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Abstract Previous studies have demonstrated that

sharks, perhaps more so than any other fishes, are

capable of bioaccumulating the non-essential toxic

metal mercury (Hg) to levels that threaten the health of

human seafood consumers. However, few studies have

explored the potential effects of Hg accumulation in

sharks themselves. Therefore, the goal of this study was

to examine if physiological effects occur in sharks in

response to environmentally relevant levels of Hg

exposure. To address this goal, the relationship between

muscle Hg concentrations and muscle/hepatic levels of

metallothionein (MT), a widely used protein biomarker

of toxic metal exposure in fish, was examined in

bonnetheads, Sphyrna tiburo, from three Florida estu-

aries. Total Hg concentrations in bonnethead muscle, as

determined using thermal decomposition and atomic

absorption spectrometry, ranged from 0.22 to 1.78 lg/g

wet weight and were correlated with animal size. These

observations were consistent with earlier studies on

Florida bonnetheads, illustrating that they experience

bioaccumulation of Hg, often to levels that threaten the

health of these animals or consumers of their meat.

However, despite this, MT concentrations measured

using Western blot analysis were not correlated with

muscle Hg concentrations. These results suggest that

either environmentally relevant levels of Hg exposure

and uptake are below the physiological threshold for

inducing effects in sharks or MT is a poor biomarker of

Hg exposure in these fishes. Of these two explanations,

the latter is favored based on a growing body of

evidence that questions the use of MTs as specific

indicators of Hg exposure and effects in fish.

Keywords Metallothionein � Biomarker �
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Introduction

Mercury (Hg) is a highly toxic prevalent non-essential

metal that is commonly found in aquatic environments

(see reviews by Chen et al. 2008; Kim and Zoh 2012;

Driscoll et al. 2013). It is deposited in its inorganic

form into the environment primarily by anthropogenic

activities such as mining, waste incineration, and the

combustion of Hg-rich fossil fuels. Once Hg is
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deposited into an aquatic system, it often undergoes

bacterial methylation to produce the organic com-

pound, monomethylmercury (MeHg). MeHg is more

readily absorbed by aquatic organisms than inorganic

forms of Hg; in fact, up to or greater than 90 % of the

total Hg content in some aquatic species can be in the

form of MeHg (Scheuhammer et al. 2007). It is also

known to bioaccumulate and biomagnify in aquatic

organisms and, as a result, MeHg levels in some

aquatic taxa, particularly large terminal consumers

such as marine mammals, sharks, and large teleosts

can range from one to ten million times greater than

MeHg levels present in the ambient environment

(Chen et al. 2008). Because of its high rate of uptake,

distribution, and accumulation in exposed organisms,

its slow excretion and its tendency to bind to and

disrupt the normal function of sulfhydryl-containing

proteins, MeHg is considered to be the most toxic form

of Hg, capable of eliciting adverse effects such as

neurotoxicity, behavioral abnormalities, reproductive

impairment, immunosuppression, and death (Scheu-

hammer et al. 2007). Therefore, it is critical to

examine potential health effects of MeHg and other

forms of Hg in aquatic species, particularly those that

have been found to accumulate substantial quantities

of this metal.

Based on a 2010 review by Gelsleichter and

Walker and more recent studies (De Boeck et al.

2010; Escobar-Sánchez et al. 2010, 2011; Pethybridge

et al. 2010; Nam et al. 2011; Barrera-Garcı́a et al.

2012; Hurtado-Banda et al. 2012; Maz-Courrau et al.

2012; Bosch et al. 2013; Vélez-Alavez et al. 2013),

Hg is the most widely studied toxicant in elasmo-

branchs (sharks and rays), with levels having been

examined in close to 100 species. A sizeable number

of these studies observed muscle Hg concentrations

that were near to or above the maximum recom-

mended limit for human consumption in most coun-

tries (i.e., 0.3 ppm, US. Environmental Protection

Agency [EPA] 2001). Furthermore, as in some other

taxa, MeHg can often make up a sizeable proportion

of the total Hg burden in certain elasmobranchs (i.e.,

[95 %), particularly largely piscivorous species.

However, despite the multitude of studies that have

shown the presence of elevated Hg levels in sharks

and their relatives, few studies to date have considered

the possible biological effects of Hg exposure in these

animals as opposed to human consumers of their

meat/fins. In contrast, the effects of Hg on bony fish

have been studied more extensively in both past and

recent years, showing impaired reproduction, growth,

and health as well as neurological alterations that

could result in behavioral abnormalities in species

exposed to elevated, but still ecologically relevant, Hg

levels (Scheuhammer et al. 2007; Adams et al. 2010;

Cambier et al. 2012; Batchelar et al. 2013a, b;

Gehringer et al. 2013; Ho et al. 2013; Rhea et al.

2013; Stefansson et al. 2013). Given that Hg concen-

trations in elasmobranchs generally rival, if not

exceed, those observed in even the largest bony fish

species, it is important to determine if similar effects

or physiological responses of any kind occur in these

fish as a result of Hg exposure.

Previous studies have shown that metallothioneins

(MTs), a group of metal-binding proteins, can serve as

useful indicators for detecting physiological responses

to metal exposure in fish and other aquatic organisms

(see reviews by Nordberg and Nordberg 2009;

Shariati and Shariati 2011). MTs are low molecular

weight (6–7 kDa), cysteine-rich, intracellular proteins

that are present in many invertebrate and vertebrate

species and appear to play roles in the homeostasis

and detoxification of metal ions by binding to and

sequestering several divalent transition metals such as

copper (Cu), zinc (Zn), cadmium (Cd), and Hg. MTs

also appear to function in other important physiolog-

ical processes including the scavenging of reactive

oxygen species and the regulation of cell proliferation

and apoptosis (Chiaverini and De Ley 2010). In

general, MT expression increases in response to

elevated metal exposure, a property that has led to

its widespread use as a biomarker for detecting toxic

metal effects in both human and wildlife populations.

Since Hg has been shown to induce MT gene

transcription and protein synthesis in various fish

species (e.g., spotted scat Scatophagus argus, Sinaie

et al. 2010; barbel Barbus graellsii, Quirós et al.

2007), it is a potentially useful biomarker for explor-

ing whether ecologically relevant levels of Hg uptake

in sharks are associated with physiological alterations.

A few laboratory-based studies have confirmed that

MT is present in elasmobranchs and can be induced by

exposure to some toxic metals in certain species

(Hidalgo et al. 1985; Hidalgo and Flos 1986a, b; Betka

and Callard 1999; Cho et al. 2005; De Boeck et al.

2010); however, they did not focus on Hg and MT has

not been extensively put to use in field ecotoxicology

studies on elasmobranchs.
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Therefore, the goal of this study was to evaluate

the use of MT as a biomarker for detecting physi-

ological responses to toxic metal exposure in sharks

in a field setting. In particular, this study examined

the reliability of using MT as an indicator of Hg

exposure and accumulation in the bonnethead,

Sphyrna tiburo. The bonnethead was selected as the

target species for this study based on the available

evidence for high Hg uptake in this species (Adams

and McMichael 1999; Adams et al. 2003), as well as

the extensive body of knowledge on the biology of

this shark from the areas sampled (Carlson and

Parsons 1997; Cortes et al. 1996; Lombardi-Carlson

et al. 2003). The suitability of MT as a biomarker for

Hg exposure was assessed by determining if muscle

or liver MT levels were correlated with S. tiburo

muscle Hg concentrations. Hg and MT levels were

also compared between populations of S. tiburo from

three estuaries on Florida’s Gulf coast. It was

hypothesized that based on the evidence for MT

induction in response to toxic metal exposure in

sharks and other fish, MT levels would increase

proportionally along with increased Hg uptake.

Furthermore, we anticipated that S. tiburo would

exhibit a site-associated difference in MT levels with

bonnetheads from more Hg-contaminated sites

Fig. 1 Map of Florida

showing the location of the

three study sites used for the

collection of samples in this

study: A Apalachicola Bay,

B Anclote Key, and

C Florida Bay
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having higher MT levels than their counterparts from

less Hg-contaminated locations.

Methods

Animal collection

Bonnetheads (n = 50) were collected using set gill

nets between 1998 and 2001 from three Florida Gulf

coast locations (Fig. 1): Anclote Key (n = 15), Flor-

ida Bay (n = 20), and Apalachicola Bay (n = 15).

Sharks were weighed to the nearest 0.1 kg, measured

in total length (i.e., measuring from the tip of the snout

to the tip of the upper lobe of the caudal fin in a natural

position; TL) to the nearest 1.0 cm, and examined in

order to determine sex.

Biological sample collection

Following capture, sharks were rinsed with ambient

seawater and packed in ice until arrival at the

laboratory. Once at the laboratory, each shark was

rinsed with running local tap water and a 1-g sub-

sample of muscle was removed from the lateral

musculature just below the dorsal fin and placed in a

cryovial, which was subsequently placed in liquid

nitrogen in order to prevent moisture loss during the

freezing process. Samples were stored at -80 �C until

time of analysis in 2009. Sub-samples of liver were

also collected (*1 g) from the ventral edge of the

right lobe of the liver, placed in cryovials, frozen with

liquid nitrogen, and stored at -80 �C.

Mercury analysis

Muscle samples were dried for 48 h at 60 �C in an

oven using aluminum weight boats to minimize cross-

contamination, homogenized using a glass mortar and

pestle, and stored at 4 �C until analysis. Samples were

weighed before and after drying in order to monitor

water content and reduction throughout the process.

Percent moisture was determined using the formula,

% moisture = 100 -
Wd

Ww

� �
� 100

where Wd = weight of dry sample (g) and

Ww = weight of wet sample (g).

Total Hg (THg) was measured in lg/g dry weight

(d.w.) in S. tiburo muscle samples by the Florida Fish

and Wildlife Conservation Commission’s Indian

River Field Laboratory (Melbourne, FL, USA) using

thermal decomposition (combustion), amalgamation,

and atomic absorption spectrometry [EPA Method

7473] (EPA 1998). The analysis was completed with a

calibrated DMA-80 Direct Mercury Analyzer (Mile-

stone Inc., Shelton, Connecticut) according to Tre-

main and Adams (2012). Quality control procedures

included analysis of laboratory method blanks, dupli-

cate or triplicate tissue samples, and certified reference

material (TORT-2 and DOLT-4 obtained from the

National Research Council of Canada) for each group

of 10 samples analyzed. In addition, a duplicate matrix

spike was completed during the analytical run.

THg was presented in lg/g d.w. in all figures.

However, because the majority of previous studies on

THg in elasmobranchs have reported concentrations in

lg/g wet weight (w.w.) (Gelsleichter and Walker

2010), d.w. measurements have been converted to

their w.w. equivalents and are reported for compara-

tive purposes.

Metallothionein analysis

Muscle and liver samples were homogenized in 3

volumes of buffer (100 mM Tris–HCl with 5 mM

b-mercaptoethanol, pH 8.1, Hylland et al. 1995) using

the FastPrep-24 bead homogenizer (MP Biomedicals,

Inc., Santa Ana, CA, USA). Homogenates were

centrifuged at 18,000g at 4 �C for 1 h, and the

resulting supernatant was stored at -80 �C in three

200-lL aliquots until the time of analysis. A standard

Bradford protein assay, using 1/50 sample dilu-

tions, was used to determine protein concentrations

(mg/mL) of each sample (Bio-Rad Laboratories,

Hercules, CA, USA). Several samples were centri-

fuged a second time at 100,000g to attempt to reduce

the occurrence of immunoreactive high molecular

weight proteins, which have been observed in earlier

studies on elasmobranchs in which they were assumed

to represent MT associated with membrane compo-

nents (Hylland et al. 1995) or oligomeric forms

(Hidalgo et al. 1988).

Proteins (90 lg/sample/well) were separated via

SDS-PAGE gel electrophoresis under denaturing and

reducing conditions using 15 % polyacrylamide gels

and the Laemmli buffer system. Gels used for the
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visualization of protein content were fixed in a

standard fixation solution (40 % methanol, 10 %

glacial acetic acid) and stained with a 0.03 %

Coomassie blue in fixation solution.

For immunoblotting, proteins were electrotrans-

ferred to PVDF membranes (Bio-Rad Laboratories),

which were afterward blocked in 10 % non-fat dried

milk (NFDM) in Tris-buffered saline (TBS) overnight

at 48C to prevent non-specific binding. Immunoreac-

tive MT was detected using a polyclonal rabbit anti-

cod MT antibody (KH-1, Cayman Chemical Co., Ann

Arbor, MI, USA) diluted 1:500 in 1 % NFDM in TBS

containing 0.05 % Tween 20 via overnight incubation

at 4 �C. This antibody has been previously shown to

cross-react with putative MT from several elasmo-

branchs (Hylland et al. 1995), including S. tiburo in

preliminary studies (Gelsleichter, unpublished data).

Goat anti-rabbit IgG (whole molecule)-alkaline phos-

phatase conjugate (Sigma-Aldrich Corporation, St.

Louis, MO, USA) was used as secondary antibody

(1:5,000 in 1 % NFDM in TBS containing 0.05 %

Tween-20, 1 h incubation at room temperature), and

5-bromo-4-chloro-30-indolyphosphate p-toluidine

salt/nitro-blue tetrazolium chloride (BCIP/NBT)

(Vector Laboratories, Burlingame, CA, USA) was

used as chromogen. Membranes were washed five

times for 5 min each in TBS containing 0.05 % Tween

20 between each incubation. Following color reaction,

membranes were rinsed in deionized water and air-

dried. Band intensity for each sample was acquired

and calculated using the Gel Logic Imaging System

and Kodak Molecular Imaging Software (Carestream

Heath, Inc., Rochester, NY, USA).

Statistical analysis

Correlations between THg and TL and MT band

intensity in liver (MTliver) and muscle (MTmuscle) were

analyzed using Spearman’s rank order correlation.

Pearson’s product–moment correlation was used to

determine if MTliver and MTmuscle were significantly

correlated. Differences in mean THg levels associated

with animal gender and location of capture were

analyzed using Student’s t test and one-way ANOVA

followed by Tukey’s post hoc test, respectively. Last,

differences in MTliver and MTmuscle associated with

site of capture were also analyzed via one-way

ANOVA followed by Tukey’s post hoc test.

Results

Total Hg analysis

Specimens ranged in TL from 56 to 103 cm (range of

free-swimming S. tiburo in these locations was

34–119 cm based on an n = 423, Manire, unpublished

data). THg concentrations in S. tiburo muscle ranged

from 0.86 to 6.58 lg/g d.w. (Mean ± SD = 3.00

± 1.82 lg/g d.w.), which corresponded to w.w. values

of 0.22–1.78 lg/g (Mean ± SD = 0.79 ± 0.49 lg/g

w.w.) (Table 1). Of all samples analyzed, 86 % were

found to have THg concentrations above 0.3 ppm, the

US. EPA’s fish tissue residue criterion (US. EPA,

2001). All results of quality assurance procedures were

found to be within EPA standards.

There were no significant differences in mean THg

levels associated with animal gender (Student’s t test,

p[0.05). Because of this, sexes were combined for

comparisons of THg levels between sites, but no

significant differences were observed (one-way ANOVA,

p = 0.603) (Table 1). A significant positive correlation

between THg and TL was observed (Spearman’s rank

order correlation, q = 0.628, p\0.001) (Fig. 2).

Metallothionein analysis

Western blot analysis of S. tiburo muscle and liver

consistently resulted in the observation of two immu-

noreactive protein bands, corresponding to molecular

weights of *34–39 and *14 kDa (Fig. 3). The latter

of these two bands was equivalent to the expected

molecular weight of MT, as reported in earlier studies

(*12–14 kDa, Hidalgo and Flos 1986b; Hylland et al.

1995). Despite multiple attempts at separating this

band from the larger band using ultracentrifugation as

successfully employed by Hylland et al. (1995), the

high molecular weight band remained present.

Although there is strong evidence to suggest that the

high molecular weight band represented polymerized

forms of MT based on previous studies (e.g., Hidalgo

and Flos, 1986b; Hylland et al. 1995), optical intensity

of only the low molecular weight band was analyzed

for comparative purposes.

Relative levels of MT in muscle and liver were not

significantly correlated (Pearson’s product–moment

correlation coefficient, r = -0.119, p = 0.438).

There was no significant correlation between THg and

either MTmuscle (Spearman’s rank order correlation,

Fish Physiol Biochem (2014) 40:1361–1371 1365
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q = -0.18, p = 0.899) or MTliver (Spearman’s rank

order correlation, q = 0.055, p = 0.721) (Fig. 4).

There were no statistically significant differences in

MTliver associated with site of collection (one-way

ANOVA, p = 0.256), but MTmuscle varied significantly

between S. tiburo collected from Anclote Key and

Apalachicola Bay (One-way ANOVA with Tukey’s

post hoc test, p \ 0.05).

Discussion

Muscle THg concentrations measured in S. tiburo

examined in this study (0.22–1.78 lg/g w.w. with a

mean of 0.79 ± 0.49 lg/g w.w.) were consistent with

those observed in Florida bonnetheads in prior

investigations. Adams and McMichael (1999) reported

mean muscle THg concentrations of 0.50 ± 0.36 lg/g

w.w. in S. tiburo from nearshore areas on the southeast

Florida coast. More recently, Adams et al. (2003)

reported muscle THg concentrations ranging from 0.03

to 1.60 lg/g w.w. in bonnetheads collected throughout

Florida with site-specific levels in sharks from the

Florida Bay (0.28–1.60 lg/g w.w.) and Tampa Bay

(0.03–1.60 lg/g w.w.) regions that were similar to those

observed in individuals collected from the same loca-

tions in the current study (0.25–1.78 and 0.31–1.53 lg/g

w.w. for S. tiburo from Florida Bay and Anclote Key,

respectively). Like Adams and McMichael (1999) and

Adams et al. (2003), we also found a significant positive

relationship between muscle THg concentrations and

shark length, demonstrating that bioaccumulation of Hg

Table 1 Range and mean ± SD of total mercury (THg) in

Sphyrna tiburo muscle reported in lg/g dry weight (d.w.) and

lg/g wet weight (w.w.) from three Florida Gulf coast locations

(AK Anclote Key, FB Florida Bay, AB Apalachicola Bay),

including the percentage of samples that contained THg levels

that met or exceeded the maximum recommended limit for

consumption in the USA (0.3 lg/g w.w.)

Location Sample number THg (lg/g d.w.) THg (lg/g w.w.)

Range Mean ± SD Range Mean ± SD % C 0.3 lg/g

AK 15 1.17–6.14 2.94 ± 1.68 0.31–1.53 0.77 ± 0.43 100.0

FB 20 0.95–6.58 3.29 ± 1.86 0.25–1.78 0.88 ± 0.51 90.0

AB 15 0.86–6.36 2.67 ± 1.94 0.22–1.64 0.71 ± 0.51 66.6

Totals 50 0.86–6.58 3.00 ± 1.82 0.22–1.78 0.79 ± 0.49 86.0

Mean THg concentrations did not differ significantly by location (one-way ANOVA, p = 0.603)
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Fig. 2 Total mercury concentrations (THg; dry weight mg/kg)

measured in Sphyrna tiburo muscle compared with the total

length (TL) for each specimen (n = 50). A significant positive

correlation between length and THg was observed (Spearman’s

rank order correlation; q = 0.628, p \ 0.001). AK Anclote Key,

FB Florida Bay, AB Apalachicola Bay

15 
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37 
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(b) 

Fig. 3 Western blot analysis of Sphyrna tiburo metallothionein

(MT) in a muscle and b liver tissue. Arrows indicate size of

molecular weight markers in kDa. The low molecular weight

bands (black arrowhead) represent a protein of the expected size

for MT, whereas high molecular weight bands (open arrow-

head) likely represent MT associated with membrane compo-

nents or oligomeric forms. Due to the inability to reduce the high

molecular weight bands by ultracentrifugation, only the lower

weight bands were used for MT analysis
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occurs in this species. Last, like both previous studies,

we observed that a sizeable proportion (86 %) of our

samples had muscle THg levels that exceeded the

federal fish tissue residue criterion in the USA. The

occurrence of such high levels of Hg in this and other

species of sharks, of course, formed the basis for our

investigation on the physiological responses to Hg

exposure in this group.

Despite the high levels of THg commonly observed

in Florida S. tiburo, there was no evidence for elevated

quantities of MT in such individuals and, in general,

muscle THg concentrations and MT levels in muscle

and liver were not positively correlated. Therefore,

these results suggest that MTs is not likely to be a

useful biomarker for Hg exposure in this species and

perhaps other sharks. While these results seemed

surprising based on longstanding and widespread use

of MT as a specific indicator of metal exposure in

aquatic organisms, they agree with a growing body of

evidence that challenges its suitability as a biomarker

for Hg exposure due to lack of positive correlations

between endogenous Hg levels and MT content in

several species (Rotchell et al. 2001; Monserrat et al.

2007; Miero et al. 2011; Gehringer et al. 2013;

Sevcikova et al. 2013). As suggested in these studies,

this may be due to the fact that MeHg, the most

ecologically relevant and abundant Hg species found

in wildlife, appears to be less capable of inducing MT

than inorganic forms of Hg. It is also possible that

differences in exposure to other metals or factors such

as animal gender, stage of maturity, time of capture,

and environmental conditions (e.g., salinity) at the

time of capture influence MT production in ways that

obscure possible relationships between the levels of

this protein and Hg exposure. It is also feasible to

consider that, while occasionally high, Hg levels in S.

tiburo and some other elasmobranchs may still fall

below the physiological threshold for inducing MT in

these fishes. Last, it is possible that the semi-quanti-

tative nature of MT analysis used in this study was not

sensitive enough to detect fine differences in MT

expression that may have been associated with THg.

The premise that MT content may not accurately

reflect a MeHg-dominated Hg burden in some species

because MeHg is generally less capable of inducing

MT expression than inorganic forms of Hg is

supported by previous research. For example, MeHg

has been shown to be ineffective or less effective than

inorganic Hg at inducing MT expression in both

in vitro (e.g., cultured mouse neurons and astrocytes,

Kramer et al. 1996a, b) and in vivo (e.g., mouse brain,

liver, and kidney, Saijoh et al. 1989; Yasutake et al.

1998; Yasutake and Nakamura 2011; zebrafish (Danio

rerio) liver, skeletal muscle, and brain, Gonzalez et al.

2005) animal models. Furthermore, in the few cases in

which MeHg has been shown to successfully induce

MT expression in vertebrate tissues (e.g., mouse brain,

liver, kidney, and testis, Dufresne and Cyr 1999;

Yasutake and Nakamura 2011), this effect has been

largely attributed to increased presence of inorganic

mercury following demethylation of MeHg (i.e.,

which occurs in mammals and birds, but is not thought

to occur in fish) or increased production of reactive
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Fig. 4 Levels of Sphyrna tiburo metallothionein (MT) in

a muscle (n = 50) and b liver (n = 45) compared with total

mercury (THg; lg/g dry weight) measured in muscle. Relative

MT levels were calculated by subtracting the mean background

intensity from the mean intensity of 14-kDa immunoreactive

bands observed using Western blot. No significant relationship

was found between THg and relative MT levels in muscle

(Spearman’s rank order correlation; q = - 0.018, p = 0.899)

or liver (Spearman’s rank order correlation; q = 0.055,

p = 0.721)
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oxygen species (Aschner et al. 2006). This may

explain species-specific differences in the relationship

between MT content and THg concentrations in

various vertebrates as both the contribution of MeHg

to total Hg burden and the ability to demethylate

MeHg vary considerably among taxa. Therefore, it is

possible that MT is a suitable biomarker for Hg in

cases when inorganic Hg represents a large contribu-

tion to total Hg uptake in a species and/or when the

species is capable of demethylating MeHg and that

prior evidence for positive relationships between MT

content and THg concentrations (e.g., Sinaie et al.

2010) reflects such instances and/or perhaps evidence

for oxidative stress. This could explain why Hg in

water, but not sediment was positively correlated with

hepatic MT concentrations in golden gray mullet (Liza

aurata) from a metal-contaminated site on the Portu-

gal coast, as inorganic forms of Hg would clearly

represent a greater contribution to water-borne levels

of this metal compared with those in sediment

(Oliveira et al. 2010). This could also explain the

positive association between THg and MT concentra-

tions in L. aurata but lack of such a relationship in

European sea bass (Dicentrarchus labrax) from the

same area on the northwest Portugal coast, as

inorganic Hg is believed to represent a greater

contribution to THg in the pelagic detritivore L.

aurata in comparison to the demersal benthivore D.

labrax (Miero et al. 2011). However, data on the

proportion that MeHg comprises of THg in S. tiburo is

needed to confirm or refute this hypothesis.

The possibility that MT content may reflect expo-

sure to other metals to a greater extent than Hg is also

well supported by previous research. Numerous stud-

ies have demonstrated that metals vary in their

effectiveness at inducing MT expression in many

vertebrates, including sharks. For example, Cho et al.

(2005) found that zinc (Zn) was more effective than

copper (Cu) and cadmium (Cd) at inducing hepatic

and renal MT expression in the cloudy catshark,

Scyliorhinus torazame, whereas De Boeck et al.

(2010) observed positive MT induction in gill and

liver of spotted dogfish, Scyliorhinus canicula, in

response to exposure with Cu, but not Cd, lead (Pb), or

silver (Ag). Furthermore, positive relationships

between concentrations of some of these metals (i.e.,

Cd, Cu, Zn) and MT levels in fish tissues have been

observed more often than those between MT and THg.

As a recent example, Gehringer et al. (2013) observed

significant positive correlations between hepatic MT

expression and muscle concentrations of Cu, Zn,

manganese (Mn), aluminum (Al), and nickel (Ni) in

largemouth bass, Micropterus salmoides, but only a

weak negative relationship between MT content and

THg. However, it is also possible that physiological

differences between individuals and/or environmental

variables other than metal uptake may influence MT

production to a greater extent than Hg, as they have

been hypothesized to obscure relationships between

MT content and even some of the most effective MT-

inducing metals in prior studies (Creti et al. 2010). For

example, previous studies have reported that factors

such as nutritional status, temperature, salinity, dis-

solved oxygen, metabolic rate, stress, immune func-

tion, gender, stage of maturity, and reproductive stage

can often alter MT expression in some species,

resulting in high natural variability in levels of these

proteins (Baer and Thomas 1990; Monserrat et al.

2007; Dragun et al. 2009).

Given that S. tiburo is a relatively small shark

species with a low trophic position, compared with

many other sharks (Bethea et al. 2007), it is logical to

also consider that Hg accumulation in this species may

fall below the levels necessary to induce MT expres-

sion in elasmobranchs and that larger, higher trophic-

level sharks may be better subjects for this research.

However, while it is true that some higher trophic-

level shark species have been shown to accumulate

fivefold to 10-fold higher levels of Hg than S. tiburo

(e.g., smooth hammerhead, Sphyrna zygaena, gulper

shark, Centrophorus granulosus, kitefin shark, Dala-

tias licha, Storelli et al. 2002, 2003), it is also

important to note that the range in THg levels observed

in S. tiburo in both this study and prior investigations

overlap with those observed in many other shark

species in which Hg accumulation has been surveyed

including a number of larger species (Gelsleichter and

Walker 2010). Therefore, if induction of MT is

unlikely to occur in response to typical levels of Hg

accumulation experienced by most sharks, it holds

minimal value as a biomarker for Hg effects in this

group.

As a final point, it is possible that the use of a semi-

quantitative approach such as Western blot rather than

more quantitative methods more commonly used in

MT studies such as electrochemical techniques (e.g.,

Dragun et al. 2009; Oliveira et al. 2010; Sevcikova

et al. 2013) or enzyme-linked immunosorbent assays
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(ELISA) (e.g., Sinaie et al. 2010) may have limited our

ability to detect subtle differences in MT content that

could have been correlated with THg concentrations.

This was an initially unplanned component of the

present study made necessary by our inability to

eliminate high molecular weight immunoreactive

bands (i.e., presumed to be polymers), which could

have resulted in overestimation of MT content using

ELISA (Shariati and Shariati 2011). However, as

reported in the surprisingly large number of reviews

describing methodology for MT determination (Dab-

rio et al. 2002; Nordberg and Nordberg 2009; Ryvol-

ova et al. 2011; Shariati and Shariati 2011),

immunological approaches including Western blot

are generally considered to provide the highest

sensitivity and specificity for detecting MTs, provided

that antibody probes successfully cross-react with

target molecules. Furthermore, prior studies have

successfully used comparable approaches to detect

differences in MT content associated with factors that

would induce its expression. For example, Ronco et al.

(2005) used Western blot to demonstrate that MT

levels are increased in human placenta from pregnant

female smokers compared with that of non-smokers.

In conclusion, while Hg does accumulate in S.

tiburo muscle to levels that exceed the maximum

recommended limits for monthly human consump-

tion, these levels do not appear to correlate with MT

levels in either muscle or liver. Therefore, although

other explanations for these findings have been

considered, the results of this study suggest that

there may be limitations for the use of MT as a

biomarker for Hg exposure and effects in this species

and perhaps other elasmobranchs. As mentioned, this

conclusion is consistent with a sizeable and growing

body of literature that question the use of MT as a

specific biomarker for Hg exposure in vertebrates.

Notwithstanding these results, future studies should

continue to explore the relationship between Hg

exposure and MT expression in sharks, particularly in

species that have been shown to accumulate sizeable

quantities of inorganic as well as organic forms of

Hg. Future work should also focus on developing

alternative biomarkers for detecting Hg effects in

sharks, such as oxidative stress indicators, some of

which have been shown to be potentially useful in

recent studies (i.e., protein carbonyl concentrations,

Barrera-Garcı́a et al. 2012).
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