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Abstract This study was conducted to characterize the
energymetabolism level and the features of muscle growth
regulation during the development of Atlantic salmon
(Salmo salar) inhabiting the Indera River (Kola
Peninsula, Russia). The activities of aerobic and anaerobic
enzymes (cytochrome c oxidase and lactate dehydroge-
nase) and carbohydrate metabolism enzymes (glucose-6-
phosphate dehydrogenase, glycerol-3-phosphate dehydro-
genase, and aldolase) were measured in muscle and liver
tissue. Gene expression levels of myosin heavy chain
(MyHC), myostatin (MSTN-1a), and myogenic regulatory
factors (MRFs—MyoD1a, MyoD1b, MyoD1c, Myf5,
myogenin) were measured in the white muscles of salmon
parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and
3+. Multidirectional changes in the activity of enzymes
involved in aerobic and anaerobic energy metabolism with
age were shown in the white muscles of the parr. The
cytochrome c oxidase activity was higher in muscles of
underyearlings (0+) and yearlings (1+) and decreased in 2+
and 3+ age groups. The activity of lactate dehydrogenase,
in contrast, increased with age. The patterns of changes in
expression levels of MyoD1a, MyoD1b, myogenin,
MyHC, and MSTN-1a at different ages of the parr were
similar. Particularly, the expression of these genes peaked
in the yearling parr (1+) and then decreased in elder
groups. The differences were revealed in parameters

studied between the parr and smolts. The level of aerobic
and anaerobic metabolism enzyme activities was higher in
the white muscles of smolts than in parr. The activity of
carbohydrate metabolism enzymes was decreased in the
smolts’ livers. The expression levels of MyHC, MyoD1a,
MyoD1b, and myogenin were lower in smolts at age 2+
compared to parr. These findings expand our knowledge of
age-related and stage-related features of energy metabo-
lism andmuscle development regulation in young Atlantic
salmon in their natural habitat. The results might be used
for monitoring of the salmon population during restoration
and rearing.
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Introduction

Atlantic salmon (Salmo salar L.) is an important animal
model to investigate the regulation of growth and devel-
opment processes in fish during ontogenesis. The life cycle
of salmon includes various developmental stages with a
complex system of adaptations (Atlantic salmon ecology
2011). Individuals of the same generation can differ sig-
nificantly based on their size and growth rates, which
influences the onset of parr–smolt transformation
(smoltification) at different ages (Pavlov et al. 2007;
McCormick 2013). The process resulted in the formation
of complex age structure of salmon population on duration
of river life period. Each age group of young salmon is
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characterized by features in metabolism related to changes
of stream location, feeding type and regime, activity, and
beginning of smoltification.

The most important parameters which have age-
related variations and determine the state of individuals
and the population as a whole are energy metabolism
and growth. A sufficient level of adenosine triphosphate
(ATP) synthesis determines active growth and develop-
ment of fish, especially during early ontogenesis and in
the first years of life when high energy costs are needed
for the synthesis of structural, functional, and storage
compounds (Ozernyuk 2011). The level of energy me-
tabolism can be assessed by measurement of the activ-
ities of key enzymes of respiratory chain and glycolysis.
Cytochrome c oxidase (COX), the enzyme of the respi-
ratory chain of mitochondria, is used as an indicator of
the aerobic capacity (Gauthier et al. 2008). Lactate
dehydrogenase (LDH) is the terminal enzyme of anaer-
obic glycolysis and is used as an indicator of anaerobic
capacity (Somero and Childress 1980).

The enzymes involved in the pathways of carbohy-
drate oxidation could be applied to characterize the level
of carbohydrate use in energy metabolism and biosyn-
thesis. Aldolase, an enzyme of glycolysis, converts
fructose 1,6-bisphosphate into dihydroxyacetone phos-
phate (DHAP) and glyceraldehydes 3-phosphate, which
are precursors to glycolysis, gluconeogenesis, and lipid
formation (Johansen and Overturf 2006). Glycerol-3-
phosphate dehydrogenase (GPDH) catalyzes the pro-
cess of formation of glycerophosphate from DHAP, a
precursor of structural and storage lipids (Treberg et al.
2002). Glucose-6-phosphate dehydrogenase (G6PDH)
is the key enzyme involved in the pentose phosphate
pathway, which leads to the formation of pentoses and
reduction of nicotine amide dinucleotide phosphates
used in nucleic acids and fatty acid synthesis (Gauthier
et al. 2008). Previous researches have shown that the
activity of enzymes involved in energy and carbohy-
drate metabolism are associated with the processes of
growth in fish, indicating age-related and seasonal met-
abolic changes, and correlate with size-weight charac-
teristics of individuals, which have been demonstrated
in various fish species (Imsland et al. 2006; Davies and
Moyes 2007; Gauthier et al. 2008; Koedijk et al. 2010;
Churova et al. 2010, 2015).

According to the study of COX, LDH, GPDH, and
G6PDH activities in Atlantic salmon parr, it was found
that energy and carbohydrate metabolism differed be-
tween groups of underyearling salmon living in the

mainstream of the subarctic Varzuga River and its trib-
utary. It was assumed that the noticeable differences in
parameters of energy metabolism of juvenile salmon in
the first year of life in the river and in its tributary make a
basis for subsequent smoltification of parr at different
ages 2+, 3+, or 4+ (Pavlov et al. 2007). Changes in
respiratory and glycolytic enzyme activities in organs
have been demonstrated during smoltification of several
salmonid species (Leonard and McCormick 2001;
Mizuno et al. 2012). These studies indicated the alter-
ation in energy status during parr–smolt transformation
in salmonids.

In most fish, skeletal muscles comprise the larger part
of body (about 60% ofweight) and therefore play a great
role in metabolism of the entire organism and determine
total growth rate (Houlihan et al. 1993). The rate and
mechanisms of muscle growth in juvenile and adult fish
depend on numerous factors, such as genotype, photo-
period, temperature, water flow characteristics, hypoxic,
and food availability (Johnston 2006).

Postnatal muscle growth in fish occurs by both hy-
perplasia (generation of new myotubes) and hypertro-
phy (increase in myotube size) which are controlled by
sequential expression of certain transcription factors.
The main role in myogenesis regulation belongs to
specific miogenic regulatory factors (MRFs), the tran-
scription factors of bHLH family: MyoD, Myf5,
myogenin, and MRF4 (Watabe 2001). These factors
have highly conserved basic helix-loop-helix (bHLH)
domain which is linked to the DNA sequence E-box that
is found in the promoting region of many skeletal
muscle-specific genes. Transcription factors MyoD
and Myf5 play a key role in specification and prolifer-
ation of myoblasts and myogenin, and MRF4 mediate
their differentiation (Watabe 2001). MRF gene expres-
sion could be used in description of juvenile and adult
myogenesis of fish (Johansen and Overturf 2005). The
quantitative expression of MRF in reference to
hypretrophic and hyperplastic muscle growth mecha-
nisms were studied in rainbow trout Oncorhyncus
mykiss (Johansen and Overturf 2005) and pacu
Piaractus mesopotamicus (Almeida et al. 2008, 2010)
at different developmental stages. MRF expression de-
pends on different factors. Studies on myogenesis dur-
ing salmon embryogenesis have shown that the MRF
expression level was affected by incubation tempera-
ture, which would define the postnatal muscle growth
mechanisms (Johnston et al. 2000; Macqueen et al.
2007). The studies on farmed salmonidae revealed that
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MRF messenger RNA (mRNA) levels depend on
changes in farmed conditions such as feeding regime
and feed composition (Johansen and Overturf 2006;
Bower et al. 2009; Overturf et al. 2010).

A key regulator of myogenesis is myostatin
(MSTN), a member of transforming growth
factor-β (TGF-β). MSTN is a negative regulator of
muscle growth and inhibits proliferation and differ-
entiation of muscle cells in mammals (Gabillard
et al. 2013). Studies in salmonids have shown that
MSTN regulation of muscle growth mechanisms is
dependent on the muscle type, developmental stage,
and nutritional conditions (Østbye et al. 2001;
Johansen and Overturf 2005, 2006).

Myosin, the most abundant protein in muscle,
amounts to 25% of total protein in the whole organ-
ism and 50% of the muscle proteins (Watabe and
Ikeda 2006); thus, it is an advantageous protein for
growth studies. It was revealed that myosin heavy
chain (MyHC) mRNA level correlated with the
growth rate of rainbow trout O. mykiss (Overturf
and Hardy 2001), wolfish Anarhichas minor
(Imsland et al. 2006), and walleye Sanders vitreus
(Dhillon et al. 2009). The study in Atlantic salmon
indicated that MyHC mRNA expression can be a
useful marker for evaluating growth and protein
accretion (Hevroy et al. 2006). A positive correla-
tion between MyHC expression level and weight
was revealed in Atlantic salmon parr within different
age groups (Churova et al. 2015).

There are numerous studies devoted to metabolism
and myogenesis of Atlantic salmon in ontogenesis.
However, there is not enough information about age-
related differences and alterations during smoltification
in the energy status and muscle growth regulation of
young salmon in wild. The complex study of energy
metabolism and muscle growth processes in wild parr
and smolts of different age groups allows for the deter-
mination of characteristics of Atlantic salmon develop-
ment in the freshwater period. Based on this, the study
was designed to evaluate the energy and carbohydrate
metabolism enzyme activities and expression of genes
that control muscle growth in young salmon. In partic-
ular, the activities of COX, LDH, G6PDH, GPDH, and
aldolase in muscles and the liver and gene expression
levels of MyHC, myostatin (MSTN-1a), and myogenic
regulatory factors (MyoD1a, MyoD1b, MyoD1c, Myf5,
myogenin) were studied in white muscles in salmon parr
and smolts of different ages.

Materials and methods

Fish samples

Parr of Atlantic salmons (S. salar L.) at ages 0+, 1+, 2+,
and 3+ and smolts at age 2+ and 3+ inhabited the Indera
River (the Kola Peninsula, Russia) were studied.
Samples were collected in June 2015 at a water temper-
ature of 11.5 °C. The parr were caught by electric fishing
gear (model Fa_2, Norway). To avoid the effect of
electrofishing, fingerlings were held for 24 h in cages
located in the mainstream portion of the river. Smolts
were caught by smolt catches, located in the river 300 m
from an estuary. Fish were individually measured and
weighed. Tissue pieces were frozen in liquid nitrogen
and kept at −80 °C prior to analysis. The mean body
weight, total length, and number of fish are presented in
Table 1.

This study was carried out at the Scientific Center of
Collective Usage Platform of the Institute of Biology of
the Karelian Research Centre of the Russian Academy
of Sciences.

Enzyme analyses

The activities of enzymes were determined both in white
muscles and the liver of parr at age 1+, 2+, and 3+ and
smolts of 2+ and 3+ age groups. The enzyme activities
in underyearlings (0+) were assayed only in muscles.
The activity of liver enzymes in parr at age 0+ was not
measured due to the low weight of organ, which was
inadequate for sampling.

Tissue samples were weighed and homogenized in
0.05 M Tris-HCl buffer (pH 7.5) containing 40% sucrose

Table 1 Mean (M ± SE) weight and length of parr and smolts of
different ages

Number Weight (g) Fork length (сm)

Parr

0+ 7 0.14 ± 0.05 2.75 ± 0.03

1+ 8 1.54 ± 0.07 5.68 ± 0.12

2+ 8 7.90 ± 0.47 9.67 ± 0.15

3+ 5 14.13 ± 0.78 12.20 ± 0.06

Smolts

2+ 9 12.85 ± 1.06 11.66 ± 0.24

3+ 9 20.06 ± 1.46 13.71 ± 0.42
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and 0.1% Triton X-100. The enzyme activities were
assayed spectrophotometrically. Specifically, the activity
of cytochrome c oxidase (COX, E.C.1.9.3.1) was mea-
sured based on the oxidation of cytochrome c by COX,
which was determined from the decrease in absorbance at
550 nm (Smith 1955). Activities of lactate dehydrogenase
(LDH,E.C.1.1.1.27,Vassault 1983), glucose-6-phosphate
dehydrogenase (G6PDH,E.C.1.1.1.49,Bergmeyer1983),
and glycerol-3-phosphate dehydrogenase (GPDH,
E.C.1.1.1.8, Bergmeyer 1983) were assayed at 340 nm.
One unit of enzyme activity was defined as the amount of
enzyme necessary to elicit a change in absorbance of
1.0Umin−1 (1.0-cm light path). The extinction coefficient
for NADH + H+ or NADPH was 6.22 cm−1 μmol−1.
Aldolase (E.C.4.1.2.13, Bergmeyer 1965) activity was
determined based on the colorimetric reaction of products
of aldolase and 2,4-dinitrophenylhydrasin in alkaline me-
dium andmeasured at 535 nm.

The activities of enzymeswere expressed as internation-
al units pergramof tissue (IUg−1 tissue),whereoneactivity
unit equaled the formationof1μmolof product perminute.

Myf5, MyoD, myogenin, MSTN-1a, and MyHC
mRNA gene expression

Total RNA was isolated from the dorsal white muscle
samples using a kit “RNA-extran,” analog of TRIzol
(Evrogen, Russia) according to the manufacturer’s pro-
tocol. Then, total RNAwas treated with DNase (Sileks,
Russia). RNA integrity and quality were assessed by 1%
agarose gel electrophoresis and spectrophotometrically
at 260/280 nm absorbance ratio (SmartSpec Plus,
BioRad, USA). RNA was reverse transcribed using
MMLV-reverse transcriptase and random hexamer
primers (Evrogen, Russia).

Real-time PCR assay was conducted using the iQ5
real-time PCR detection systems (BioRad, USA).
The primers for the MyHC, myogenin, MyoD1a,
MyoD1b, MyoD1c, Myf5, MSTN-1a, and elongation
factor-1 (Ef-1α) were selected using the Beacon
Designer 5.0 software (Premier Biosoft, USA). The
primer sequences are given in Table 2. Amplification
of 2 μl complementary DNA (cDNA; 1:5 dilution of
RT reaction) occurred using 5 μl qPCRmix-HS
SYBR Green 5× (Evrogen, Russia) and 500 nM
primers to yield a final volume of 25 μl. The real-
time conditions were as follows: DNA denaturation
for 5 min at 95 °C; repeat cycles (40): denaturation
for 20 s at 95 °C, annealing for 30 s at 60 °C, and

DNA elongation for 30 s at 72 °C. Melt curve anal-
ysis verified that the primer sets for each qPCR assay
generated one single product and no primer–dimer
artifacts.

The relative standard curve method was used for
quantification of gene expression (Garikipati et al.
2006). A serial dilution of mixed cDNA from smolts
and parr of different ages was used to construct a stan-
dard curve for each assay plate and each gene studied.
This curve was used to calculate relative abundance of
the transcript in each sample. Transcript abundance
values were normalized to those of reference gene Ef-
1α. Each sample was run in triplicate on a single plate.
The data are presented as normalized gene expression.

Statistical analysis

Data were analyzed using the Kruskal–Wallis test.
Differences between groups were evaluated by Mann–
Whitney U test. Spearman’s correlation and multiple
regression analyses were used to examine relationships
between parameters studied and parr’s body mass. All
results were considered significant at p < 0.05. All data
are presented as the means ± SE.

Results

Enzyme activity in muscle and liver of parr and smolts
of salmon

The results revealed significant age-related changes in
enzyme activities in muscles of salmon parr. The COX
activity was higher in muscles of underyearlings (0+) and
yearlings (1+) and decreased in 2+ and 3+ age groups
(p < 0.05) (Fig. 1a). The activity of LDH, in contrast,
increased with age and was significantly higher in parr of
ages 1+ (p < 0.05) and 2+ (p < 0.05) in comparison to the
previous age group (Fig. 1b). The aldolase activity was
over two times higher in yearlings than in underyearlings
(p < 0.05) (Fig. 1c). This enzyme activity was higher at age
2+ compared to 1+ group (p < 0.05). The COX activity
was negatively related to body mass in parr (p < 0.05)
(Table 3). The activities of LDH and aldolase were posi-
tively correlated with parr’s body mass (p < 0.05)
(Table 3).

The data analysis on the liver enzyme activity of parr
did not reveal any significant differences between the
studied age groups (Fig. 2). There were no significant
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differences in enzyme activity in muscle and liver between
age groups in smolts (Figs. 1 and 2).

Comparative analysis of results revealed the differ-
ences in enzyme activity between parr and smolts. In
muscle, the activity of COX (2+, 3+, p < 0.05, Fig. 1a)
and LDH (2+, 3+, p < 0.05, Fig. 1b) was higher in smolt
than in parr of the same age. No differences in aldolase
activities were observed between parr and smolts
(Fig. 1c).

In the liver, there were no differences in COX activity
(Fig. 2a). Low activity of LDH (Fig. 2b), G6PDH
(Fig. 2c), and aldolase (Fig. 2d) was revealed in smolts
compared to parr in both 2+ and 3+ age groups
(p < 0.05). GPDH activity was lower in smolts than in
parr at age 2+ (p < 0.05) (Fig. 2e).

Muscle-specificgeneexpression levels inparrandsmolts

RT-qPCR results showed age-related and stage-related
differences in gene expression levels. The highest
MyHC (Fig. 3a), MyoD1a (Fig. 3b), and MyoD1b
(Fig. 3c) mRNA levels were revealed for yearling salm-
on, p < 0.05. Their expression level decreased gradually
in parr at age 2+ and then in 3+, p < 0.05. MyoD1c
expression level was highest in 0+ parr then decreased at
age 1+ and 3+ (Fig. 3d) (p < 0.05). TheMyoD1cmRNA
level (1.63 ± 0.21) was higher than MyoD1a
(1.01 ± 0.04) and MyoD1b mRNA (1.11 ± 0.10) level
in the 0+ group (p < 0.05).

The level ofmyogenin gene expression was higher in
1+ parr compared to the 0+ group, р < 0.05 (Fig. 3e).
The expression level of myogenin was lower in 3+ parr
compared to 2+, p < 0.05. No significant age-related
changes were observed in Myf 5 expression (Fig. 3f).

TheMSTN-1amRNA level was eight times higher in
yearlings than in underyearlings, p < 0.05 (Fig. 3g). Its
expression was lower in groups 2+ and 3+ compared to
1+, p < 0.05.

According to comparative analysis, the expression
level of MyHC, p < 0.01 (Fig. 3a), MyoD1a, p < 0.01
(Fig. 3b), MyoD1b, p < 0.01 (Fig. 3c), and myogenin,
p < 0.05 (Fig. 3e), was lower in smolts at age 2+
compared to parr of the same age. There were no differ-
ences in Myf5 (Fig. 3f), MyoD1c (Fig. 3d), and MSTN-
1a mRNA (Fig. 3g) levels between smolts and parr at
age 2+. No differences were observed between parr and
smolt in gene expression at age 3+ (Fig. 3).

Discussion

Metabolic enzyme activity in muscles of parr
of different age groups

Multidirectional changes in activities of enzymes of aer-
obic and anaerobic energy metabolism in white muscles
in parr with age were shown. Results revealed differences
in COX activity in white muscle that are due to changes

Table 2 Oligonucleotide primers
used for RT-qPCR amplification

Forward and reverse primer
sequences (5′-3′)

bp base pairs, EF1a elongation
factor 1a, Myf5 myogenic factor
5, MyoD1 myoblast determina-
tion protein 1, MyHC myosin
heavy chain, MSTN-1a
myostatin1a

Gene Sequence 5′-3′ Size of amplified
fragment (bp)

GenBank
accession no.

EF-1a F: TTGCTGGTGGTGTTGGTGAG 154 AF321836.1
R: AAACGCTTCTGGCTGTAGGG

Myogenin F: GTGGAGATCCTGAGGAGTGC 147 DQ294029
R: CTCACTCGACGACGAGACC

MyoD1a F: TGGACTGCCTATCAAACATCC 123 AJ557148
R: TCTCACTCGCTATGGAACC

MyoD1b F: ATTTCGTTCCCTGTCACCTCTG 152 AJ557150
R: ATGTGTTCGTCTTCGTTGTAATGG

MyoD1c F: ACGGCGAAAACTACTACCCTTC 133 DQ366709.1
R: TAGCTGCTTCGTCTTGCGGA

Myf5 F: ACGCCATCCAGTACATCGAG 132 DQ452070
R: AGTCAACCATGCTGTCGGAG

MyHC F: TCTCATCCATAGACGCCATC 159 DN164736
F: AGTTGACTGCCAAGAAGAGG

MSTN-1a F: GATTACACGCCATCAAGTCC 159 AJ344158
R: CTCCATCCTTATTGTCATCTCC

Fish Physiol Biochem (2017) 43:1117–1130 1121



of intensity of aerobic processes in ontogenesis. The level
of COX activity was the highest for yearlings and
underyearlings and decreased in older groups. Thus, it
can be concluded that aerobic capacity is high in parr at
age 0+ and 1+. The high level of aerobic synthesis of ATP
is of great importance at the early ontogenesis and at first
years, when the growth rate is highest and intensive
processes of biosynthesis take place (Ozernyuk 2011). It
is known that with age and increasing weight, the inten-
sity of oxygen consumption, tissue respiration, and

standard metabolism in whole decreased (Davies and
Moyes 2007; Ozernyuk 2011). The growth rate decreased
with age, and therefore energy consumption causing a
biosynthesis decline.

In contrast to the COX activity, the LDH activity in
muscles increased with age and body mass. The LDH
activity in the white muscles of fish is related mainly to
its involvement in anaerobic glycolysis (Somero and
Childress 1980). This process is the main energy supply
of the white muscle during intensive contractions.
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Fig. 1 Enzyme activity (IU g−1 tissue). COX (a), LDH (b), and
aldolase (c) in muscles of parr (0+, 1+, 2+, 3+) and smolts (2+
smolt, 3+ smolt). Asterisks denote significant differences between

parr in comparison with previous age group. Double asterisks
denote significant differences between parr and smolts of the same
age
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Therefore, with age and body mass gain, the rate of parr
anaerobic metabolism increases. It was shown that the
level of LDH activity reflects the degree of physical
activity in fish and their swimming characteristics.
Many fish species were found to have an age-related
and size-related increase in the intensity of anaerobic
energy metabolism, as well as in the activity of LDH
and other glycolytic enzymes (Somero and Childress
1980; Davies and Moyes 2007). Atlantic salmon parr
at age 1+, 2+, and 3+ are characterized by high physical
activity as they inhabit areas with high current velocity
and have to actively resist the current. Therefore, an
increase in the LDH activity of the muscles with age
and body mass may be aimed to increase the energy
supply for swimming activity and retention of parr in the
current. The aldolase activity in the muscles increased in
age groups along with LDH activity. It indicates that
changes in the level of carbohydrate utilization corre-
spond to the tendency of the level of anaerobic metab-
olism changes in the muscles in the age groups.

Similar studies on enzyme activity in parr were con-
ducted in the summer period of the previous year. The
pattern of COX, LDH, and aldolase activity changed in
the muscle of parr at ages 1+ and 2+ corresponding to
the present results (Churova et al. 2015). The present
and previous results indicate the age-dependent varia-
tion of energy metabolism in muscles, which are char-
acteristic for the parr inhabiting the Indera River. These
results might be used in monitoring and health assess-
ment of the salmon population.

Muscle-specific gene expression in parr of different age
groups

MRF play the key role in postembryonic myogenesis as
regulate specification, proliferation, and differentiation

of myogenic precursor cells (MPCs). Transcription fac-
tors MyoD and Myf5 are required for myoblast deter-
mination, and myogenin is involved in the differentia-
tion and fusion of myoblasts to form myofibers (Watabe
2001). According to studies on rainbow trout and pacu,
they are differently expressed in postembryonic devel-
opment (Johansen and Overturf 2005; Almeida et al.
2010). The results of the present study have shown
specific patterns of age-dependent changes in muscle-
specific gene expression involved in myogenesis regu-
lation in salmon parr.

It was noticeable that paralogs of MyoD1 were differ-
ently expressed in salmon age groups. In the result of
tetraploidization, salmonids expressed three MyoD1
paralogs—MyoD1a, MyoD1b, and MyoD1c—that have
subfunctionalized and exhibited distinct expression pat-
terns during development and in different fiber types
(Macqueen and Johnston 2006; Macqueen and
Johnston 2008). In salmon primary cell culture, MyoD1
paralogs are differentially expressed during myotube
maturation, and that suggests that Myod1b and Myod1c
are primarily expressed in proliferating cells and
MyoD1a in differentiating cells. Based on this, it is
possible that Myod1b and Myod1c regulate cell cycle
and MyoD1a is involved in terminal differentiation
(Bower and Johnston 2010). According to our results,
theMyoD1a andMyoD1b gene expression peaked in 1+
parr, but the MyoD1c expression was highest in
underyearlings and then decreased. Moreover, the
MyoD1c mRNA level was higher than MyoD1a and
MyoD1b mRNA level in the 0+ group. In our study on
brown trout Salmo trutta L. (Churova et al. not pub-
lished), the similar result on the highestMyoD1c expres-
sion level in underyearlings was revealed. It is possible
that paralogs differently expressed in the ontogenesis and
MyoD1c is upregulated at the earlier stages (in parr with
mass 0.14 g). It was shown that MyoD paralogs differ-
ently responded to meal distribution after fasting; most
especially, Myod1c expression level was elevated after
refeeding in rainbow trout (Valente et al. 2012). The
MyoD paralogs differently respond to amino acids after
starvation that was shown on myogenic cell culture. In
response to amino acids,MyoD1c andMyoD1b increased
significantly and MyoD1a did not respond markedly
(Bower and Johnston 2010). On juvenile and adult salm-
on (with average mean mass 304.8 and 4297 g), it was
shown that MyoD1a was upregulated in fast muscles in
comparison to MyoD1b/c, but MyoD1c was upregulated
in slow muscles (Macqueen and Johnston 2006).

Table 3 Linear regression and coefficient of correlation between
activities of COX, LDH, and aldolase in white muscles and mass
of salmon parr

Variable (y) Mass (x) Coefficient of
correlation (mass)

COX activity y = 0.722 − 0.026 × x
R2 = 0.66*

−0.81*

LDH activity y = 16.138 + 1.732 × x
R2 = 0.72*

0.85*

Aldolase activity y = 143.365 + 6.515 × x
R2 = 0.36*

0.61*

*p < 0.05, significant relationship
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The pattern of myogenin expression levels in differ-
ent age groups was similar to MyoD1a and MyoD1b
expression levels and peaked in 1+ parr and then de-
creased with ages. As in our study, the concurrent in-
crease in TMyoD2 (that is referred as Myod1b by
Macqueen and Johnston 2008) and myogenin gene ex-
pression at the same development stage was shown in
rainbow trout O. mykiss (Johansen and Overturf 2005)
and MyoD and myogenin in pacu P. mesopotamicus
(Almeida et al. 2010). Coupled changes of myogenin

andMyoD expression levels are described by the mech-
anisms of regulation of muscle-specific genes. It is
known that MyoD activation leads to robust expression
of target genes, such as myogenin, M-cadherin, MyHC,
and muscle creatin kinase. MyoD activates myogenin
expression by directly binding to its regulatory elements
(Berkes and Tapscott 2005). In a study on rainbow trout,
it was shown thatmyogenin expression was restricted to
small-diameter muscle fibers and was therefore indica-
tive of muscle hyperplasia (Rescan et al. 1995; Rescan
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et al. 2015; Montfort et al. 2016). Gene expression
profiling of trout regenerating muscle shows that
MyoD1b, MyoD1c, and myogenin were upregulated
during muscle regeneration and in hyperplastic growth
zones (Montfort et al. 2016). That is why, it is possible
to suggest that high expression ofMyod1 and myogenin
expression in yearlings indicated the hyperplastic mus-
cle growth.

In contrast to MyoD1a and MyoD1b mRNA levels,
the Myf5 gene expression did not differ between age
groups. It is likely that the changes in expression level of
MyoD1 are more significant for myogenesis regulation
in parr at different ages. According to the study of
Johansen and Overturf (2005), expression of MyoD
and Myf5 peaked independently from each other at
different stages of rainbow trout development. It was
suggested by the authors that MyoD and Myf5 might
complementarily control muscle growth processes.

The high MyoD1a, Myod1b, and myogenin mRNA
levels in parr at age 1+ and decrease in the older age
groups corresponded with the high expression levels of
MyHC. It was shown that mRNAMyHC levels, which is
the most abundant muscle protein, correlate with the
growth rate of several fish species (Overturf and Hardy
2001; Imsland et al. 2006; Dhillon et al. 2009) as well as
protein accretion (Hevroy et al. 2006). But there are
controversial studies that did not show the link between
MyHC expression level and rapid growth in atlantic cod
(Koedijk et al. 2010) and rainbow trout following
growth hormone treatment (Biga et al. 2004) and fed
different diet (Alami-Durante et al. 2010). The correla-
tion of MyHC mRNA level with growth rate would
depend on different factors, such as size of fish, type
of diet (feed content), protein synthesis, and degradation
rate (Koedijk et al. 2010; Biga et al. 2004; Alami-
Durante et al. 2010). The study on protein degradation
system in salmon parr from River Indera (the same
research as present) revealed the decrease in proteasome
activity in parr 1+ and 2+ in comparison to the previous
age group (Kantserova et al. 2017). In the study of
Overturf and Gaylord (2009), proteasome enzymatic
activity decreased significantly in the muscle of rainbow
trout as fish size increased. It was suggested by authors
that muscle proteasome activity decrease with trout size
would benefit muscle accretion and weight gain and that
the fish is becomingmore efficient in buildingmuscle as
it grows. It allows us to conclude that high level of
MyHC expression along with MRF high expression in
yearling salmon reflects the intensive growth processes

and muscle weight gain. In the previous study on
Atlantic salmon from River Idera (Churova et al.
2015), the decrease of MyHC mRNA levels at age 2+
compared to 1+ was observed. Moreover, in that study,
it was revealed that the RNA/DNA ratio and protein
concentration were highest at age 1+ and decreased at
age 2+. Both study results indicate that there is a high
protein synthesis level and growth rate in salmon year-
lings (1+). The low MyHC mRNA levels along with
decreased COX activity at age 2+ and 3+ indicate the
decline in muscle growth rate.

The high levels of MyHC, MyoD1a, MyoD1b, and
myogenin expression in yearlings were accompanied by
high MSTN-1a mRNA level, the negative regulator of
muscle growth. Simultaneous increase of expression of
MyoD and myogenin with MSTN on the same develop-
ment stages was shown in rainbow trout (Johansen and
Overturf 2005). One potential explanation is that MSTN
is expressed in response to high MRF expression levels,
which are the necessary regulation mechanism to atten-
uate hyperplasia and hypertrophy and control muscle
growth (Johansen and Overturf 2005, 2006). In mam-
mals, MSTN inhibits myoblast proliferation and differ-
entiation through a tumor growth factor-B pathway
involving the activin receptor, Act RIIB, and the phos-
phorylation of Smads 2 and 3. Myogenin is probably
one from the major physiological targets of MSTN
(Joulia et al. 2003; Johnston et al. 2008). The MyoD
binding sites were found in MSTN promoter (Johnston
et al. 2008). However, according to recent studies, the
mechanism of MSTN action on growth in fish probably
differs from mammals. MSTN is conserved as two
genes in most teleost and four genes in salmonids and
is found to be expressed in muscles and other tissues.
Consequently, it may possess different functions
(Østbye et al. 2001; Gabillard et al. 2013). Studies using
rainbow trout myosatellite cells have shown that MSTN
inhibits proliferation and has no effect on differentiation
(Seiliez et al. 2012) or, on the contrary, consequently
stimulates it (Garikipati and Rodgers 2012). The study
on comparison of wild, domesticated, and growth hor-
mone transgenic coho salmon showed high expression
levels of both MSTN and MyoD with myogenin in fast-
growing fish (Overturf et al. 2010). It was concluded by
the authors that MSTN expression increases in faster
growing fish when there is sufficient energy but is not
negatively acting to regulate muscle growth. The feed-
ing experiments in fish have shown that theMSTN gene
is differently expressed in periods of fasting and
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refeeding. In rainbow trout, the high MSTN mRNA
levels during the refeeding period was associated with
high myogenin expression that possibly is a mechanism
to attenuate the muscle growth (Johansen and Overturf
2006). In a study on pacu during a fasting period, high
MSTN gene expression indicated lower satellite cell pro-
liferation activity, which was confirmed by low MyoD
mRNA levels (Nebo et al. 2013). Thus, the MSTN ex-
pression is affected by several factors, but precise mech-
anisms of action require further investigation.

Comparative analysis of enzyme activity
and muscle-specific genes expression in parr and smolts

The parr–smolt transformation, or smoltification, is a
developmental process in salmon to prepare for life in
the sea. Significant biochemical, physiological, mor-
phological, and behavioral changes occur in the fish
throughout this period. The alterations affect lipid and
carbohydrate metabolism, osmoregulation, oxygen
transport, growth, and rheotaxis (Stefansson et al.
2008; McCormick 2013). In particular, the intensifica-
tion of oxidative processes is revealed in smolts. In
Atlantic salmon, standard and active metabolic rates
are 50% higher in smolts than in parr (Maxime et al.
1989), suggesting that this elevation might be related
with the increase in respiratory enzyme activity and
mitochondrial proliferation caused by an increase in thy-
roid hormone levels (Leonard and McCormick 2001).
Decrease in hepatic glycogen content was observed in
masu salmon Oncorhyncus masou (Mizuno et al. 2012),
in Atlantic salmon (Wendt and Saunders 1973), and coho
salmonOncorhynchus kisutch (Sheridan et al. 1985), that
could be related with decreased glycogen synthesis and
increased glycogenolysis in the liver (Sheridan et al.
1985). It is known that in salmon smolts, total body and
muscle lipid content and fatty acid synthesis decreased
and lipolysis increased (Sheridan et al. 1985; Stefansson
et al. 2008; Pavlov et al. 2009). That is why smolts at the
period of downstream migration and ocean entry are
“energy deficient” (Sheridan et al. 1985; Stefansson
et al. 2008).

According to data analysis from the present study,
there were differences in aerobic and anaerobic metab-
olism in muscles between parr and smolts at age 2+. The
higher activity of COX in smolts than in parr indicates
that the increase in energy costs during smoltification is
necessary for supporting adaptive reactions of metabo-
lism (Stefansson et al. 2008).

The increase in LDH activity in the muscle of smolts
in comparison to parr is possibly related to their migra-
tion activity. The LDH activity indicates the activation
of glycolysis which is necessary for energy supply,
allowing for physical activity during the migration
downstream the river (Stefanson et al. 2008). Higher
activity of the glycolysis enzyme, phosphofructokinase,
in muscle was observed during smoltification in smolts
than in parr (Leonard and McCormick 2001).

In the liver, LDH activities were decreased in smolts
compared to parr at the same ages. This may indicate a
decline in intensification of lactate–pyruvate conversion
and consequently reduction in lactate-dependent gluco-
neogenesis (Leonard and McCormick 2001). Such a
decrease in liver LDH was revealed in Atlantic salmon
(Leonard and McCormick 2001) and masu salmon
Onchorhinkus masou (Mizuno et al. 2012). The activity
of G6PDH, GPDH, and aldolase in the liver decreased,
that indicated the decrease of carbohydrate use in bio-
synthesis (pentose phosphate pathway and synthesis of
lipids from glycerophosphate). These changes can be
related with a decrease in glycogen synthesis and inten-
sification of glycogenolysis (Sheridan et al. 1985).

As for muscle growth regulation, smolts at age 2+
differ from parr by lowMyHC,MyoD1a,MyoD1b, and
myogenin expression levels. It is an evidence of de-
crease in muscle growth. The MRF expression levels
depend on a variety of factors, such as food quantity and
quality and characteristics of total metabolism
(Johansen and Overturf 2006; Bower et al. 2009;
Alami-Durante et al. 2010; Nebo et al. 2013). In the
present research, the smolts in the period of downstream
migration were studied, and differences were observed
which were caused by changes in metabolism during
migration. Firstly, differences in MRF expression could
be related to changes in food composition and quantity.
This is supported by a study of Atlantic salmon from the
Varzuga River (Kola Peninsula, Russia); this study re-
vealed that during downstream migration, smolts do
feed not intensively compared to parr (Shustov and
Belyakova 2012). Taking in consideration the low level
of energy reserves in smolts during migration
(Stefansson et al. 2008), it is obvious that the delivered
nutrients are used first of all for energy requirements
then on growth processes. Moreover, the changes in
protein turnover take place in smolts. It was revealed
that in contrast to lipids and carbohydrates, there were
no changes in protein content in salmon smolts and
postsmolts during migration (Stefansson et al. 2008).
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Our colleagues observed the decrease in protein degra-
dation rate in migrating smolts compared to parr of
salmon in the Indera River (Kantserova et al. 2017).
These changes could also affect on the muscle-specific
gene expression.

Conclusion

This study demonstrated age-related and stage-related
features of aerobic and anaerobic capacity and muscle
growth regulation in parr and smolt of Atlantic salmon
in the wild. Each age group differs from one another by
energy enzyme activities and MRFs, MSTN and MyHC
expression levels. Alteration in energy metabolism in
smolts during downstream migration was associated
with elevation of aerobic and anaerobic capacities in
the muscles and the decline of carbohydrate oxidation
in the liver. Smolts differed from parr by having a
decline in myogenesis regulation and muscle growth
processes in relation to metabolic alterations during
smoltification and migration. These findings expand
our knowledge on the mechanisms of growth and de-
velopment in wild salmon. The results might be used for
monitoring the salmon population during restoration.
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