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Abstract Rhamdia quelen morphophysiological

responses to propofol sedation were examined. The

purpose was to investigate whether propofol would be

a suitable drug to be used in fish transport procedures.

Fish were exposed to 0, 0.4 or 0.8 mg L-1 propofol for

1, 6 or 12 h in 40 L tanks, simulating open transport

systems. Propofol was able to prevent the peak of

cortisol levels experienced by the group exposed to

0 mg L-1 propofol at 1 h. At 0.4 mg L-1, propofol

also preserved the stability of hematological (hemat-

ocrit, red blood cell count, hemoglobin, mean corpus-

cular volume, mean corpuscular hemoglobin and

mean corpuscular hemoglobin concentration), mor-

phological (red blood cell area), biochemical (cortisol,

glucose, lactate, total protein, ammonia, urea, alkaline

phosphatase, alanine aminotransferase and aspartate

aminotransferase) and hydromineral (Na?, Cl- and

K? plasma levels) indicators of stress. Such results

suggest that sedation with propofol at 0.4 mg L-1 is

suitable for R. quelen transport.

Keywords Transport � Stress � Hematology �
Morphology � Biochemistry

Introduction

The transportation segment of the fish farming system

undoubtedly requires operational expertise and knowl-

edge on the physiology of the subjects. Buin et al.

(2013) stated that mortality occurred not only during

transport but also and most importantly after the fish

had been delivered to the recipient location. The

addition of sedative/anesthetic substances to the water

of transport has been employed in an attempt to reduce

fish death arisen from transport-mediated stress (Ross

et al. 2007; Becker et al. 2012; Benovit et al. 2012).

The purpose is to induce a calming or sedative state

during the procedure so that the perception of the

stressful event is minimized and its side effects

reduced (Iwama et al. 1989).

The stress response in fish is an adaptive mecha-

nism characterized by a cascade of physiological

alterations that constitute a three-phase pattern

(Wendelaar Bonga 1997). Firstly, upon stress, the

neuroendocrine system releases catecholamines and
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corticosteroids into the blood stream. The presence of

these stress hormones in the circulatory system

precipitates subsequent responses related to energy

requirements, such as increases in blood glucose and

lactate levels, and variation in plasma electrolytes

concentrations, among others. If the second responses

are extreme or sustained, the process culminates with

whole-animal changes which compromise metabo-

lism, reproductive output and disease resistance and

may ultimately lead to mortality (Barton and Iwama

1991; Wendelaar Bonga 1997; Maricchiolo and

Genovese 2011).

Despite the purpose of the use of an anesthetic

being to mitigate stress, a common report is that the

substance itself may pose as a stressor, thus activating

the stress response mechanism (Thomas and Robert-

son 1991; Sladky et al. 2001; Bolasina 2006).

According to Zahl et al. (2012), the unwanted side

effects of an anesthetic such as respiratory acidosis

and osmotic stress reduce the welfare of the fish and,

therefore, caution should be taken when such agents

are used. Another point to consider is that the efficacy

of a given anesthetic depends on variables such as the

intensity of the stressor, the fish species, its develop-

mental stage and the environmental conditions (Rotl-

lant et al. 2001; King et al. 2005).

In view of such considerations, the viability of

using propofol as a sedative for juvenile silver catfish

Rhamdia quelen transport was investigated. This

anesthetic has recently been proven effective for

immersion anesthesia of the same fish species (Gress-

ler et al. 2012a). The experiment was performed in a

laboratory-controlled setting in order to verify the sole

effect of the anesthetic upon the physiology of the

species through the analyses of hematological, mor-

phological, biochemical and hydromineral indicators

of stress.

Methods

Animals

Juvenile gray silver catfish (n = 90; mean ± SE body

mass = 91.44 ± 1.98 g; mean ± SE total length =

20.66 ± 0.15 cm) were acquired from a fish farm in

Santa Maria city, southern Brazil, and housed at the

Laboratório de Fisiologia de Peixes (LAFIPE) at

Universidade Federal de Santa Maria (UFSM).

Acclimation lasted 7 days and was performed in

250-L tanks (15 fish/tank) in a semi-static system with

constantly aerated dechlorinated well water (200 L/

tank) at 21.5 ± 0.08 �C, pH 7.45 ± 0.13 and dis-

solved oxygen 8.04 ± 0.26 mg L-1 (mean ± SE).

The water was renewed every second day and the fish

were fed commercial pellets for omnivorous fish

(42 % extruded crude protein; 4 % fibrous matter;

14 % mineral matter; 2.5 % calcium) once a day. All

procedures were conducted with the approval of the

Ethics Committee on Animal Experimentation of the

UFSM (registration no. 67/2012).

Drug

Propofol (Propotil 1 %; BioChimico; www.biochimico.

com.br) was commercially acquired. A pilot study

based on the literature-derived values (Gressler et al.

2012a) was performed and two low concentration

levels of propofol were established to be used in sed-

ative baths: 0.4 and 0.8 mg L-1. These concentrations

were able to induce up to stages 2 and 3a, respectively,

as described by Schoettger and Julin (1967).

Experimental design

Twenty-four hours after the last feeding the fish were

subjected to one of the following concentrations of

propofol: 0 (control), 0.4 or 0.8 mg L-1. Each

treatment was further divided into an exposure time

of 1, 6 and 12 h, reproducing short, medium and long

transport procedures, respectively. For every concen-

tration/time combination, 10 fish were tested (two

replicates of five fish each).

The trials were performed in 40-L tanks filled to

50 % of their capacity with the same water used in the

acclimation tanks. The proper anesthetic concentra-

tion was dispersed in the water if that was the case. The

experimental setting simulated transportation in tanks.

Nonetheless, in order to guarantee that any observed

effect would arise from the anesthetic only, care was

taken to prevent common transport interferences such

as decline in dissolved oxygen, build-up of ammonia,

accumulation of carbon dioxide and reduction in pH

from happening. Therefore, loading density was low,

constant aeration was provided, and the experiment

was carried out under controlled environmental con-

ditions at LAFIPE. Water parameters in the experi-

mental tanks were as follows: 21.8 ± 0.12 �C,
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dissolved oxygen 6.5 ± 0.24 mg L-1 (Yellow Springs

Instruments, Yellow Springs, OH, USA; model Y55),

pH 7.4 ± 0.06 (Hanna Instruments, Woonsocket, RI,

USA; model HI 8424), total ammonia 0.14 ±

0.02 mg L-1 (Verdouw et al. 1978) and un-ionized

ammonia 0.002 ± 0.001 mg L-1 (Colt 2002).

Fish were hand-transferred to the trial tanks and

kept under the confined experimental conditions for

the assigned period. Once exposure time had elapsed,

fish were individually removed from the tanks and a

2 mL blood sample was immediately taken from the

caudal peduncle with heparinized sterile syringes.

Biometrics was also performed and fish were eutha-

nized by sectioning the spinal cord.

Whole blood analyses

Hematocrit was measured in microcapillary tubes

centrifuged at 10,0009g for 10 min and reading was

performed with the aid of a hematocrit card reader.

Total red blood cells (RBC) count was determined

with a Neubauer hemocytometer (Tavares-Dias et al.

2002). The concentration of hemoglobin was assayed

by the cyanmethemoglobin method using a spectro-

photometer (Brow 1976). The indices mean corpus-

cular volume (MCV), mean corpuscular hemoglobin

(MCH) and mean corpuscular hemoglobin concentra-

tion (MCHC) were calculated according to Wintrobe

(1934). Blood smears were prepared and then air-

dried, fixed in methanol and stained with May-

Grünwald (Rosenfeld 1947). Subsequently, with the

aid of an image analyzer microscope, ten high-power

fields were randomly selected on each blood smear

and morphometry of six RBC was observed in each of

these fields (Benfey et al. 1984; Dorafshan et al. 2008).

All of the morphometric analyzes were performed

using the Zeiss Axio Vision System with Remote

Capture 4.7 Rel DC—Cannon Power shot G9.

Plasma analyses

The remaining whole blood was placed into micro-

centrifuge tubes and spun at 3,0009g for 10 min. The

obtained plasma was collected in microtubes and

stored at -25 �C for further analyses.

EIA kits (EIAgenTM Cortisol, Adaltis Italy S.p.A)

were used to measure cortisol in unextracted plasma

samples. Test specificity was assessed through com-

parison of the parallelism between the standard curve

and serial dilutions of the samples in PBS (pH 7.4).

The standard curve ran parallel to the one achieved

with serial dilutions of R. quelen plasma. A high

positive correlation (r2 = 0.9818) was observed

between the curves in the linear regression test. Inter-

and intra-assay variation coefficients ranged from 9 to

12 % and 6 to 9 %, respectively. Glucose, total

protein, urea, alanine aminotransferase (ALT) and

aspartate aminotransferase (AST) were analyzed using

kits by Analisa (www.goldanalisa.com.br). Analyses

of lactate and alkaline phosphatase (AP) were deter-

mined in Labtest kits (www.labtest.com.br). Ammo-

nia was quantified according to Verdouw et al. (1978).

Concentrations of Na? and K? were measured in

appropriate diluted samples against known standards

using flame photometry (Micronal B262). Chloride

levels were assessed via the colorimetric method (Zall

et al. 1956).

Statistical analyses

The experimental variables were three propofol con-

centrations (0, 0.4 and 0.8 mg L-1) and three exposure

durations (1, 6 and 12 h). Data are presented as the

mean ± standard error (SE). The Bartlett test was

used to evaluate normality, and the Levene test was

applied to verify homogeneity of variances. Cortisol

analyses were made through the Scheirer–Ray–Hare

extension of the Kruskal–Wallis test and the Nemenyi

test. The remaining parameters were analyzed through

a two-way ANOVA and Tukey’s test. The Statistica

software 7.0 (Stat Soft. Inc., wwwstatsoft.com) was

used to make the analyses, and differences were

considered significant at P \ 0.05.

Results

Whole blood analyses

At 0.4 mg L-1 propofol, the hematocrit was lower at 6

compared to 12 h, while at 0.8 mg L-1 propofol, the

hematocrit was lower at 1 h than at the remaining

times. The level of this blood index was lower at 0.4

than at 0 and 0.8 mg L-1 propofol in fish exposed for

6 h. The concentration of hemoglobin was signifi-

cantly greater within 6 h of exposure to the highest

concentration of the anesthetic. Statistical evidence

did not identify any effect on RBC, MCV, MCH or
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MCHC (Table 1). Propofol exposure reduced the

nucleus of the cells (Table 2).

Plasma analyses

The level of cortisol in control group progressively

declined from 1 to 12 h. The hormone concentration

increased at 6 and 12 h in comparison with 1 h at

0.4 mg L-1. The level of cortisol was greater at 6 than

at 1 h exposure to 0.8 mg L-1 propofol; the group

sampled at 12 h showed higher and lower concentra-

tions of the hormone compared to 1 and 6 h, respec-

tively. Cortisol gradually reduced from the highest to

the lowest concentration of the anesthetic at 1 h. At

6 h, cortisol was higher at 0.8 than at 0 and 0.4 mg L-1

propofol. The level of the hormone was significantly

higher at 0.4 than at 0 and 0.8 mg L-1 propofol in fish

exposed for 12 h. Glucose concentration did not vary

between groups. The content of lactate was signif-

icantly lower at 0.8 mg L-1 propofol after 1 and 6 h of

exposure. Protein, ammonia and urea were not signif-

icantly affected by the treatments. The activity of AP

showed an increase in fish sampled at 12 h after

exposure to 0.8 mg L-1 propofol. No statistically

significant alterations were observed in ALT or AST

(Table 3). At 0 mg L-1 propofol, significantly higher

Cl- levels were observed in the group sampled at 12 h

compare to 6 h. The level of Na? increased after

exposure to 0.4 mg L-1 propofol for 12 h and

decreased at the same sampling time at the highest

concentration. There was a significant rise in the level

of K? in fish exposed to 0.8 mg L-1 propofol for 12 h

(Fig. 1). Survival during the experiment was 100 %.

Discussion

Whole blood analyses

Hematocrit, RBC, hemoglobin, MCV, MCH

and MCHC

Propofol has been described as capable of decreasing

ventilatory drive as well as cardiac output and

contractility in mammals (Grouds et al. 1985; Pagel

and Warltier 1993). Nevertheless, the results obtained

for the hematological indices show that the anesthetic

produced only mild hemodynamic changes in R.

quelen. As in the present investigation, Tort et al.

(2002), Bressler and Ron (2004) and Filiciotto et al.

Table 1 Hematological parameters in Rhamdia quelen subjected to 0, 0.4 or 0.8 mg L-1 propofol for 1, 6 or 12 h

Groups/

parameters

Hematocrit (%) RBC

(106 lL-1)

Hemoglobin

(g dL-1)

MCV (fL) MCH (pg) MCHC

(g dL-1)

0 mg L-1 propofol

1 h 28.8 ± 1.08Aa 2.23 ± 0.17 7.19 ± 0.60Aa 125.68 ± 9.82 32.27 ± 1.53 25.49 ± 2.54

6 h 32.0 ± 0.85Aa 2.22 ± 0.16 8.15 ± 0.56Aab 137.81 ± 8.19 37.60 ± 2.09 25.85 ± 2.17

12 h 29.3 ± 0.47Aa 2.46 ± 0.13 7.30 ± 0.60Aa 121.43 ± 5.67 30.51 ± 2.82 24.95 ± 1.89

0.4 mg L-1 propofol

1 h 29.8 ± 1.14ABa 2.20 ± 0.16 7.26 ± 0.60Aa 141.23 ± 9.66 33.55 ± 2.31 24.52 ± 1.97

6 h 27.8 ± 1.07Ab 1.70 ± 0.16 6.19 ± 0.63Aa 145.72 ± 9.03 33.35 ± 1.62 22.49 ± 2.26

12 h 32.9 ± 0.86Ba 2.17 ± 0.12 8.19 ± 0.41Aa 156.97 ± 10.60 38.69 ± 2.57 25.15 ± 1.54

0.8 mg L-1 propofol

1 h 26.1 ± 0.39Aa 2.24 ± 0.19 6.94 ± 0.31Aa 114.84 ± 9.72 33.53 ± 3.70 26.56 ± 0.99

6 h 32.5 ± 1.25Ba 2.25 ± 0.13 9.93 ± 0.59Bb 150.50 ± 13.95 42.08 ± 1.98 31.01 ± 2.22

12 h 31.6 ± 1.16Ba 2.27 ± 0.16 7.30 ± 0.70Aa 146.28 ± 12.46 32.79 ± 2.24 23.38 ± 1.78

Values are mean ± SE. Different upper case letters indicate significant difference between times within the same concentration and

different lower case letters indicate significant difference between concentrations at a given sampling by two-way ANOVA and

Tukey’s test. No significant differences were observed in RBC, MCV, MCH or MCHC

RBC red blood cells, MCV mean corpuscular volume, MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin

concentration
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(2012) noted a decrease in hematocrit percentage as a

result of anesthesia. Nevertheless, increased level of

this blood index following anesthetic administration is

most commonly reported (Thomas and Robertson

1991; Olsen et al. 1995; Gomulka et al. 2008;

Sudagara et al. 2009; Maricchiolo and Genovese

2011; Gressler et al. 2012b; Pádua et al. 2012).

Elevated hematocrit percentage may occur due to

plasma volume reduction, hypoxia and a combination

of RBC swelling and/or release by the spleen as a

response to acute stress mediated by catecholamines

(Davidson et al. 2000; Tort et al. 2002). In this study,

in turn, the reduction in hematocrit may have been an

adaptive response without major physiological signif-

icance especially because RBC number remained

unchanged (Franklin et al. 1993).

The values found for hemoglobin concentration at

0.8 mg L-1 propofol after 6 h exposure may indicate

that in this group there was a transient requirement for

increased blood oxygen-carrying capacity. It was

probably achieved by the movement of water from

primary to secondary circulation systems, resulting in

increased content of hemoglobin (Wells and Weber

1990; Franklin et al. 1993). The capacitance response

is a rapid means of preserving oxygen delivery to

tissues under hypoxic challenge, which in this case

was mostly likely a result of the reduced gill venti-

lation during sedation or anesthesia, as previously

related (Molinero and Gonzalez 1995; Sudagara et al.

2009). Moreover, besides the above-mentioned

changes in RBC size or number, which may also be

accountable for elevation in hemoglobin, as well as in

hematocrit, Speckner et al. (1989) proposed that fish

erythrocytes still synthesize hemoglobin while circu-

lating in the peripheral blood. Thus, the increased

levels of hemoglobin may reflect enhanced synthesis

during low oxygen availability. In line with most of

the results observed for hemoglobin in this study,

previous works also described no effect of anesthesia

on its concentration (Velisek et al. 2005a, b; Pádua

et al. 2012).

RBC morphometry

The RBC are the most abundant cells in fish blood and

their number and size represent the capacity of oxygen

transportation (Fukushima et al. 2012). The RBC area

obtained by means of morphometric analyses

remained the same throughout the groups, what

confirms that the use of propofol did not trigger major

changes in the blood oxygen-carrying capacity besides

the sole effect seen in the hemoglobin content for one

specific experimental group. Morphometry is a valu-

able and accurate tool for obtaining fish RBC

measurements without the interference of other vari-

ables, as in the case of MCV. But the literature on it is

Table 2 Red blood cell morphometry in Rhamdia quelen subjected to 0, 0.4 or 0.8 mg L-1 propofol for 1, 6 or 12 h

Groups/

parameters

Area (lm2) Minor axis

(lm)

Major axis

(lm)

Nucleus area

(lm2)

Nucleus minor axis

(lm)

Nucleus major axis

(lm)

0 mg L-1 propofol

1 h 123.31 ± 2.90 11.11 ± 0.13 14.19 ± 0.13 19.18 ± 0.64Aa 4.63 ± 0.07Aa 5.38 ± 0.09Aa

6 h 115.88 ± 2.68 10.68 ± 0.10 14.33 ± 0.16 17.37 ± 0.55Aa 4.24 ± 0.07Ba 5.33 ± 0.08Aa

12 h 116.24 ± 2.56 10.70 ± 0.17 14.08 ± 0.14 18.37 ± 0.83Aa 4.42 ± 0.11ABa 5.39 ± 0.11Aa

0.4 mg L-1 propofol

1 h 119.60 ± 1.78 10.98 ± 0.08 14.10 ± 0.14 13.98 ± 0.58Ab 3.86 ± 0.10Ab 4.71 ± 0.08Ab

6 h 114.04 ± 3.13 10.58 ± 0.11 13.94 ± 0.24 13.55 ± 0.38Ab 3.76 ± 0.05Ab 4.71 ± 0.08Ab

12 h 121.40 ± 2.50 11.13 ± 0.10 14.06 ± 0.20 13.32 ± 0.39Ab 3.78 ± 0.05Ab 4.61 ± 0.07Ab

0.8 mg L-1 propofol

1 h 113.95 ± 2.29 10.66 ± 0.15 13.80 ± 0.17 15.00 ± 0.54Ab 4.05 ± 0.08Ab 4.83 ± 0.08Ab

6 h 119.06 ± 1.75 10.92 ± 0.10 14.80 ± 0.12 14.11 ± 0.42Ab 4.77 ± 0.10Bc 4.77 ± 0.10Ab

12 h 119.18 ± 1.55 10.99 ± 0.08 14.01 ± 0.12 12.98 ± 0.27Ab 3.70 ± 0.04Cb 4.60 ± 0.06Ab

Values are mean ± SE. Different upper case letters indicate significant difference between times within the same concentration and

different lower case letters indicate significant difference between concentrations at a given sampling by two-way ANOVA and

Tukey’s test. No significant differences were observed in cell area, minor axis or major axis
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still scarce; hence, the lack of physiological evidence

as to justify the reduction in the RBC nucleus of

anaesthetized silver catfish.

Plasma analyses

Cortisol, glucose and lactate

One hour after being subjected to tank transfer, the fish

in the control group showed the highest level of

cortisol obtained in this investigation, 403.49 ±

48.51 ng mL-1. The 1 h peak is in agreement with

responses observed by Wagner et al. (2003), Bolasina

(2006), Barcellos et al. (2012) and Koakoski et al.

(2012). In comparison with control group, both

sedative concentrations of the anesthetic influenced

the dynamics of cortisol and prevented the hormone

peak. Davis and Griffin (2004), Small (2004) and

Gressler et al. (2012b) also observed that administra-

tion of anesthetics prevented cortisol increase in fish.

In opposition to what was demonstrated by the current

results, some authors state that a low concentration

may actually act as a stressor because the level of

nervous depression does not mitigate certain physio-

logical stress responses (Iwama et al. 1989; Olsen et al.

1995; Maricchiolo and Genovese 2011).

It is well accepted that catecholamines and corti-

costeroids inhibit glycogen synthesis and stimulate

gluconeogenesis in order to fuel homeostatic mecha-

nisms activated during exposure to stressors (Wend-

elaar Bonga 1997; Sladky et al. 2001). Preceding

works observed hyperglycemia along with a rise in

cortisol (Davis and Griffin 2004; Maricchiolo and

Genovese 2011; Filiciotto et al. 2012), while others

did not (Cho and Heath 2000; Iversen et al. 2003;

Matsche 2011). Likewise, in the present study, the

increased cortisol in control group did not alter

carbohydrate metabolism.

Although plasma glucose did not show the classic

stress-induced catabolic response, the higher lactate

observed at 1 and 6 h at 0 mg L-1 propofol in

comparison with the highest concentration of the

anesthetic showed the provision of a rapid energetic

resource following the handling stress when sedation

was not present. However, the low levels of the

metabolite suggest that there was an initial activation

of anaerobic metabolism contributing to ATP supply,

but without deficit in oxygen or glycidic resources.

Rotllant et al. (2001) and Small (2004) also described

stress-related responses of lactate, what happened

along with a rise in glucose. Stressful conditions are

typically associated with elevated plasma lactate

concentrations, for the anaerobic state caused by

stress results in muscle glycogen and lactate break-

down, with some of the lactate being released into

circulation (Barton and Iwama 1991). In opposition to

the present findings, anesthetics have been account-

able for lactate rises (Molinero and Gonzalez 1995;

Olsen et al. 1995; Iversen et al. 2003; Wagner et al.

2003). As Iwama et al. (1989) explained, lactate

increases in blood when insufficient oxygen is
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available for aerobic cell metabolism, what could be

due to reduced ventilation and circulation, common

side effects of several anesthetics.

Total protein, ammonia and urea

Depending on the type of stressor imposed to fish,

cortisol may have an effect on protein and amino acids

metabolism (Conceição et al. 2012). In the current

research, the level of total protein was not affected by

the experimental conditions. Barcellos et al. (2003), on

the other hand, detected an effect of harvesting on total

protein, indicating the possible use of such compound

as substrate for the gluconeogenesis observed in the

study. Laidley and Leatherland (1988) and Matsche

(2011), in turn, registered a significant increase in

plasma protein in fish subjected to anesthesia com-

paring to control; the latter authors indicated this shift

as a result of RBC destruction.

Ammonia accounts for the greatest fraction of

nitrogenous waste in teleost fish, followed by urea

(Kajimura et al. 2004). Both waste products were

examined but none presented any difference between

the groups, corroborating the observed absence of

stress-induced protein utilization in this study.

AP, ALT and AST

Propofol has hepatic as well as extra-hepatic clearance

routes in mammals (Mather et al. 1989; Matot et al.

1993). In fish, nonetheless, there are no studies

assessing propofol metabolism, but the increased AP

within 12 h of exposure to 0.8 mg L-1 propofol may

be due to hepatic hyperactivity in order to metabolize

the drug. In keeping with the present work, some

investigations indicated no changes in AST or ALT

following anesthesia (Velisek et al. 2005a, 2009).

Barcellos et al. (2003) reported increased AP and AST

in stressed R. quelen, indicating these elevations as a

result of the regulation of hepatic metabolism pro-

moted by the increased cortisol levels, what was not

observed in this study.

Cl-, Na? and K?

Hydromineral disturbance typically arises from stress

in fish (Barton and Iwama 1991; Wendelaar Bonga

1997). At 0 mg L-1 propofol, the concentration of Cl-

was significantly higher at 12 compared to 6 h, what

may have been due to a shift of Cl- from intracellular

to extracellular space (McDonald and Robinson

1993).

Following propofol administration, there were

slight changes in Na? and K? concentrations which

were related to both efflux and influx. Some authors

state that anesthesia triggered a decline in Cl- (Davis

and Griffin 2004), Cl- and Na? (Gressler et al. 2012b)

and K? (Davidson et al. 2000) levels. Enhanced

respiratory demands may arise from anesthesia, and,

along with increased oxygen uptake, there is increased

diffusive ion and water movements across the gill

(Becker et al. 2012).

Conclusion

The findings of this study suggest that the use of

propofol at the concentration of 0.4 mg L-1 is suitable

for R. quelen transport. No major or irreversible

damage was observed through the evaluated indices,

what implies that the anesthetic preserved the phys-

iology of the fish during short-, medium- and longtime

exposure.
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