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Abstract Many fish species undergo natural starva-

tion periods. Adaptation to starvation is possible

through the activation of behavioral, biochemical

and physiological mechanisms. Knowledge of the

effect of dietary nutrients on the intermediary

metabolism during starvation and refeeding can be

useful to improve fish health and optimize aquaculture

production. To analyze the effect of dietary nutrients

on liver metabolism of Siberian sturgeon (Acipenser

baerii) submitted to starvation and refeeding, four

isoenergetic diets differing in nutrient composition

were designed: LP-St (38 % protein, 12 % lipid, 36 %

carbohydrate), HP-St (44 % protein, 10 % lipid, 30 %

carbohydrate), LP-L (38 % protein, 18 % lipid, 25 %

carbohydrate) and HP-L (44 % protein, 16 % lipid,

22 % carbohydrate). Four groups of fish were fed

3 weeks to satiety with the corresponding diet, starved

for 2 weeks and then refeed 5 weeks to satiety on the

same diet. Starvation mobilized the hepatic lipid store

to a greater extent than glycogen. Starvation increased

superoxide dismutase activity irrespective of the diet,

while low protein diets (LP-St and LP-L) increased

catalase activity. The oxidative damage decreased

after 5 weeks of refeeding. Refeeding the starved fish

on the HP-St diet promoted the greatest growth

performance. In addition to reporting for the first time

the effect of diet composition on growth, liver

composition and antioxidant activities in Siberian

sturgeon submitted to starvation and refeeding, our

findings suggest that refeeding on HP-St diet stimu-

lated the use of dietary carbohydrates and allowed a

protein sparing effect in Siberian sturgeon.
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Introduction

Starvation periods are common in fish species (Mo-

rales et al. 2004). Starvation refers to the biological

condition wherein an animal, otherwise willing or able

to eat, is unable to do so as a result of some extrinsic
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limitation on food resources (McCue 2010). It can be

induced artificially in commercial fish farms for

decreasing water pollution, disease management and

optimizing the feeding strategy to reduce the produc-

tion cost (Caruso et al. 2012).

Under fed conditions, fish grow and increase the

store of energy reserves. On the contrary, fasting leads

to the mobilization of fuel from the body store and

mass loss (Power et al. 2000; Morales et al. 2004). The

reduction rate of muscle mass is extremely variable

due to different energy requirements depending on

body weight and phylogenetic affiliation (Garland

et al. 2005). Some organs, such as the liver, can

tolerate large reductions in mass during the starvation

period by controlling fuel storage and nutrient mobi-

lization (Metón et al. 2003; Pérez-Jiménez et al. 2007).

During fasting, most species use liver glycogen as

the first substrate to obtain energy (Viegas et al. 2012).

In parallel with liver glycogen exhaustion, lipid

reserves are also used as a fuel. When both glycogen

and lipid supplies are nearly depleted, protein is

mobilized (Navarro and Gutierrez 1995; Metón et al.

2003). However, some fish species, such as Salmo

gairdneri and Notopterus notopterus, use lipids and

protein as energy substrates during starvation, without

affecting significantly the hepatic glycogen store

(Narasimhan and Sundararaj 1971; Leatherland and

Nuti 1981; Pérez-Jiménez et al. 2007). In fish, the use

of body glycogen, lipid and protein to obtain energy

during starvation varies according to the species,

period of food deprivation and the diet composition

prior to fasting (Hilton 1982).

It was reported that caloric restriction can induce

oxidative stress in fish (Chatzifotis et al. 2011).

Oxidative stress occurs when reactive oxygen species

(ROS) generation exceeds its removal and may lead to

cell death (Sies 1986). By catalyzing the conversion of

superoxide anion into molecular oxygen and water,

superoxide dismutase (SOD; EC 1.15.1.1) and cata-

lase (CAT; EC 1.11.1.16) are key antioxidant enzymes

that were previously shown to be present in the fish

liver (Aras et al. 2009). Some studies addressed the

effect of food deprivation on oxidative stress and

antioxidant defenses (Feng et al. 2011; Bayir et al.

2011). However, the impact of diet composition on

antioxidant activities in fish submitted to starvation–

refeeding remains largely unknown.

Although diet composition and feeding regimes

may have a major impact on fish health and

production, little is known regarding to optimization

of feeding strategies in cultured fish species with a

marked commercial interest, such as sturgeon,

exposed to starvation and refeeding. To increase the

current knowledge about the effect of diet composition

and feeding regime on somatic and metabolic param-

eters of Siberian sturgeon (Acipenser baerii), in the

present work we evaluated growth performance, liver

composition and activity of liver antioxidant enzymes

in Siberian sturgeon submitted to starvation and

refeeding on various diets differing in nutrient

composition.

Materials and methods

Rearing procedures

A group of 180 Siberian sturgeon juveniles (initial

body weight 30 ± 5 g) were obtained from Interna-

tional Sturgeon Research Institute (Gilan, Iran) and

randomly supplied in 12, 500-L circular fiberglass

tanks (n = 15 per tank) in a flow-through system

containing treated river water with continuous aera-

tion. Fish were fed on commercial pellets (BIOMAR,

France, 1.9 mm) for 1 week while they acclimated to

the experimental conditions (Bagherzadeh Lakani

et al. 2013). Tanks were located outdoors and

subjected to natural photoperiod of approximately

12:12 h (light: dark) cycle. Every day, all tanks were

cleaned and siphoned to remove debris. Temperature,

dissolved O2, pH value and flow rate were maintained

at 22 ± 4 �C, 7.1 ± 1.5 mg L-1, 7–8 and 4.5 ± 0.5 L

min-1, respectively. Four groups of fish were fed

manually to satiety with the corresponding experi-

mental diet three times a day (8:30, 15:00 and 21:30 h)

for 3 weeks, starved for 2 weeks and then refed for

5 weeks on the same diet and conditions. Three tanks

were used for each condition.

Feeding trial

Ingredients and chemical composition of experimental

diets used in the present study are given in Table 1.

Four isoenergetic diets (gross energy 19.9 ±

0.4 kJ g-1 dm) were formulated with different levels

of protein, lipids and carbohydrates. Fishmeal was

used as protein source. Diets were named LP-St (low

protein, 38 %—high carbohydrate, 36 %), HP-St
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(high protein, 44 %—high carbohydrate, 30 %), LP-L

(low protein, 38 %—high lipid, 18 %) and HP-L (high

protein, 44 %—high lipid, 16 %). Dry ingredients

were weighed, ground and mixed thoroughly. Fish oil,

sunflower oil, lecithin and water were added to the dry

ingredients and mixed again, until dough was formed.

Dough was pelleted in 2 mm and dried in a hot air

oven (Hootakhsh, Tehran, Iran) at 60 �C for 5–6 h.

The diets were broken up and sieved into proper pellet

size, packed and stored at -20 �C until used.

Table 1 Formulation and chemical composition of experimental diets for Siberian sturgeon juveniles (g 100 g-1 diet)

Ingredients LP-St HP-St LP-L HP-L

38P11L36C 44P10L30C 38P18L25C 44P16L22C

Fish meala 46.24 57.1 49.3 58.86

Wheat meal 39.88 32.96 21.2 17.98

Fish oilb 3.22 1.74 6.22 4.35

Sunflower oilc 3.22 1.74 6.22 4.35

Soy lecithind 0.5 0.5 0.5 0.5

Mono calcium phosphate 0.5 0.5 0.5 0.5

Mineral mixe 2 2 2 2

Vitamin mixf 1.5 1.5 1.5 1.5

Anti fungi 0.25 0.25 0.25 0.25

Anti-oxidantg 0.02 0.02 0.02 0.02

Fillerh 1.16 0.17 10.79 8.19

Binderi 1.5 1.5 1.5 1.5

Total 100 100 100 100

Chemical analysis (%)

Moisture 5.0 ± 0.0 5 ± 0.9 5.8 ± 0.3 5.9 ± 0.8

Crude protein 37.9 ± 0.4 44.1 ± 0.3 38.2 ± 0.3 43.9 ± 0.5

Crude lipid 11.5 ± 1.1 10 ± 0.7 17.5 ± 2.1 15.7 ± 0.9

Carbohydratesj 35.9 ± 1.4 30.2 ± 0.8 24.9 ± 2.8 21.9 ± 0.4

Ash 9.7 ± 0.04 10.7 ± 0.6 13.5 ± 0.5 12.6 ± 0.6

CHO: L 3.1 3 1.4 1.4

Gross energy (kJ g-1 dm)k 19.7 19.6 20.2 20.3

Diets were named LP-St (low protein–high carbohydrate), HP-St (high protein–high carbohydrate), LP-L (low protein–high lipid)

and HP-L (high protein–high lipid)
a Clopeonella meal (Mazandaran Animal and Aquatic feed (Manaqua) Co. and Pars kilka Co. Iran)
b Kilka oil (Manaqua Co. Iran)
c Sunflower oil (Ladan Co. Iran)
d Soybean lecithin with phosphatidylcholine (Behpak company, Iran)
e Mineral mix provided (mg Kg-1): Fe: 6000, Cu: 600, Mn: 5000, Zn: 10,000, I: 600, Se: 20, Co: 100, choline chloride: 6000, Career

up to 1 kg
f Vitamin mix provided (Unit Kg-1): A: 1,200,000 IU, D3: 400,000 IU, E: 50,000 mg, K3: 800 mg, B9: 1000 mg, C: 30,000 mg,

B1: 2500 mg, B2: 4000 mg, B6: 25,000 mg, B12: 8 mg, Biotin: 150 mg, Niacin: 35,000 mg and Inositol: 50,000 mg Career up to

1 kg
g Antioxidant (Gluba Tiox, French)
h Carboxymethyl Cellulose (DAEJUNG Co. Korea)
i Amet binder (Afraz mehrtaban company, Iran)
j Carbohydrates were calculated by difference. Carbohydrate = 100 - (crude protein ? crude lipid ? ash ? moisture) (Azarm

et al. 2013)
k Estimated energy was calculated based on 1 g crude protein being 23.6 kJ, 1 g crude fat being 39.5 kJ and 1 g carbohydrate being

17.2 kJ (NRC 1993)
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Sample preparation

Sampling was performed at week 3 (end of feeding

period), 5 (after 2 weeks of starvation) and 10 (after

5 weeks of refeeding). Two animals of each tank (six

per dietary treatment) were anaesthetized with clove

powder (500 mg L-1) (Yarmohammadi et al. 2012)

and then killed by a sharp blow in the head (Pérez-

Jiménez et al. 2009). Liver tissue was dissected using

clean equipment on ice (0 �C), weighted, washed,

immediately frozen in liquid nitrogen and kept at

-80 �C until further analysis. Fish hepatosomatic

index (HSI) was measured by the following equation

(Higgs et al. 2009):

HSI ¼ Liver weight gð Þ=Wet body weight gð Þ½ �
� 100)

Treatment of the samples

Liver tissues were homogenized (1:10, w/v) in

homogenization buffer containing 100 mM potassium

phosphate buffer (pH 7.4), 100 mM KCl and 1 mM

EDTA at 0–4 �C using an electric homogenizer

(WIGGEN, D500, Germany) for 1.5 min. Homoge-

nates were centrifuged at 10,000 g using a Hermle

Z36HK centrifuge (Hermle Labortechnik, Germany)

for 35 min at 4 �C. Supernatants were used to

determine glycogen and measure enzyme activity

(Atli and Canli 2010). All chemicals used in this study

were obtained from Sigma-Aldrich (USA) and Merck

(Germany).

Chemical analysis

Chemical composition (crude protein, lipid and mois-

ture) of the experimental diets and fish livers was

determined using the following (AOAC 2005) proce-

dures: total protein content (N 9 6.25) using an

automatic Kjeldahl system (230-Hjeltec Analyzer;

Foss Tecator, Hoganas, Sweden) and total lipid with

an automatic Soxtec system (2050-FOSS; Sweden).

Moisture was determined by drying at 105 �C for 24 h

in an oven (D-63450; Heraeus, Hanau, Germany), and

ash by burning in a muffle furnace (Isuzu, Tokyo,

Japan) at 550 �C for 6 h. Glycogen was assayed using

the BDU-GLY96 ELISA kit (Zellbio, Germany). In

brief, the assay is based on glycogen hydrolyzation

into glucose. Glucose oxidation forms an intermediate

that reduces a colorless robe to a colored product with

strong absorbance at 620 nm. The glycogen content is

expressed as milligrams of glucose equivalents per

gram of fresh liver tissue.

Determination of enzyme activities

SOD and CAT activities were determined using

spectrophotometric methods. SOD was assayed with

the ZB-SOD96 kit (ZellBio GmbH, Germany). SOD

activity unit was considered as the amount of the

sample that catalyzed decomposition of 1 lmol of

O2- into H2O2 and O2 per minute. Absorbance was

recorded at 550 nm.

CATwas assayed using the ZB-CAT96 kit (ZellBio

GmbH, Germany). CAT activity unit was considered

as the amount of the sample that catalyzed decompo-

sition of 1 lmol of H2O2 into H2O and O2 per minute.

Absorbance was recorded at 405 nm.

Total soluble protein was measured by the Bradford

method (1976) using bovine serum albumin as a

standard. Enzyme activities were expressed as specific

activity (U mg-1 protein). All the enzymatic assays

were run in triplicate.

Statistical analysis

Data were checked for normality (Kolmogorov–

Smirnov test) and homogeneity of variances prior to

their comparison. Data were analyzed by one-way and

two-way (diet and condition as the main factors)

ANOVA using a computer program (IBM SPSS

Statistics version 22, Armonk, NY, USA). Statistical

differences among mean values with one independent

variable were analyzed by one-way ANOVA per-

forming mean comparisons with Duncan’s test at a

reliability level of 0.05. To determine homogeneous

subsets of values with two independent variables, two-

way ANOVA was performed using the Scheffé post

hoc test (P\ 0.05).

Results

Growth performance and HSI

The growth performance of Siberian sturgeon juve-

niles was affected by diet composition in fish

1512 Fish Physiol Biochem (2016) 42:1509–1520
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submitted to starvation and refeeding (Table 2).

Feeding on HP-St and LP-St resulted in the highest

(182 ± 7.9 g) and lowest (158 ± 10 g) final body

weight, respectively. Accordingly, feeding on HP-St

promoted significantly higher weight gain values than

in the group of fish fed diet LP-St during 5 weeks of

refeeding. The highest and lowest FCR values were

presented by fish fed diets LP-St and HP-St, respec-

tively. Albeit not significant, it was observed a

tendency to present higher specific growth rate

(SGR) values in the fish supplied with high protein

diets during refeeding.

Two weeks of starvation significantly decreased

HSI irrespective of the diet. After 3 weeks of feeding

and 5 weeks of refeeding, fish fed with high carbohy-

drate diets (HP-St and LP-St) presented the highest

HSI values. In all treatments, the lowest HSI value was

found in the group of fish fed diet HP-L (Fig. 1).

Liver composition

Liver composition of Siberian sturgeon was signifi-

cantly affected by diet composition and nutritional

status (Fig. 2). After 3 weeks of feeding, a trend to

present higher hepatic glycogen levels was found in

the fish fed high carbohydrate diets (LP-St and HP-St).

Starvation for 2 weeks significantly decreased liver

glycogen reserves, reaching similar values irrespec-

tive of the diet, about 13–14 mg g-1 liver. Five weeks

of refeeding were not enough to recover hepatic

glycogen levels similar to those observed previous to

starvation, and no significant differences in liver

glycogen content were found among the groups of fish

fed different diets.

Two weeks of starvation significantly fell down

hepatic lipid reserves except in the group LP-L. Five

weeks of refeeding led to recover liver lipid reserves in

Table 2 Growth performance of Siberian sturgeon juveniles fed the experimental diets LP-St, HP-St, LP-L and HP-L

Growth parameters LP-St HP-St LP-L HP-L

BW0 (g)
c 29.2 ± 0.6 30.0 ± 0.5 30.2 ± 0.1 29.8 ± 0.8

BW1 (g)
d 64 ± 3.6 62 ± 5.6 63 ± 5.9 62 ± 1.1

BW2 (g)
e 61 ± 1.3b 65 ± 2.1a 63 ± 1.3a,b 63 ± 2.5a,b

BW3 (g)
f 158 ± 10b 182 ± 7.9a 165 ± 12a,b 169 ± 7.3a,b

WGr (g)
g 97 ± 9.2b 117 ± 8.2a 101 ± 11.3a,b 106 ± 4.9a,b

WGt (g)
h 129 ± 11b 152 ± 8a 134 ± 12a,b 139 ± 7a,b

SGRr (% day - 1)i 3.0 ± 0.1 3.2 ± 0.2 3.0 ± 0.2 3.1 ± 0.0

SGRt (% day - 1)j 2.4 ± 0.1 2.6 ± 0.1 2.4 ± 0.1 2.5 ± 0.1

FCR (g g-1)k 1.5 ± 0.1a 1.2 ± 0.1b 1.4 ± 0.1a,b 1.4 ± 0.1a,b

Survival (%)l 100 100 100 100

a,b indicate statistical differences between groups (P\ 0.05) (one-way ANOVA)

Diets were named LP-St (low protein–high carbohydrate), HP-St (high protein–high carbohydrate), LP-L (low protein–high lipid)

and HP-L (high protein–high lipid)
c BW0: initial body weight
d BW1: body weight at week 3 (after 3 weeks of feeding)
e BW2: body weight at week 5 (after 2 weeks of starvation)
f BW3: body weight at week 10 (after 5 weeks of refeeding)
g WGr: Weight gain (r) = BW3 (g) - BW2 (g) during the last 5 weeks of experimentation (refeeding period)
h WGt: Weight gain (t) = BW3 (g) - BW0 (g) during the total experimental period (10 weeks)
i SGRr: Specific growth rate (r) = (Ln BW3 - Ln BW2) 9 100; during the last 5 weeks of experimentation (refeeding period)

(Mohanta et al. 2008)
j SGRt: Specific growth rate (t) = (Ln BW3 - Ln BW0) 9 100; during the total experimental period (10 weeks)
k FCR: Feed conversion ratio = dry feed consumed (g)/WGt (g) (Mohanta et al. 2008)
l Survival (%) = (Number of fish in each group remaining in end of experiment/initial number of fish) 9 100 (Hamza et al. 2008)

Values are mean ± SD (n = 3; number of tanks per treatment)
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all treatments to levels higher than in 3 week fed fish.

After both 3 weeks of feeding and 5 weeks of

refeeding, the supply of low protein diets (LP-St and

LP-L) significantly increased liver fat compared to fish

fed high protein diets (HP-St and HP-L).

Concerning the hepatic protein content, no signif-

icant effect was observed between 3 week fed fish and

2 week starved animals. However, refeeding signifi-

cantly increased liver protein irrespective of the diet.

In all conditions, the fish fed diet LP-L exhibited the

higher hepatic protein content.

CAT and SOD specific activities in liver

The nutritional status and diet composition signifi-

cantly affected liver CAT and SOD activities (Fig. 3a,

b). A trend to increase the specific activity of CAT in

juveniles fed with LP-L and LP-St diets was observed

after 2 weeks of starvation, while almost no change

was observed in the fish fed high protein diets (HP-St

and HP-L) (Fig. 3a). Compared to starved fish,

5 weeks of refeeding with low protein diets (LP-St

and LP-L) significantly decreased CAT activity. The

lower CAT activity levels after refeeding were found

in the fish fed diet HP-L.

Starvation significantly increased SOD activity in

the liver of fish fed the four experimental diets. After

5 weeks of refeeding, a trend to recover the values

found in 3 week fed fish was observed in all treatments

with the exception of fish fed diet HP-St (Fig. 3b).

Discussion

In recent years, some wild populations of Caspian Sea

sturgeons are among critical endangered fish species

(IUCN Red Data List, 2015), because of overfishing

for meat and caviar production, destruction of their

spawning grounds and water pollution (Babaei et al.

2011). Therefore, research efforts have focused on

Siberian sturgeon for developing aquaculture pro-

grams and reducing overfishing of native sturgeons.

The aim of this study was to determine the appropriate

feeding schedule when using starvation periods in

Fig. 1 Hepatosomatic index (HSI) of Siberian sturgeon sub-

mitted to starvation and refeeding with diets differing in nutrient

composition. Sampling was performed after 3 weeks of feeding

(3 F), 2 weeks of starvation (2 S) and 5 weeks of refeeding (5

R). Values are expressed as mean ± SD (n = 3 tanks).

Statistical significance for independent variables (diet and

treatment) and the interaction between them are indicated as

follows: *P\ 0.05; ***P\ 0.001. Homogeneous subsets for

the independent variables (diet and condition) are indicated with

different letters (small and capital, respectively)
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Fig. 2 Liver composition

(glycogen, lipid and protein)

of Siberian sturgeon

submitted to starvation and

refeeding with diets

differing in nutrient

composition. Sampling was

performed after 3 weeks of

feeding (3 F), 2 weeks of

starvation (2 S) and 5 weeks

of refeeding (5 R). Values

are expressed mg g-1 liver.

Statistical significance for

independent variables (diet

and treatment) and the

interaction between them

are indicated as follows:

**P\ 0.01; ***P\ 0.001;

NS not significant.

Homogeneous subsets for

the independent variables

(diet and condition) are

indicated with different

letters (small and capital,

respectively)
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order to improve production, maximize growth and

produce less oxidative damage to Siberian sturgeon in

culture.

Previous studies reported influence of diet compo-

sition on growth performance in Siberian sturgeon

(Rónyai et al. 2002; Guo et al. 2012) and other

sturgeons (Abedian Kenari et al. 2009; Hosseini et al.

2010). However, it remains largely unknown the effect

of the nutrient composition of the diet on physiological

responses during starvation and refeeding in this

species. In the present study, the higher WG after

refeeding was found in the group of fish fed on the high

protein/high carbohydrate diet (HP-St). This finding

suggests that dietary carbohydrate may promote a

faster recovery of BW than dietary lipids after a food

deprivation period in Siberian sturgeon. Concerning

the protein content of the diet, our findings are

consistent with the optimal dietary protein level

reported for maximal growth for Acipenser sinensis

(about 40–45 %; Xiao et al. 1999) and A. persicus

(40 %; Mohseni et al. 2007). In hybrid sturgeon

(Acipenser baerii $ 9 A. gueldenstaedtii #) optimal

dietary protein was estimated at 37 % (Guo et al.

2012). However, refed fish show a fast weight

Fig. 3 Specific activity of

antioxidant enzymes in the

liver of Siberian sturgeon

submitted to starvation and

refeeding with diets

differing in nutrient

composition. CAT (a) and
SOD (b) activities were
assayed in liver of fish after

3 weeks of feeding (3 F),

2 weeks of starvation (2 S)

and 5 weeks of refeeding (5

R). Values are expressed as

means (U mg

protein-1) ± SD (n = 3

tanks). Statistical

significance for independent

variables (diet and

treatment) and the

interaction between them

are indicated as follows:

***P\ 0.001.

Homogeneous subsets for

the independent variables

(diet and condition) are

indicated with different

letters (small and capital,

respectively)
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recovery, mainly supported by the rapid restoration of

their metabolic profile (Furne et al. 2012).

In Siberian sturgeon, the higher HSI and hepatic

glycogen values were found in fish fed high carbohy-

drate diets (HP-St and LP-St). Positive correlation

between HSI and liver glycogen content with dietary

carbohydrate levels has been well documented in

Acipenser baerii (fed on gelatinized starch) (Médale

et al. 1991), white sturgeon (Acipenser transmon-

tanus) (fed on high D-glucose diet) (Fynn-Aikins et al.

1992) and other fish species, such as Sparus aurata

(Metón et al. 1999). Similarly as in the present study, a

significant reduction in HSI of Siberian sturgeon

during starvation was observed previously when

feeding on commercial pellets before fasting (Ashouri

et al. 2013). Decreased HSI was also observed in

starved white sturgeon (Hung et al. 1997b), brown

trout, Salmo trutta (Bayir et al. 2011) and gilthead sea

bream (Metón et al. 1999). Refeeding increased HSI in

all groups of fish. However, the higher HSI values

were observed in Siberian sturgeon fed high carbohy-

drate diets, while feeding a high protein/high lipid diet

(HP-L) resulted in the lowest HSI levels. During

refeeding, hyperphagia can prompted some metabolic

pathways to recover the metabolic profile and reestab-

lish the tissue reserves (Furne et al. 2012), probably

resulting in increased HSI and body weight.

In many fish species, glycaemia maintenance

during food deprivation is directly related to the

ability to mobilize liver glycogen, at least during the

initial stages of starvation (Pérez-Jiménez et al. 2007).

Hepatic glycogen, when required, is enzymatically

broken down to glucose and transported to peripheral

tissues. Our findings indicate that after starvation,

hepatic glycogen modestly decreased in all treatments

(notably in the fish fed low carbohydrate diets). In

contrast, liver glycogen is mobilized as early as after

5–20 days of fasting in A. naccarii (Furne et al. 2012)

and white sturgeon (Hung et al. 1997b).

More than 60 % of liver dry mass (230–330

mg g-1 liver) of Siberian sturgeon liver are lipids.

Similar liver fat content is found in white sturgeon

(300–370 mg g-1 liver) (Fynn-Aikins et al. 1992).

After 3-week feeding, the lowest lipid content was

present in the liver of Siberian sturgeon fed the high

protein/high carbohydrate diet (HP-St). Consistently,

there is convincing evidence that high protein diets

increase fat loss compared to diets with lower protein

content (Halton and Hu 2004), as it is the case in

hybrid sturgeon (Guo et al. 2012). Lipids have a major

role in fish that do not mobilize significant levels of

liver glycogen during starvation (Sheridan and

Mommsen 1991). Most animals are able to tolerate a

20–70 % loss of total body lipid content during

starvation (McCue 2010). The use of the lipid store

during food deprivation depends on the species, the

lipid-reserve tissue and mobilization of other energy

supplies such as glycogen (Furne et al. 2012).

Starvation significantly decreased liver fat in Siberian

sturgeon. Besides, our findings argue for the mobi-

lization of lipid store and to a lesser extend glycogen in

the liver of 2 week starved Siberian sturgeon. These

results suggest that the Siberian sturgeon liver may

preferentially utilize lipids as an energy resource.

Similar results were reported for channel catfish (Kim

and Lovell 1995) and Adriatic sturgeon A. naccarii,

where liver lipid also decreased more importantly than

hepatic glycogen and protein (Furne et al. 2012).

Furthermore, a greater utilization of sturgeon hepatic

lipids for energy purposes during fasting may result

from the high hepatic lipid content in this species

(Furne et al. 2012). The time course of recovery in the

liver differed for glycogen and fat after refeeding: liver

lipid was significantly higher after 5 weeks of refeed-

ing compared to the values observed before food

deprivation, while the refeeding period was not

enough to recover liver glycogen.

The hepatic protein content was less affected than

liver fat by the nutritional condition and diet compo-

sition in Siberian sturgeon. Similarly, white sturgeon

(Hung et al. 1997a) and Persian sturgeon (Mohseni

et al. 2007) fed with diets differing in nutrient

composition were reported to keep body protein

relatively constant. Indeed, reduction in carcass pro-

tein content of white sturgeon after 10 weeks of

fasting was much lower (9 %) than that of the lipid

content (84 %) (Hung et al. 1997b), suggesting that

sturgeon preferentially conserve muscle protein over

lipids during food deprivation (Falahatkar et al. 2013).

Over the past few decades, the stress response of

fish has been extensively investigated. However, the

relationship between diet composition, fish stress and

immune response as well as between feeding regime

and immune response have received little attention

(Caruso et al. 2011; Li et al. 2012). High lipid storage

in sturgeon is rich in unsaturated fatty acids (Garcı́a-

Gallego et al. 1999), which exhibit a very strong

tendency toward oxidation (Fang et al. 2003). The
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specific activities of antioxidant enzymes in Siberian

sturgeon were low compared with other species. The

lower oxygen consumption by sturgeon and its

phylogenetic position (ancestral species exhibit less

antioxidant activity) (Tappel et al. 1982) may explain

these findings.

As with Siberian sturgeon, increased SOD activity

has been described during starvation in Pseudo

sciaenacrocea (Zhang et al. 2008) and brown trout

(Bayir et al. 2011). These results suggest that the rate

of O2�- generation increases during starvation.

CAT activity is associated with elevated concen-

trations of H2O2, which in turn is produced by SOD

reaction. In the present study, starvation increased

SOD activity irrespective of the diet, while low protein

diets (LP-St and LP-L) resulted in high CAT activity

values. Compared with starvation, our results indicate

that the oxidative damage decreased after 5 weeks of

refeeding. In contrast, Furne et al. (2009) reported that

oxidative stress remained after 60 days of refeeding in

liver and red blood cells of rainbow trout and sturgeon.

The low antioxidant activities in the fish fed diet HP-L

after refeeding may be related to the low HSI and low

hepatic lipid content (as a free radical production

inducer) observed in this group of fish.

In conclusion, our findings show for the first time

that Siberian sturgeon juveniles experience metabolic

adjustments to both starvation and refeeding, and that

diet composition has a major impact on the metabolic

responses to nutritional status. Growth performance

and liver composition suggest that refeeding with a

high protein/high carbohydrate diet stimulates the use

of dietary carbohydrates, while allows sparing protein

in Siberian sturgeon. Given that supply of diets with a

significant amount of carbohydrates to sturgeon can

diminish feeding costs and allow sparing protein

without decreasing the growth performance after food

deprivation periods, the results of the present study

may be useful to improve feed management to achieve

better nutrition efficiency and fish health.
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