and development.
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