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Abstract We evaluated the effects of rearing tem-

perature on the composition of fatty acids and

stearoyl-CoA desaturase (SCD) activity and gene

expression in GIFT (genetically improved farmed

tilapia) tilapia. Three triplicate groups of fish were

reared for 40 days at 22, 28, or 34 �C. At the end of the
trial, the final body weight of juveniles reared at 28 �C
was higher than that of fish reared at 22 or 34 �C. Feed
intake, feed efficiency, and the protein efficiency ratio

were also higher at 28 �C. The fatty acid composition

of muscle tissue differed significantly (P\ 0.05)

among the treatment groups. The content of SFA

decreased with decreasing temperature, whereas the

UFA content increased. We observed high levels of

PUFA, particularly n-3 PUFAs, in fish reared at the

lower temperature. Rearing at low temperature sig-

nificantly (P\ 0.05) increased the expression and

activity of the SCD gene. Increased SCD activity and

gene expression can increase the biosynthesis of

MUFAs in GIFT tilapia muscle. Additionally, cold

acclimation can decrease the content of TC and TG in

GIFT tilapia, which can help increase cold tolerance.
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Introduction

Fatty acids are the fundamental structural components

of almost all forms of lipids, acting as precursors of

bioactive molecules. Fatty acids have structural and

functional roles and influence processes such as

reproduction, osmoregulation, and the response to

stress (Makoto et al. 1989; Patricia et al. 2014).

Increased understanding of the nutritional importance

of fatty acids has led to increased research into their

use in animal nutrition (Guerreiro et al. 2012). As with

other organisms, fatty acids play a key role in growth

and reproduction in fish, promoting fat-soluble vi-

tamin absorption and transportation in the body and

supplying essential fatty acids (EFAs) (Yue et al.

2011). Some long-chain polyunsaturated fatty acids

(LC-PUFAs) are precursors to class eicosane active

substances and play an important role in nerve

conduction and information delivery. Additionally,

other LC-PUFAs are essential for fish growth and

development, especially in marine fish and fish larvae

(Yue et al. 2011; Mu andWang 2003). Fish represent a
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valuable source of n-3 PUFAs for humans. Eilander

et al. (2007) reported that n-3 PUFAs, such as DHA

and EPA, play a significant role in preventing human

cardiovascular disease and improving the develop-

ment of the body’s immune function and brain nervous

system.

Environmental factors such as salinity, tem-

perature, and seasons influence fatty acid regulation

in fish (Douglas et al. 1994; Michel et al. 2002;

Akhtara et al. 2014). Among these factors, water

temperature plays a particularly important role in

influencing fatty acid metabolism in fish. Because fish

are ectothermic vertebrates, water temperature has an

immense influence on fish growth, development, sex

differentiation, metabolism, and immune responses

(Logue et al. 2000). Optimal water temperatures

facilitate the increased efficiency of physiological

processes and biochemical reactions in order to help

fish to adapt environmental temperature variations.

The fatty acid composition of animal tissues can be

modified by a change in environmental temperature.

For example, exposure of fish to a short-term

temperature stress, over a period of days or a few

weeks, alters the content of saturated fatty acids

(SFAs), triglycerides, neutral fats, and unsaturated

fatty acids (UFAs) (Logue et al. 2000; Akhtara et al.

2014). Tibor and Istvan (1976) noted that carp

(Cyprinus carpio L.) adjust their fatty acid metabolism

to the prevailing temperature in such a manner that a

decrease in the environmental temperature results in

the accumulation of LC-PUFA and a decrease in

SFAs. In common carp (Wodtke and Cossins 1991),

rainbow trout Salmo gairdneri (Bowden et al. 1996),

and milkfish Chanos chanos (Hsieh et al. 2002, 2003),

UFA levels increase substantially in response to cold

stress. Taken together, these observations suggest that

UFAs play a significant role in the thermal adaptation

of fish to fluctuating environmental conditions.

Fish regulate fatty acid metabolism and composition

through a series of enzymatic cascades (Cheng et al.

2006). These enzymes include three types of fatty acid

desaturases, Acyl-CoA, Acyl-lipid, and Acyl-ACP

(Hsieh et al. 2001), which are known for their roles in

the physiological functioning of cell membranes and

fatty acid metabolism. Stearoyl-CoA desaturase (SCD,

EC 1.14.99.5), an acyl-CoA desaturase (Hsieh et al.

2001), is a rate-limiting enzyme in the biosynthesis of

monounsaturated fatty acids (MUFAs). This enzyme

plays a central role in the regulation of fatty acid

metabolism (Heinemann and Ozols 2003). Hsieh et al.

(2003) demonstrated that the SCD and fatty acid

composition of hepaticmembranes changed significant-

ly during cold acclimation in milkfish (C. chanos), a

warm-water teleost fish. Additionally, the changes in

MUFA levels were highly correlated with changes in

SCD activity in milkfish hepatic microsomes. The

activity and gene expression of SCDhave been reported

in a number of aquatic animals, including grass carp

Ctenopharyngodon idella (Hsieh and Kuo 2005; Chang

et al. 2001), common carp (Tiku et al. 1996), common

octopus Octopus vulgaris (Monroig et al. 2012), hybrid

tilapiaOreochromis niloticus 9 O. aureus (Hsieh et al.

2007), and the sea urchin Strongylocentrotus inter-

medius (Ding et al. 2012). SCD gene cloning and

analysis in tilapia were first performed by Hsieh et al.

(2004), who also studied hormonal effects on SCD

activity and fatty acid composition in tilapia. Subse-

quently, the authors reported the influence of dietary

lipids on the fatty acid composition and stearoyl-CoA

desaturase expression in hybrid tilapia exposed to cold

shock (Hsieh et al. 2007).

GIFT tilapia, a tropical species, are suitable for

culture in warm waters. However, exposure to cold

stress can cause mass mortality and, subsequently,

economic loss (Huang. 2008). SCD can influence the

saturation of fatty acids at different temperatures,

thereby maintaining cell membrane fluidity and cell

function (Zhang et al. 2013). Increased understanding of

the properties of SCD may lead to methods to improve

the cold tolerance of GIFT tilapia. To the best of our

knowledge, there have been no studies on the effects of

temperature on the regulation of SCD in GIFT tilapia.

Our objective was to evaluate the effect of three

different water temperatures (22, 28, and 34 �C) on

the growth performance, blood parameters, fatty acid

composition, and SCD activity and gene expression in

GIFT tilapia juveniles. Our results may also provide a

theoretical and experimental basis for feeding GIFT

tilapia that result in increased health benefits to humans.

Materials and methods

Source of experimental fish

Two hundred healthy juvenile GIFT tilapia were

obtained from Freshwater Fisheries Research Center

of the Chinese Academy of Fishery Sciences, Yixing.
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Prior to the experiments, the fish were acclimated for

10 days in indoor plastic containers at 28 �C water

temperature. During acclimation, the photoperiod was

set at a 12-h light/dark cycle, and dissolved oxygen

was kept near saturation. Additionally, the fish were

conditioned to accept floating feed (crude protein

28 %; crude lipid 6 %).

Experimental management

The experiment began in May and lasted for 40 days.

At the beginning of the experiment, each of the nine

plastic 480-L tanks was filled with 450 L tap water and

aerated for three consecutive days. Each tank was

equipped with a heating device (Zhongkehai Recircu-

lation Aquaculture Systems Co., Ltd, Qingdao, China)

to maintain the preselected water temperature

(22 ± 0.3, 28 ± 0.3, or 34 ± 0.3 �C). After 10 days

acclimation, healthy GIFT tilapia fish (mean weight of

33.57 ± 0.11 g) were randomly assigned into one of

three groups (22, 28, or 34 �C) and stocked into one of
the nine tanks (three tanks/treatment group) at a

density of 18 fish/480-L plastic tank. There was no

significant difference in initial fish weight between the

various experimental groups or between all replicates

(ANOVA; P[ 0.05). During the entire experiment,

the dissolved oxygen was kept near saturation and

feces on the bottom of the plastic tanks were siphoned

off daily. Additionally, one-third of the water volume

was replaced every 3 days, resulting in a temperature

change of\ 0.3 �C. During the experiment, water

temperature and pH were monitored daily, while

dissolved oxygen, ammonia-N, and nitrite were mea-

sured weekly. The pH ranged from 7.4 to 7.8, and

ammonia-N and nitrite were both maintained at

concentrations lower than 0.01 mg L-1. The photope-

riod was maintained on a 12-h light/dark cycle.

During the trial, fish were hand-fed twice a day

(08:00 and 16:00 h) with floating feed (NingboTech-

Bank Co., Ltd, Yuyao, China; crude protein 28 %;

crude lipid 6 %; crude fiber 15 %; crude ash 18 %;

moisture 12 %; calcium 1 %; total phosphorus 1 %;

NaCl 3 %; lysine 1.3 %). The fishwere fed 6 %of their

body weight daily. During the experiment, care was

taken to avoid feed losses. Prior to sampling, fish were

deprived of food for 1 day. At the end of the

experiment, all fish were weighed and three fish from

each tank were randomly sampled to determine the

hepatosomatic indices. To minimize the stress

associated with handling, another three fish from each

tank were sedated with an overdose of tricaine

methanesulfonate (2 %; MS-222; Suzhou Sciyoung

BioMedicine Technology Co., Ltd, Suzhou, China)

within 1 min after capture. The livers were dissected

from these fish and frozen at-80 �C until analysis for

enzymatic activity and RNA. The liver tissue from

each individual was divided into two subsamples. One

subsample was used for the determination of enzymes

and liver glycogen. The second subsample was later

used to measure SCD gene expression. Additionally,

we collected a sample of muscle tissue from three fish

from each treatment group. The muscle tissue was

divided into two portions: One was blended for fatty

acid composition and the other was used to determine

crude fat and crude protein.We collected a caudal vein

blood sample from four fish per tank using a hep-

arinized syringe (Changzhou Yuekang Medical Ap-

pliance Co., Ltd, Changzhou, China) and divided the

sample into two aliquots. The first was immediately

centrifuged and the serum frozen at -20 �C until

analysis. The secondwas used to test blood parameters.

Analytical methods

Growth analysis and determination of muscle

composition

We calculated a variety of growth indices, including

growth rate, feed conversion rate (FCR), protein

efficiency ratio (PER), specific growth rate (SGR),

hepatopancreas somatic index (HSI), and visceral

somatic index (VSI) using the following formulae:

Growth rate (%) = 100 9 (final weight - initial

weight)/(initial weight);

FCR = (Fish feed intake)/(final weight - initial

weight);

PER = (final weight - initial weight)/(feed pro-

tein intake);

SGR = 100 9 [(In (final weight) - In (initial

weight))/days];

HSI(%) = (liver weight 9 100)/(final weight);

VSI(%) = (visceral weight 9 100)/(final weight).

Analysis of blood sample collection

Blood cell counts were calculated using the methods

described in Qiang et al. (2013). To determine the total
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white blood cell (WBC) count, a 1 in 100 dilution of

the blood was made in phosphate saline buffer (PBS,

0.02 M, pH 7.3). Similarly, the blood was diluted 1 in

1000 to count the red blood cells (RBC). Counts were

carried out using a Neubauer haemocytometer (Hawk-

sley & Son Ltd, England) and were expressed as cells

lL-1. The concentration of hemoglobin (Hb) was

determined colorimetrically by measuring the forma-

tion of cyanomethemoglobin following the method of

Van Kampen and Zijlstra (1961).

The concentration of total protein (TP), triglyceride

(TG), total cholesterol (TC), glucose (GLU), and high-

density lipoprotein (HDL-G) and the activity of aspartate

aminotransferase (AST) and alanine aminotransferase

(ALT) were assayed in serum obtained by centrifuging

the blood sample (5000 rpm, 15 min). These indices

were all measured using an automatic biochemical

analyzer (Mindray, BS-400, Shenzhen, China). Test kits

were all purchased from Shenzhen Mindray Bio-

Medical Electronics Co. Ltd (Shenzhen, China).

Lipid extraction and fatty acid analysis

Total lipid was extracted following the method of

Folch et al. (1957) using a chloroform/methanol

mixture (2:1). Samples were stored at -80 �C prior

to analysis. Three aliquots from each sample were

used for fatty acid analysis. The fatty acid methyl

esters (FAMEs) were prepared according to Ren et al.

(2012) by methylating in 1 % sulfuric acid in

methanol at 70 �C for 3 h to prepare fatty acid methyl

esters (FAMEs). FAMEs were extracted in heptanes

and analyzed using a gas chromatograph (GC-2010,

Shimadzu, Japan) equipped with an auto-sampler and

a hydrogen flame ionization detector. The GC was

fitted with a 30 m 9 0.25 mm 9 0.25 lm capillary

column (VF-23 ms, Varian, Salt Lake City, Utah,

USA). The carrier gas was N2 and the combustion-

supporting gases were air and H2. The injector and

detector temperatures were both 250 �C. The column

temperature was initially held at 120 �C for 3 min,

followed by an increase at a rate of 10 �C/min to

190 �C. The rate then increased to 2 �C/min to a final

temperature of 220 �C, which was maintained for

15 min. Individual fatty acids were identified by

comparison against commercial standards (Sigma,

USA) and quantified using the CLASS-GC10 GC

workstation (Shimadzu, Japan). All lipids were ex-

tracted from muscle tissue.

Hepatic glycogen and SCD activity

To determine the hepatic glycogen concentration and

SCD activity, one portion of the liver sample from

each individual was homogenized (dilution 1/9) in ice-

cold buffer (0.02 M Tris; 0.25 M sucrose; 2 mM

ethylenediaminetetraacetic acid (EDTA)) and cen-

trifuged for 15 min (12,000 rpm, 4 �C). The super-

natant was then removed and used for analysis. All test

kits were purchased from Shanghai Lengton Bio-

science Co., Ltd (Shanghai, China). Hepatic glycogen

content was determined as described by Plummer

(1987). The SCD content was determined by enzyme-

linked immunosorbent assay (ELISA) (BioTek Eon,

Vemont, USA).

Real-time quantitative PCR

Gene expression levels were determined by real-time

quantitative RT-PCR. Primers for RT-PCR were

designed with reference to the known sequences for

tilapia (Table 1). All primers were synthesized by

Shanghai Genecore, BioScience & Technology Com-

pany (Shanghai, China). The PCR products were

100–110 bp long.

Total RNA was extracted from the liver using

Trizol reagent (Dalian Takara Co. Ltd, Dalian, China).

RNA samples were treated with diethyl pyrocarbonate

(DEPC)-treated water (Dalian Takara Co. Ltd). cDNA

was generated from 350 ng RNA using a Prime-Script

RT reagent kit (Dalian Takara Co. Ltd), a PCR system

(ABI, Foster City, California, USA), and a SYBR

Table 1 Primer sequences

SCD stearoyl-CoA

desaturase

Target mRNA Sequence NCBI GenBank

accession no

SCD F: 50–ACAAGCTCTCCGTGCTGGTCAT–30

R: 30–GCAGAGTTGGGACGAAGTAGGC–50
AY150696.1

b-actin F: 50–CCACACAGTGCCCATCTACGA–30

R: 30–CCACGCTCTGTCAGGATCTTCA–50
EU887951.1
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Green PCR Master Mix (ABI), following the

manufacturer’s instruction. RT-PCR was performed

as follows: denaturation at 95 �C for 5 min; 40 cycles

of denaturation at 95 �C for 15 s; annealing at 59 �C
for 60 s. The relative quantification of the target gene

transcript SCD was calculated with a chosen reference

gene transcript (b-actin) using the 2-DDCT method

(Livak and Schmittgen 2001). This mathematical

algorithm computes an expression ratio based on

real-time PCR efficiency and the crossing point

deviation of the sample versus a control. PCR

efficiency was measured by constructing a standard

curve using a serial dilution of cDNA. No-template

control (NTC) and no-reverse transcriptase control

(NRT) were used as controls for template and genomic

contamination, respectively. Values for SCD mRNA

were detected using a homogenization procedure and

assigned the maximum value of 1.

Statistical analysis

Differences between groups were analyzed using one-

way ANOVA followed by Duncan’s multiple com-

parison test. All statistical analyses were performed

using SPSS 17.0 (SPSS Inc., Chicago, Illinois, USA).

Results

Effect of water temperature on growth and muscle

composition

Nomortality was observed throughout the experiment.

At the end of the experiment, the biological indices

differed between the three temperature treatment

groups (Table 2). Final body weights were significant-

ly (P\ 0.05) greater in fish reared at 28 and 34 �C than

at 22 �C; final body weight was higher at 28 �C than at

34 �C. The differences in SGR between groups were

similar to those for final body weight. Rearing

temperature also had a significant effect (P\ 0.05)

on FCR, PER, HSI, and VSI. The FCRwas significant-

ly (P\ 0.05) lower at 28 �C than at 22 and 34 �C, and
the FCRwas higher at 34 �C than at 22 �C. The pattern
of differences in PERwas opposite to that of FCR. PER

was significantly (P\ 0.05) higher at 28 �C than at 22

and 34 �C and was higher at 22 �C than at 34 �C. The
HSI was significantly lower at 28 �C than at 22 and

34 �C. The VSI was significantly (P\ 0.05) higher at

28 �C than at 34 �C, but not 22 �C.
We measured the levels of crude lipid and crude

protein in tilapia that were reared at three different

Table 2 Growth performance and the indices of hepatosomatic and viscera of juvenile GIFT tilapia

Temperature 22 �C 28 �C 34 �C

Initial body weight (IBW) (g) 33.63 ± 0.10 33.50 ± 0.13 33.56 ± 0.11

Final body weight (FBW) (g) 75.04 ± 0.46a 88.43 ± 3.15b 87.70 ± 1.85b

SGR (%/d)a 2.01 ± 0.01a 2.42 ± 0.10b 2.40 ± 0.06b

FCRb 1.08 ± 0.06a,b 1.06 ± 0.03a 1.16 ± 0.04b

PERc 3.29 ± 0.17a,b 3.36 ± 0.10b 3.06 ± 0.09a

HSI (%)d 1.68 ± 0.55a 1.52 ± 0.56b 1.65 ± 0.51a

VSI (%)e 11.87 ± 2.34a,b 12.39 ± 1.43b 10.82 ± 1.96a

Liver glucose 39.09 ± 14.47 41.56 ± 8.37 34.77 ± 9.65

Muscle composition (%)

Crude fat 1.07 ± 0.13 1.14 ± 0.17 1.05 ± 0.14

Crude protein 18.26 ± 2.01b 19.32 ± 1.75b 15.54 ± 1.62a

Means in the same column which have different letters on the top right have significant difference (P\ 0 05). All data are presented

as means ± standard error
a SGR specific growth rate: 100 9 [(In (final weight) - In (initial weight))/days]
b FCR feed conversion rate: (fish feed intake)/(final weight - initial weight)
c PER protein efficiency ratio: (final weight - initial weight)/(feed protein intake)
d HSI hepatopancreas somatic index: (liver weight 9 100)/(final weight)
e VSI visceral somatic index: (visceral weight 9 100)/(final weight)
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temperatures. Crude protein (n 9 6.25) was measured

by the Kjeldahl method after acid digestion using an

Auto Kjeldahl System (1030-Auto-analyzer, Tecator,

Hoganas, Sweden). Crude lipid was measured using

the ether extraction method using a Soxtec System HT

(Soxtec System HT6, Tecator, Sweden). There was no

significant (P\ 0.05) difference in the content of

crude lipid between the three treatment groups.

Conversely, there was a significant (P\ 0.05) differ-

ence in the content of crude protein. The content of

crude protein was significantly lower in fish reared at

22 �C (P\ 0.05) than at the two higher temperatures

(Table 2).

Effect of water temperature on blood parameters

of GIFT tilapia juveniles

The RBC, WBC, Hb, and Hct values in GIFT tilapia

juveniles from the three treatment groups are given in

Table 3. The RBC andWBC counts were significantly

(P\ 0.05) higher at 28 and 34 �C than at 22 �C. RBC
counts peaked at 28 �C (2.09 9 106 lL-1) and were

lowest at 22 �C (1.89 9 106 lL-1). The WBC counts

increased with increasing temperature and were high-

est at 34 �C. The pattern of differences in Hct between
groups was similar to that in RBC, but the difference

was not significant between the groups reared at 22

and 34 �C. The Hbwas significantly higher (P\ 0.01)

at 28 and 34 �C than at 22 �C and was higher at 34 �C
than at 28 �C.

Effect of water temperature on biochemical

parameters in serum

There was no significant difference in TG (P[ 0.05)

between the three treatment groups, though levels did

increase with increasing temperature. The pattern of

differences in TP and TC was similar to that in TG,

though TC levels were significantly higher at 34 �C
(P\ 0.05) than at the other two temperatures. The

levels of ALT, AST, and GLU were lowest at 28 �C
and were significantly (P\ 0.05) higher at 34 �C.

Effect of water temperature on fatty acid

composition

We documented 21 fatty acids in the muscle of GIFT

tilapia, of which there were six SFAs, three MUFAs,

and 12 PUFAs. There was a significant difference

(P\ 0.05) in muscle fatty acid composition between

the three treatment groups (Table 5). The most

common fatty acids in all groups were C16:0, C18:0,

C18:1, C18:2, C20:4, and C20:6. There was no

significant difference between groups in total MUFA,

the ratio of MUFA/SFA, or the ratio of n-3 to n-6

PUFA. However, the total SFA and PUFA were

significantly higher (P\ 0.05) at 34 �C than at 22 and

28 �C.
The total fatty acid extracted from the muscle of

cold-adapted fish contained more arachidonic acid

(ArA, 20:4n-6), eicosapentaenoic acid (EPA, 22:5n-

3), and docosahexaenoic acid (DHA, 22:6n-3) than

from the other two treatment groups. However, there

was no difference in the levels of stearic acid (18:0)

and oleic acid (18:1) between the three groups. The

concentration of stearic acid tended to decrease with

increasing temperature, and there was a negative

correlation between the levels of C18:1 and C18:0.

The level of palmitic acid (16:0) and palmitoleic acid

increased with increasing temperature and was sig-

nificantly (P\ 0.05) higher at 34 �C than at the other

temperatures. The concentration of n-3 PUFAs de-

creased as temperature increased, whereas there was

no obvious difference in the levels of n-6 PUFAs

between groups (Table 5). The EFA content decreased

as temperature increased.

Table 3 Blood parameters of GIFT tilapia juveniles in different temperatures

Temperature 22 �C 28 �C 34 �C

RBC (9 1012/L) 189.45 ± 13.67a 209.29 ± 22.33b 206.33 ± 19.41b

WBC (9 109/L) 2.02 ± 0.20a 2.34 ± 0.36b 2.35 ± 0.45b

Hb (g/L) 95.17 ± 11.34a 107.58 ± 15.91b 115.19 ± 10.93b

Hct (%) 37.90 ± 7.73a 48.49 ± 8.70b 45.15 ± 10.39ab

Means in the same column which have different letters on the top right have significant difference (P\ 0.05). All data are presented

as means ± standard error
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Effect of water temperature on the activity

and mRNA levels of SCD

SCD activity and mRNA levels were significantly

(P\ 0.05) influenced by water temperature, both

decreasing as temperature increased. SCD activity was

higher in fish reared at 22 �C than at 28 or 34 �C. The
change in SCD activity mirrored the changes in SCD

mRNA expression. mRNA expression was significant-

ly (P\ 0.05) lower in fish reared at 34 �C than at the

other two temperatures and increased as temperature

decreased.

Discussion

Effect of water temperature on growth and muscle

composition

Changes in temperature resulted in significantly

different growth rates, as is expected in poikilothermic

organisms. Previous research suggests that the opti-

mum temperature for growth in GIFT tilapia juveniles

is 28 �C (Qiang et al. 2012). This is consistent with our

observation of highest growth in fish reared at 28 �C.
A similar effect of temperature on the growth of this

species was also observed by Likongwe et al. (1996)

and Azaza et al. (2008). Elliot (1972) speculated that

higher temperatures promote gastric evacuation, thus

leading to poor feed utilization and inhibited growth.

In the present experiment, we observed maximum

growth in GIFT tilapia at 28 �C corresponding with

maximum SGR and PER and lower FCR (Table 2).

Musuka et al. (2009) concluded that higher tem-

peratures can lead to increased food intake and feed

utilization and, in turn, to more efficient intestinal

digestion and absorption. In our study tilapia, the FCR

was lowest at 28 �C and highest at 34 �C, whereas
SGR was highest at 28 �C. This is consistent with the

efficient use of energy at lower temperatures (Jorge

et al. 2013). Azaza et al. (2008) confirmed that such a

depression of growth is because of the higher energy

cost for maintenance metabolism and occurs primarily

because of a loss of appetite when the experimental

temperature reaches the upper extreme of the tolerance

range. Additionally, the significant reduction we

observed in muscle crude lipid content at high

temperatures is consistent with previous research into

the effect of stocking density, whereby there is high

lipid utilization at high stocking densities to satisfy

energy demands (Li et al. 2010).

The HSI and VSI can be used to indicate the health

status and quality of fish. A smaller VSI is associated

with an increase in the edible proportion of an

individual (Wei et al. 2014). However, the VSI was

significantly higher at 28 �C (P\ 0.05) than at the

other two temperatures. Unfortunately, our ex-

periment was conducted during the breeding season.

Thus, the increase in VSI was likely due to develop-

ment of their gonads, particularly in tilapia that were

reared at the optimum water temperature (Dzikowski

et al. 2001). Water temperature can significantly affect

the HSI in fish. In our study, the HSI was significantly

(P\ 0.05) lower at 28 �C than at 22 and 34 �C.
Deviating from the optimum water temperature can

result in high liver load conditions for fish (Du et al.

2002).

Effect of temperature on blood parameters of GIFT

tilapia juveniles

The composition of fish blood is influenced by

metabolism, nutritional status, and diseases (He et al.

2007). Changes in the levels of blood parameters such

as RBC, WBC, Hb, and Hct give an insight into the

health status of an individual (Harikrishnan et al.

2011). RBC affect transportation of O2 and CO2. Hb is

a protein that is responsible for carrying oxygen in the

fish body, so its concentration is closely correlated

with RBC counts (Clark et al. 1979). In this study,

RBC counts and Hct were highest in fish reared at

28 �C. Conversely, the concentration of Hb tended to

increase as temperature increased. Both the PER and

SGR were higher at 28 �C than at the other two

temperatures. We speculate that at the optimum

temperature, food intake is increased and the metabol-

ic capacity is higher. Thus, the oxygen demand

increases, resulting in an increase in the RBC (Zhi

et al. 2008). This is consistent with Zhang (1991a, b),

who reports that Hb concentrations increased with an

increase in temperature. In contrast, Qiang et al.

(2013) reported that RBC counts and Hb concentration

peaked at 28 �C and decreased thereafter. In the

present study, the concentration of Hb was highest at

34 �C. This difference may be a function of other

factors such as size and nutritional status. WBC play a

role in the immune system. Thus, changes in WBC

counts can be used to detect diseases and/or injury in
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fish (Ellis 1981). The WBC count was highest at

28 �C, which is consistent with observations by Qiang
et al. (2013) and Slater and Schreck (1998). The

increase in WBC at this temperature may explain the

increased disease resistance in tilapia that are reared at

the optimal temperature. Taken together, these obser-

vations are further evidence that the optimum tem-

perature for GIFT tilapia is 28 �C because both growth

and immunity are maximized.

Lipids are transferred throughout the fish body in

the serum. Thus, serum lipid levels reflect the status of

body lipid metabolism (Hiraoka et al. 1979). Previous

research has indicated that the TC and TG content

reflect the absorption of lipid (He et al. 2007). In our

study, TC and TG content were highest in GIFT tilapia

juveniles reared at 34 �C, suggesting that higher

temperatures are not good for the absorption of lipids

in tilapia. Instead, lipids are deposited in the body,

which can lead to a fatty liver (Cheng et al. 2006).

Guerreiro et al. (2012) noted that the lipid content of

juvenile Senegalese sole Solea increased when the

water temperature was raised from 16 to 22 �C. Singh
et al. (2009) observed a similar pattern in African

catfish, Clarias batrachus. The content of TG declined

at lower temperatures, potentially because of an

increase in oxidation of fatty acids to supply energy

(Wu et al. 2000). Some studies have noted that

increased TG content is indicative of fat accumulation

in the liver and leads to a fatty liver or hypertrophy of

the liver (Lu et al. 2010). This explains why the HSI

was higher at high temperature. Cholesterol exists in

lipoprotein in the blood (Cui et al. 2013). HDL-G can

transfer the cholesterol away from artery walls to

metabolize in liver (Xiang et al. 2010). The changes in

TC and HDL-G were consistent, increasing with the

temperature increase. It is also a possible reason that

leads to a higher HSI in high temperature.

Transaminase plays an important role in the

metabolism of amino acids and the conversion of

proteins, fats, and carbohydrates. ALT and AST are

the two primary transaminases (Xiang et al. 2010).

Generally, an increase in the activity of AST is

indicative of a heart or muscle disorder. If ALT

activity is increased in the liver, it may be a sign of

injury (Han et al. 2010). Our results suggest the liver

was in a high load condition in fish that were reared at

the high or low temperature. Both ALT and AST were

lowest in fish reared at 28 �C and highest at 34 �C
(Table 4). Rearing at high or low temperature may

lead to liver tissue injury, resulting in leakage of ALT

from injured liver cells to the blood and an increase in

serumALT content (Zhang 1991a, b). GLU is the most

important energy substrate in the blood and a direct

source of energy for a range of activities in fish. There

is a close relationship between GLU levels and liver

glycogen catabolism (Zhu and Shen 2002). In the

present study, GLU levels were lower at 28 �C than at

the higher and lower temperatures, whereas liver

glycogen was highest at 28 �C. This indicates that the
fish use glycogen to provide energy when reared at low

or high temperatures (Carine et al. 2004; Chatzifotis

et al. 2010; Table 5).

Effect of temperature on fatty acid composition

Many aquatic organisms are adapted to cope with

variation in temperature, allowing physiological pro-

cesses and biochemical reactions to proceed efficient-

ly at different temperatures (Brett et al. 2006).

Ectotherms typically store lipid in the liver and muscle

Table 4 Indices of serum biochemistry in different temperatures

22 �C 28 �C 34 �C

ALT (U/L) 16.45 ± 13.18a 11.22 ± 4.46a 28.86 ± 13.18b

AST (U/L) 25.84 ± 13.89a 23.66 ± 11.66a 86.82 ± 23.83b

TP (g/L) 35.68 ± 5.06 37.13 ± 5.67 38.46 ± 4.12

TC (g/L) 4.74 ± 1.37a 4.92 ± 1.40a 7.69 ± 1.63b

TG (g/L) 1.71 ± 1.13 2.09 ± 2.44 2.78 ± 1.17

HDL-G (mmol/L) 2.64 ± 0.45a 2.71 ± 0.40a 3.18 ± 0.30b

GLU (mmol/L) 3.19 ± 1.29a 2.98 ± 0.92a 6.99 ± 1.05b

Means in the same column which have different letters on the top right have significant difference (P\ 0.05). All data are presented

as means ± standard error. ALT alanine aminotransferase, AST aspartate aminotransferase, TP total protein, TC total cholesterol, TG

triglyceride, HDL-G high-density lipoprotein, GLU glucose
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in the form of triacylglycerol (Sheridan 1994). The

composition of fatty acids changes with changes in

temperature (Sargent and Tacon 1999; Cordier et al.

2002). This is likely an adaptation to maintain constant

membrane fluidity (Kheriji et al. 2003; Olsen et al.

1999; Nanton and Castell 1999). The temperature-

induced variation in fatty acid composition of animal

tissues results in changes to the proportion of

unsaturated to saturated fatty acids (Hilditch and

Williams 1964). An increase in unsaturation in

response to decreased environmental temperature has

been documented in many fishes, such as golden

mahseer Tor putitora (Akhtara et al. 2014), goldfish

(Kemp and Smith 1980), and sea bass Dicentrarchus

labrax (Skalli et al. 2006) and has been implicated in

homeoviscous adaptation (Charlotte and Patrick

1994). In our study, we documented a higher propor-

tion of UFAs in fish reared at the low temperature.

This is consistent with observations in rainbow trout

Oncorhynchus mykiss (Calabretti et al. 2003). Addi-

tionally, Shen et al. (2005) documented a higher level

of UFAs in the oviparous lizard Phrynocephalus

Table 5 Fatty acid

composition of muscle in

different temperatures (% of

total FAME)

All above fatty acids

presented came from the

muscle tissue

Means in the same column

which have different letters

on the top right have

significant difference

(P\ 0.05). All data are

presented as

means ± standard error.

SFA saturated fatty acid,

MUFA monounsaturated

fatty acid, ArA arachidonic

acid, EPA eicosapentaenoic

acid, DHA docosahexaenoic

acid, PUFA polyunsaturated

fatty acid, UFA unsaturated

fatty acid

22 �C 28 �C 34 �C

c14:0 1.21 ± 0.30a 1.32 ± 0.25a 1.84 ± 0.08b

c15:0 0.23 ± 0.01a 0.26 ± 0.01b 0.25 ± 0.01a,b

c16:0 19.43 ± 1.33a 19.85 ± 0.48a 22.14 ± 0.82b

c17:0 0.34 ± 0.04 0.35 ± 0.03 0.32 ± 0.01

c18:0 9.19 ± 0.53 8.61 ± 0.31 8.57 ± 0.37

c20:0 0.21 ± 0.01 0.21 ± 0.02 0.18 ± 0.01

RSFA 30.52 ± 1.05a 30.59 ± 0.12a 33.30 ± 0.87b

c16:1 1.76 ± 0.27a 1.57 ± 0.16a 2.21 ± 0.15b

c18:1 17.66 ± 1.40 17.81 ± 1.03 19.79 ± 0.54

c20:1 0.92 ± 0.07 0.84 ± 0.10 0.79 ± 0.07

RMUFA 20.34 ± 1.71 20.23 ± 1.24 22.79 ± 0.73

c18:2n-6 20.27 ± 1.26a 22.76 ± 0.21b 20.08 ± 0.45a

c18:3n-3 0.58 ± 0.12 0.51 ± 0.09 0.62 ± 0.04

c18:3n-6 1.60 ± 0.13a 1.88 ± 0.13b 1.71 ± 0.05a,b

c20:2n-6 1.16 ± 0.11 1.14 ± 0.06 0.97 ± 0.08

c20:3n-3 1.07 ± 0.09a,b 0.97 ± 0.10a 1.23 ± 0.11b

c20:4n-6 ArA 4.02 ± 0.92 3.23 ± 0.16 3.54 ± 0.53

c20:5n-3 EPA 0.76 ± 0.09a,b 0.78 ± 0.09b 0.62 ± 0.02a

c22:2n-6 0.31 ± 0.26a,b 0.20 ± 0.09a 0.84 ± 0.37b

c22:3 1.10 ± 0.21b 0.80 ± 0.09a 0.82 ± 0.10a,b

c22:4n-6 1.73 ± 0.39b 1.20 ± 0.09a 0.94 ± 0.01a

c22:5n-3 2.36 ± 0.17a 2.14 ± 0.16a 1.79 ± 0.04b

c22:6n-3 DHA 14.19 ± 2.24b 13.59 ± 1.19a,b 10.75 ± 0.62a

RPUFA 49.14 ± 2.71a 49.18 ± 1.13a 43.91 ± 1.36b

RUFA 69.48 ± 1.05b 68.64 ± 1.31a,b 66.70 ± 0.87a

RMUFA/RPUFA 0.42 ± 0.06a 0.41 ± 0.03a 0.52 ± 0.03b

RMUFA/RSFA 0.67 ± 0.04 0.66 ± 0.04 0.68 ± 0.02

c16:1/c16:0 0.09 ± 0.01a,b 0.08 ± 0.01a 0.10 ± 0.00b

c18:1/c18:0 1.93 ± 0.26 2.07 ± 0.15 2.31 ± 0.15

RDHA ? EPA 14.95 ± 2.33b 14.37 ± 1.28a,b 11.37 ± 0.65a

Rn-3PUFA 18.96 ± 2.54b 17.98 ± 1.39a,b 15.01 ± 0.75a

Rn-6PUFA 29.08 ± 0.19b 30.40 ± 0.36c 28.07 ± 0.77a

Rn-3/Rn-6PUFA 0.65 ± 0.09 0.59 ± 0.05 0.53 ± 0.02
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przewalskii, a cold-blooded animal, following expo-

sure to lower ambient temperature. The authors

speculated that UFA was important for adaptation to

the lower temperature environment. However, Olsen

et al. (1999) reported that lowering the temperature

generally reduced liver SFA and MUFA levels

followed by an increase in PUFA, but the changes

were inconsistent and nonsignificant in Arctic char

Salvelinus alpinus (L.) muscle. The authors suggested

that the differences between studies may be because of

species- and tissue-specific responses, in addition to

dietary and other environmental factors.

EFAs cannot be synthesized by animals so, instead,

must be taken up via their food for growth, develop-

ment, and maintaining tissue function (Cheng and Li

2004). The physiologically active EFAs in animals

include EPA (20:5n-3), DHA (22:6n-3), and ArA

(20:4n-6) (Sargent and Tacon 1999). Deficiencies in

EFA are associated with decreased growth and feed

conversion in fish (Cheng and Li 2004). An inverse

relationship between temperature and UFA content,

particularly EPA and DHA, has been reported for

several poikilotherms (Hazel 1984). In this study,

DHA and ArA levels decreased as the temperature

increased. Conversely, EPA levels were significantly

(P\ 0.05) lower at 34 �C than at 22 and 28 �C and

increased as the temperature decreased. Higher levels

of EPA and DHA in European sea bass reared at 22 �C
were previously interpreted as a way to maintain

membrane fluidity (homeoviscous regulation) (Skalli

et al. 2006). Previous studies have reported that UFAs,

particularly EPA and DHA, play an important role in

reducing the serum TG and TC content (Wang et al.

2012; Zhang et al. 2010). Consistent with this, we

observed a decrease in the UFA and EPA ? DHA

content and an increase in TG and TC levels as

temperature increased. These PUFAs have also been

linked to species growth, reproductive success, and

neural development in both zooplankton and fish

(Brett et al. 2006; Perhar et al. 2013). For example, Xu

et al. (1994) concluded that levels of n-3 and n-6

PUFAs must be maintained at a suitable ratio for

optimal fecundity and hatching rate. In our study, the

content of n-3 PUFAs and n-6 PUFAs changed

inversely as temperature increased. Dietary n-3

PUFAs are important for human health, and because

fish are an important dietary source of n-3 PUFA

(Sargent and Tacon 1999), there is likely an economic

benefit to manipulating rearing temperatures to

enhance the proportion of n-3 PUFA in cultured fish.

In the current experiment, tilapia grew best at 28 �C,
whereas n-3 PUFA levels were highest at 22 �C. Thus,
efforts to regulate the fatty acid content by controlling

temperature must also consider other factors, such as

growth. Additionally, previous studies have noted that

tilapia, like other warm-water fish, are more inclined

to requiring greater amounts of n-6 PUFA compared

with n-3 PUFA for maximal growth (Hsieh et al.

2007). Huang et al. (1998) reported that high levels of

n-3 PUFA depress the growth of tilapia. This is

consistent with our observation that tilapia reared at

28 �C had the highest n-6 PUFA levels and highest

growth efficiency. However, Chou and Shiau (1999)

and Hsieh et al. (2007) pointed out that both n-3 and

n-6 PUFAs are essential for maximal growth of hybrid

tilapia. Thus, our future research will focus on the

effect of different dietary oil sources on tilapia growth

performance, fatty acid composition, and other

physiological indices. The fatty acid requirements of

tilapia remain poorly understood. Despite this, our

results suggest optimal rear tilapia may be at 28 �C as

this not only is the optimum growth temperature but

also results in a satisfactory ratio of n-3 PUFA to n-6

PUFA.

The activity and mRNA levels of SCD

Being a tropical species, GIFT tilapia are well adapted

to warm waters, though high mortality of this species

has often been reported during winter (Duan et al.

2011). In response to cold stress, fish adapt their fatty

acid composition of lipids to tolerate the cold (Hsieh

et al. 2007). Fish maintain the fluidity and stability of

the cell membrane to resist cold stress by accumulat-

ing long-chain UFAs (Farkas 1980). In ectothermic

vertebrates, lipid metabolism is regulated by an

intracellular lipase and hormone (Sheridan 1994).

Temperature has an effect on lipase activity and

hormone levels (Shen et al. 2005). Fatty acid desat-

urases play important roles in the physiological

functioning of cell membranes and in fatty acid

metabolism (Tiku et al. 1996). SCD, a type of Acyl-

CoA desaturase, is a rate-limiting enzyme in the

biosynthesis of MUFA and plays a central role in

regulating fatty acid metabolism (Heinemann and

Ozols 2003). It is responsible for introducing the first

double bond between carbons 9 and 10 of palmitoyl

(16:0)-CoA and stearoyl (18:0)-CoA to form the
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monounsaturated palmitoleic acid (16:1) and oleic

acid (18:1), respectively (Jeffcoat et al. 1977). The

expression of SCD can be regulated by diet and

environmental temperature (Hsieh and Kuo 2005;

Waters and Ntambi 1996). We observed a decrease in

SCD expression as temperature increased (Figs. 1, 2)

and a parallel change in UFA content. These changes

are essential for maintaining membrane fluidity during

cold acclimation (Hazel and Williams 1990). Hsieh

et al. (2007) suggested that tilapia would increase the

level of SCD transcription and activity to convert SFA

into UFA during acclimation to cold shock. A number

of studies have reported a change in the unsaturation

index (16:1/16:0; 18:1/18:0) parallel to a change in

desaturase activity (Trueman et al. 2000; Hsieh et al.

2002). However, we observed little difference. We

presumed that this was because of the time depen-

dence of different acclimation temperatures. Our fish

were reared in the preselected water temperature for a

longer time because tilapia adjust their metabolism to

reach a stable level and therefore gradually adapt to

the environmental temperature. Conversely, Trueman

et al. (2000) and Hsieh et al. (2002) reared the fish at a

given temperature for a short time or subjected the

experimental animals to cold stress. Thus, the fish may

not have had sufficient time to adjust their metabolic

level. The proportion of MUFA was higher at 34 �C
than at the lower temperatures. We speculate that this

was because the change in SCD activity is an integral

part of the response, but as the duration of exposure

increases, the activity of monoene-specific elongases

becomes more important. A substantial increase in

levels of 20:1 (Trueman et al. 2000) is consistent with

this hypothesis. In our study, the level of 20:1 was

higher at 22 �C, followed by 28 and 34 �C. Alterna-
tively, the differences could be explained as follows:

MUFAs will most likely be elongated to PUFAs

(Stoffel and Ach 1964). The biosynthesis of PUFAs

involves chain elongation, followed by desaturation,

while b-oxidation processes may also be involved in

the change in PUFA levels (Sprecher 2000). Addi-

tionally, prior research suggests that, compared with

SFAs such as 16:0, the MUFAs (e.g., 18:1) are more

likely to become the substrate of ACAT (acyl-CoA

cholesterol acyltransferase) and DGAT (diacylglyc-

erol acyltransferase) and thus generate TC and TG

(Peng et al. 2011). Our results were consistent with

this hypothesis. The level of 18:1, TC, and TG

increased as the temperature increased. Thus, we

found evidence to support the role of SCD in

controlling lipid deposition in fish.

In conclusion, our study revealed that there were

significant changes and differences in growth, blood

parameters, and fatty acid composition in juvenile

tilapia reared at different temperatures. Our results

confirm that the optimum temperature for GIFT tilapia

is 28 �C and provides a theoretical basis for improving

the culture of tilapia. For the first time in GIFT tilapia,

we documented significant changes in SCD gene

expression in fish reared at different temperatures.

This gene can affect the saturation of fatty acid and, in

turn, affect the capacity for cold resistance. This

finding holds promise for improving resistance of

tilapia to low temperature.
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