
Ameliorating effect of b-carotene on antioxidant response
and hematological parameters of mercuric chloride toxicity
in Nile tilapia (Oreochromis niloticus)

Y. Elseady • E. Zahran

Received: 16 March 2012 / Accepted: 13 December 2012 / Published online: 9 March 2013

� Springer Science+Business Media Dordrecht 2013

Abstract The impact of different levels of dietary

b-carotene to alleviate the effect of mercuric chloride

toxicity in Nile tilapia was assessed. Semi-purified diets

containing 0, 40, and 100 mg b-carotene kg-1 dry diet

were fed for 21 days, which were subjected to sublethal

concentration of mercuric chloride (0.05 ppm). Hema-

tological and biochemical parameters, lipid profile, and

antioxidant response were examined. All hematological

parameters of tilapia fish starting from second week

of toxicity were significantly decreased. A significant

increasing trend in liver enzymes (ALT and AST) were

observed parallel to the time of toxicity and peroxide

radicals (MDA) appearing significantly increased in

toxicated group without carotene supplement, although

carotene supplementation return all parameters within the

control levels. Mercury accumulated significantly in fish

liver and white muscles in toxicated group while it

showed a significant reduction in dietary b-carotene-

treated group. Overall, it can be used as immunostimulant

and alleviate the suppression effect resulted from immune

depressive stressful condition in farmed Nile tilapia.

Keywords Carotenoid supplemented diet �
Heavy metal intoxication � Fish

Introduction

With increasing intense activity of the industrial and

agriculture sectors, water pollution has become of

great concern to aquatic organisms like fish. Heavy

metal pollution is one of the most important water

pollutants (Singer et al. 2005) that are persistent in the

environment and have the ability to accumulate by

aquatic organisms (Veena et al. 1997). Cultured fish

live in intimate contact with their environment with

constant exposure to stressors, like handling, crowd-

ing, and pathogens beside the pollution; notably, heavy

metals that lead to several physiological changes that

eventually lead to immune depression and increase the

infections outbreaks (Low and Sin 1998).

Mercury (Hg), one of the most toxic heavy metals, it

is considered as blacklisted pollutants due to their

persistence and accumulation in the ecosystems (Moore

and Ramamoorthy 1984). It takes many form in the

environment, the most common ones are elemental

mercury, inorganic mercury, and organic compounds as

methyl mercury (MeHg). Organic mercury is the most

toxic form; however, the inorganic mercury is the most

common form that present in the aquatic environment

with subsequent effect on fish (de Oliveira Ribeiro et al.

2002). Toxicity of fish by mercury has been studied in

several Egyptian lakes (Adel 2003; Ahmed and Hussein
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2004). Recently, mercury toxicity have been linked to

generation of reactive oxygen species (ROS) resulted in

changes in the antioxidant defense systems and oxida-

tive damage induction such as lipid peroxidation leading

to cell death (Berntssen et al. 2003; Elia et al. 2003;

Milaeva 2006; Larose et al. 2008; Verlecar et al. 2008,

2007) and different pathologic processes involved as a

causative agents of many fish diseases (Kehrer 1993;

Banerjee et al. 1999).

Defenses against ROS include scavenger com-

pounds, enzymatic, and non-enzymatic antioxidants

are required to maintain the redox status of fish cells

and act as an important biological defense against

oxidative stress (Monteiro et al. 2010).

Carotenoids constitute a widespread group of plant-

synthesized polyene pigments, which vary in color from

yellow and orange to red (Tacon 1981). Carotenoids

have several beneficial effects on aquatic animals; they

enhance larval growth and survival (Torrissen 1984) and

improve the performance of brood stock (Watanabe

et al. 1991; Verakunpiriya et al. 1997), as well as

increase resistance to diseases (Tachibana et al. 1997).

b-Carotene is a non-toxic carotenoid with immune

modulatory effect on animals and humans (Garewal

et al. 1992). Moreover, carotene has been revealed to be

an efficient scavenger of free radicals, notably under low

partial pressure of oxygen (Burton and Ingold 1984).

Carotenoids are one of the non-enzymatic groups of

the antioxidant system protecting against oxidative

damage through two mechanisms: (1) quenching of

singlet oxygen, and (2) scavenging of radicals.

Therefore, carotenoids have multi-functions as anti-

oxidants (Wang et al. 2006).

This study was, therefore, undertaken to investigate

if dietary supplementation of b-Carotene at various

concentrations would affect the mercury bioaccumu-

lation in tissue, the oxidative stress response and

oxidative damage induced through mercuric chloride

toxicity in Nile tilapia.

Materials and methods

Experimental fish

One hundred and twenty-eight Nile tilapia (Oreochr-

omis niloticus) weighing 80–100 g were obtained

from a private fish farm in Gamasa, Dakhlyia, Egypt.

Fish were acclimated in indoor fiberglass tanks at

25–27 �C for 2 weeks prior to beginning the experi-

ment. During that time, fish were fed ad lib twice daily

with standard commercially prepared pellets at 3 % of

their body weight. Fecal matters were siphoned out

once daily. Ammonia, nitrite, and pH were monitored

weekly. Fish were maintained on a photoperiod of

12-h light/12-h dark.

Preparation of diet and feeding

Existing information on the nutritional requirement of

O. niloticus was used for formulation of the diets

(National Research Council 1993). Casein-based semi-

purified diets were prepared contain 0 mg (control) and

M groups (HgCl2 0.05 ppm), 40 mg (M ? C40 group)

and 100 (M ? C100 group) of b-carotene kg-1 dry

diet (Table 1). b-carotene (Carotene�, kahira pharma-

ceuticals and chemical industrial Co., Cairo, Egypt)

were incorporated to provide the respective carote-

noids at levels of 40–100 mg kg-1 diet according to

Amar et al. (2004, 2000b), b-carotene-supplemented

diets did not contain vitamins A or any other sources of

carotenoids included in the mix. The ingredients were

mixed thoroughly, pelletized, vacuum freeze-dried,

and the prepared diets were stored at -20 �C or kept at

4 �C in between feedings. The diets were offered at

0900–1700 hours to apparent satiation.

Table 1 Basal components of the diet (g kg-1)

Diet

Carotenoid level

(mg kg-1)

Group 1

(control)

0

Group 3

40

Group 4

100

Casein 274 274 274

Gelatin 24 23.96 23

Starch 470 470 470

Fish oil 50 50 50

Trace mineral

premix

5.0 5.0 5.0

Vitamin premixa 5.0 5.0 5.0

Di-calcium

phosphate

40 40 40

Choline chloride 3.0 3.0 3.0

Vitamin C

(25 %)

1.0 1.0 1.0

Cellulose 125 125 125

Methionine 3.0 3.0 3.0

b-carotene – 0.04 1.0

a Vitamin A deleted from vitamin premix
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Experimental design

Sixteen fish were placed in each of eight, 60-L freshwater

aquaria (total N = 128). All fish began feeding normally.

At day 1, all fish were switched to semi-purified diets

(Table 1) prepared to be control (1st group), and 2nd

group (M group) was exposed throughout the experiment

to sublethal concentration of mercuric chloride (HgCl2)

(0.05 ppm) according to previous toxicological assay for

96 h LC50 of (Monteiro et al. 2010), and the 3rd

(M ? C40 group) and 4th (M ? C100 group) were

simultaneously fed with 40–100 mg b-carotene kg-1 dry

diet and exposed to HgCl2 for 21 days, respectively.

Duplicate aquaria were assigned to each one of four

treatments. During the experiment, 75 % water changes

were done twice weekly and replaced with fresh dechlo-

rinated water with same toxicant concentration; water

quality was measured (ammonia, nitrite, nitrate, pH, and

dissolved oxygen) twice weekly via water quality test kits

(Aquarium Pharmaceuticals, Inc.). The daily water

mercury concentration was monitored at the testing level.

Preparation of mercuric chloride stock solution

Stock solution of mercuric chloride (HgCl2 from Adwek

company, Egypt) was prepared by dissolving the

analytical grade mercuric chloride in double-distilled

water, then desired HgCl2 concentration in part per

million (ppm) was prepared from the stock solution.

Sample collection

Four fish from each aquarium (8 fish/group) were

sampled at week 1–3. Each aquarium was sampled one

at a time; the fish were sedated with a low dose of

buffered tricane (30 mg L-1 tricane ? 60 mg L-1

sodium bicarbonate), and each fish was then eutha-

nized one at a time in a separate container having a

high dose of buffered tricane (200 mg L-1 tricane ?

400 mg L-1 sodium bicarbonate). Heparinized blood

samples were collected from the caudal vein to

determine the hematological data. Moreover, plasma

was collected by centrifugation for 5 min at 3,000 rpm

and store frozen until biochemical assay.

Tissue samples

At the end of the trial period, fish of all experimental

groups were taken, liver and white muscle were

carefully excised and washed with physiological

saline (0.9 % NaCl) and immediately kept frozen at

-80 �C until the mercury analysis assay.

Biochemical and hematological assay

Test kits of StanBio (USA) were used for determina-

tion of plasma lipid profile including total lipid TL,

total cholesterol, Triglycerides TG, high-density lipo-

protein HDL, and low-density lipoprotein LDL

according to Fossati and Principe (1982).

Colorimetric determination of alanine aminotrans-

ferase (ALT) and aspartate aminotransferase (AST)

was done according to the method of Burtis and

Ashwood (1999), using commercial kits supplied by

Bio-diagnostic Egypt.

The plasma levels of Malondialdehyde (MDA) as a

lipid peroxidation marker were measured by colori-

metric method of (Ohkawa et al. 1979) using kits

supplied by Bio-diagnostic (Egypt).

Blood hemoglobin (Hb) was assessed by Drabkin

(l964). Red blood cell count (RBCs), hematocrit value

(PCV), blood indices {mean corpuscular volume

(MCV), mean corpuscular hemoglobin concentration

(MCHC), and total white blood cell count (WBC)

were determined according to (Jain 1986).

Mercury analysis in the water and tissue

The analysis of water samples was carried out

according to APHA (1985) using cold vapor atomic

absorption spectrophotometer (Model 3100, Perkin-

Elmer, Norwalk, Conn, USA). The quantification limit

for the total mercury was 0.1 lg L-1.

The total mercury in the tissue was analyzed

according to APHA (1985) using a PSA atomic

fluorescence spectrophotometer (Model, Merlin, P.S.

Analytical LTC, and Princeton, NJ, USA) equipped

with a PSA random access auto sampler. The quan-

tification limit for the total mercury was 0.05 mg kg.

Statistical analysis

All data were analyzed using SPSS version 17.0 (SPSS

Inc, Chicago, IL). Data were analyzed using one-way

ANOVA with Duncan’s post hoc test LSD multiple

comparison test, to determine the significant differ-

ences between data in this study. The differences

between means were analyzed at the 5 % probability
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level (P value \0.05 was considered statistically

significant). All parameters were expressed as

mean ± standard error.

Results

Hematological analysis

Regarding RBCs, Hb, PCV, MCHC, and WBCs values,

there were significant decreases in the M group

compared to the control and M ? C100 group, while

there were no significant differences with the M ? C40

group at week1. However, by week 2, the M group was

significantly decreased from all other groups. While,

M ? C40 returned to the value of the control one, and

M ? C100 exhibited higher value than control as well.

The M group had a significant lower value than all other

group. While, M ? C100 restored the level to the

control one by week 3, the M ? C40 had a significant

increase than both the control and M ? C100 group by

week 3 (Fig. 1a–c, e, f).

Generally, the HgCl2 level decreased these hema-

tological parameters in fish while supplying carotene

at dose 40 mg kg-1 could elevate the value again but

not to the level of the control group, but on the

contrary, supplying carotene at dose 100 mg kg-1

restores the level to the control one (Fig. 1a–c, e, f).

MCV encountered a significant increase in the M

group compared to other groups. The M ? C40 group

getting significant lower level but still not at the level

of the control group; while the M ? C100 group had a

significant decrease than M group which at or within

the same level of the control one (Fig. 1d).

Biochemical analysis

Amino transferase levels exhibited different patterns

between groups. A significant decrease in the M group

compared to other groups at week 1. However, there

were a significant increase compared to all other

groups at week 2 and 3. The M ? C40 and M ? C100

group showed a significant increase compared to the

M group and control group as well at week 1. While at

week 2 and 3, they were significantly decreased from

the M group and increased in comparison with the

control group (Fig. 2a).

Aminotransferase levels showed a significant upreg-

ulation in the M group compared to all other groups at all

time points. The M ? C40 and M ? C100 group

showed a significant decrease compared to M group

which exhibited at same time a significant increase from

the control one too; but by week 3, both groups restore

the AST level to the control one (Fig. 2b).

Malondialdehyde was significantly increased in the

M group compared to the control one while it showed

at same time a significant decrease from both

M ? C40 group and M ? C100 group as well at

week 1. Also, the M ? C40 and M ? C100 showed a

significant rise from the control group at week 1.

However, by week 2 and 3, MDA was significantly

increased in the M group compared to all other groups,

and both M ? C40 and M ? C100 restored signifi-

cantly the higher MDA level of the M group to a little

bit more than the control one (Fig. 2c).

In the present study, there were no significant

differences in the plasma lipid parameters (TL, TG,

Cholesterol, HDL, and LDL); however, levels were

nominally significant and in the same trends like other

Prameters tested; showing a decreased level in the M

group, a little bit increase in the M ? C40, but only in

the M ? C100 group; the levels were increased to be

within the range of the control one (Table 2).

Mercury analysis in tissues

The total Hg concentrations in the liver and white

muscle of Nile tilapia exposed to 0.05 ppm for three

weeks were significantly increased in the M group in

comparison with other group. Meanwhile both

M ? 40 and M ? 100 groups encountered a signifi-

cant decrease in Hg level. In the control group, no

mercury was detected in any tissue (Fig. 3). Hg levels

showed higher affinities to accumulate in liver than in

white muscle.

Discussion

The discharge of effluents containing mercury (Hg) into

the environment has caused grave contamination prob-

lems in communities of various ecosystems and in

human populations. In the present study, the fish were

adapted to commercial diet at 3 % bodyweight for

2 weeks before start of experiment. The data of hema-

tological parameters of tilapia fish in this study showed

significant decreases in all parameters in positive control

group than other groups (Fig. 1a–e). These data were

1034 Fish Physiol Biochem (2013) 39:1031–1041

123



coincided with the previous results of Shakoori et al.

(1994) in their experiment in grass carp, Ctenopharyng-

odon idella exposed to HgCl2 (0.005 mg L-1). Similar

results were described for carp, Cyprinus carpio exposed

to HgCl2 (0.30 mg L-1) for 90 h (Beena and Viswaran-

jan 1987). However, Ishikawa et al. (2007) reported no

significant changes in Nile tilapia exposed to long-term

mercuric chloride. Different and divergent results could

occur due to various factors, such as differences in body

size, species, concentration of the tested substance, and

the time of exposure (Fletcher and White 1986). In

Channa punctatus (Juneja and Mahajan 1983) and

Exposure time
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Fig. 1 a–f Changes in different hematological parameters of

Nile tilapia (O. niloticus) fed with 40–100 mg ß-carotene kg-1

dry diet (Mean ± SE) under HgCl2 exposure by a rate

(0.05 ppm) for 21 days. N = 8 fish per sampling time. Values

with different letters are significantly different between and

within groups, **significant at (P \ 0.001). M = HgCl2 only,

M ? C40 = HgCl2 with carotene 40 mg kg-1 diet, and

M ? C100 = HgCl2 with carotene 100 mg kg-1 diet
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O. aureus (Allen 1994) exposed to sublethal concentra-

tion (0.034–0.136 and 0.5 mg L-1, respectively) of

HgCl2 in water and reported increase of RBCs count and

hematocrit value (Ht). O’Connor and Fromm (1975)

observed at the beginning of their experiments a fall in

Ht, and at the end of 12 weeks, the opposite effects

occurred. This is may be attributed to the possibility that

erythropoietic tissues could have been stimulated in

response to the decline in RBCs caused by hemolysis as a

consequence of exposure to HgCl2. In addition, Oliveira

Ribeiro et al. (2000) described that fish exposed to

inorganic Hg dissolved in the water causes hypoxia, as a

result of cellular hyperplasia in the secondary lamellae of

the gills, diminishing the surface area for gas exchange.

In response to respiratory difficulty, the organism stim-

ulates an increase in RBCs, Hb, and MCHC as mecha-

nism to enhance oxygen transfer (Affonso et al. 2002).

In the present study, the WBCs count showed

significant decreases in the positive control group as

the result of 0.05 ppm mercuric chloride exposure.

Similar finding was reported for C. punctatus exposed

to 0.25 mg L-1 of HgCl2 (Misra and Behera 1992);

Gill and Pant (1985) attributed the leucopenia to the

stress caused by the bioassay type, which had also

been demonstrated in several other vertebrates.

Oncorhynchus mykis and Salvelinus fontinalis sub-

mitted to the stress of confinement and manipulation

showed a reduction in number of WBCs (Benfey and

Biron 2000). Then, the stress leads to a redistribution

of lymphocytes, mainly to lymphoid organs (thymus

and anterior kidney), diminishing in the blood circu-

lation, or to the destruction of lymphocytes in response

to high levels of cortisol.

Mercury is known to induce lipid peroxidation in

fish. For instance, higher content of MDA was

detected in snakehead tissue following 5 lg L-1 of

HgCl2 exposure for 30 days (Rana et al. 1995). We

found that peroxide radicals (MDA) appearing signif-

icantly increased in polluted group. Studies by others

are supportive to our results regarding levels of MDA.

Winston and Di Giulio (1991) reported increased

selenium-dependent glutathione peroxidase (Se-GPX)

activity and higher MDA levels in most tissues of carp

exposed to Cu2? while superoxide dismutase and
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Fig. 2 a–c Changes in ALT, AST, and MDA concentrations of

Nile tilapia (O. niloticus) fed with 40–100 mg ß-carotene kg-1

dry diet (Mean ± SE) under HgCl2 exposure by a rate

(0.05 ppm) for 21 days. N = 8 fish per sampling time. Values

with different letters are significantly different between and

within groups, **significant at (P \ 0.001). M = HgCl2 only,

M ? C40 = HgCl2 with carotene 40 mg kg-1 diet, and

M ? C100 = HgCl2 with carotene 100 mg kg-1 diet
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catalase activities were decreased. Sánchez-Chardi

et al. (2007) found that fish collected from a polluted

stream had significant higher levels of thiobarbituric

acid-reactive substances compared to those from an

unpolluted site. On contrary, other studies revealed

that mollusks (Cossu et al. 2000) and fish (Rodrı́guez-

Ariza et al. 1993) from polluted areas exhibiting low

MDA that may be attributed to animal adaptation to

live in polluted areas.

In the present study, mercury exposure showed

significant increases in MDA levels particularly in

positive control group all over the period of experi-

ment. MDA is frequently used methods to monitor

lipid peroxidation and oxidative stress in fish (Lush-

chak 2011). Hepatotoxic effect of mercury exposure

may be related to lipid peroxidation and significant

increases of MDA (Slaninova et al. 2009). On the

same respect, significant increases in the liver enzyme

as appeared in the present study could approve the

liver damage in positive control group. This damage

could be prevented by b-carotene supplementation.

Our results showed a significant increase in ALT

and AST enzyme activity in the toxicated group. In the

same context, Torres et al. (2005) found elevated levels

of both ALT and AST activities in carp (cyprinus

carpio) exposed to waterborne cadmium. Also, Kumar

et al. (2005) and Ghorpade et al. (2002) showed similar

results with exposure to mercury. However, other

Table 2 Effect of mercuric chloride toxicity by a rate (0.05 ppm) on the biochemical parameters of Nile tilapia fed with 40–100 mg

ß-carotene kg-1 dry diet for 21 days

Weeks Treatment groups TL (mg %) TG (mg dL-1) Cholesterol

(mg dL-1)

HDL

(mg dL-1)

LDL

(mg dL-1)

1st Control 400 ± 66.1 199.6 ± 37.6 120.7 ± 22.04 19.43 ± 1.26 61.35 ± 23.04

M group 291.7 ± 117.6 179.6 ± 14.9 127.8 ± 27.9 37.96 ± 8.52 53.92 ± 23.02

M ? C40 (40 mg kg-1 diet) 281.7 ± 121.8 141.9 ± 21.6 98.5 ± 7.7 21.65 ± 2.07 48.48 ± 6.32

M ? C100 (100 mg kg-1

diet)

400 ± 152.1 192.9 ± 50.6 138.6 ± 32.3 35.02 ± 13.80 65.00 ± 24.20

2nd Control 308.33 ± 36.32 175.2 ± 16.2 111.2 ± 39.8 15.79 ± 1.40 60.37 ± 36.94

M group 275 ± 66.1 228.8 ± 91.5 119.8 ± 42.3 31.80 ± 11.34 42.26 ± 18.37

M ? C40 (40 mg kg-1 diet) 300 ± 75 165.3 ± 22.7 101.3 ± 12.3 25.28 ± 1.29 42.94 ± 14.11

M ? C100 (100 mg kg-1

diet)

125 ± 25 130.8 ± 4.5 140.1 ± 17.9 20.54 ± 3.09 93.38 ± 17.92

3rd Control 283.3 ± 46.4 283.5 ± 51.9 150.1 ± 23.5 29.20 ± 4.51 64.17 ± 24.54

M group 258.3 ± 22 255.01 ± 58.7 132.2 ± 16.9 50.60 ± 14.03 30.54 ± 13.63

M ? C40 (40 mg kg-1 diet) 150 ± 43.3 262.2 ± 83.8 191.8 ± 40.2 40.07 ± 15.64 99.25 ± 11.06

M ? C100 (100 mg kg-1

diet)

208.3 ± 30 142.5 ± 15.8 184.4 ± 37.7 12.62 ± 5.44 143.30 ± 42.24

F value 1.74 1.06 1.03 1.68 1.97

Mean (±SE) of plasma lipid profile of Nile tilapia toxicated with 0.05 ppm HgCl2. N = 8 fish per sampling time. Values with

different letters at the same column are significant, ** significant at P \ 0.001

Fig. 3 Changes in hepatic and muscular mercury bioaccumu-

lation of Nile tilapia (O. niloticus) fed with 40–100 mg

ß-carotene kg-1 dry diet (Mean ± SE) under HgCl2 exposure

by a rate (0.05 ppm) for 3 weeks. N = 8 fish per sampling time.

Values with different letters are significantly different between

and within groups, **significant at (P \ 0.001). M = HgCl2
only, M ? C40 = HgCl2 with carotene 40 mg kg-1 diet, and

M ? C100 = HgCl2 with carotene 100 mg kg-1 diet
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studies were in contrast to ours. Gill et al. (1991)

reported marked reduction in hepatic, branchial, and

renal AST and ALT in rosy barb (Puntius conchonius)

after toxication with mercuric chloride. In addition,

Abu El-Ella (1996) and Shalaby (2000) found similar

results with grass carp, Ctenopharyngodon idella, and

common carp, Cyprinus carpio when exposed to

cadmium (Cd), respectively. Since mercury can inter-

act with biosynthesis of pyridoxal phosphate, an

essential requirement for normal function of amino-

transferases. At higher levels of mercury concentra-

tions, the activities of ALT and AST may initially

increase to counter the energy crises during the stress

but start to decline when the concentrations of mercury

become too high; that reduction account on liver

necrosis (because of toxicant) that led to leakage from

liver into the blood and/or tactual inhibition of liver

enzymes (Haschek et al. 2010).

No effect has been associated to mercury exposure

regarding plasma lipid parameters (total lipids, triglyc-

erides, LHL, LDL); however, there were a nominal

decrease in the exposed group and increased in carotene-

supplemented group, indicating that fish were able to

cope with the mercury potential to oxidative-degraded

lipids, despite the detected breakdown of redox-defense

system.

The data obtained regarding mercury accumulation

in tissues showed that the mercury significantly rise in

liver and white muscle. Hg levels showed lower

affinity to white muscle compared to the accumulated

level in liver. It was demonstrated that different metals

show different affinities to fish tissues and mainly they

accumulated in the liver, kidney, and gills (Huang

et al. 2007; Fernandes et al. 2008). In addition, muscle

tissues in fish usually have the lowest level of metals

(Jezierska and Witeska 2007). Our results were similar

to other studies examined the Hg accumulation in

tissues; Elia et al. (2003) found that Ictalurus melas

exposed to 35–140 lg L-1 of Hg for 10 days showed

different pattern in Hg accumulation as gills [ kid-

ney [ liver [ muscle. In the same trend, Carvalho

et al. (2009) showed that the highest Hg accumulation

in Nile tilapia exposed to 0.85 mg L-1 of Hg?2 was in

gills followed by heart, liver, and the least tissue was

the muscle. This could be attributed to the organs

nature and function; as the organs in the visceral

region of the body which usually involved in absorp-

tion, distribution, and elimination considered a target

for metals accumulation, similarly to our result in

which liver as one of the visceral organs had a higher

significant level of Hg accumulation than in muscle

tissue (Giari et al. 2008; Rao et al. 2005). Similar to the

present data Berntssen et al. (2004) detected higher Hg

accumulation in liver than in muscles tissue in Atlantic

salmon (Salmo salar). The significant reduction of Hg

accumulation across the hepatic and muscular tissue

strongly suggest that b-carotene may be extremely

useful in detoxification and chelation and warrant

further investigation to clarify mechanism protection.

Therefore, it could be concluded that dietary b-

carotene is efficient for reduction of HgCl2 toxicity

due to its immune modulatory effect (Garewal et al.

1992). Quenching free radicals by b-carotene protect

the cell membrane and receptors required for antigen

recognition from damage by peroxidation of mem-

brane lipid (Bendich 1991).

In the present study, dietary supplementation of b-

carotene demonstrated a significant increase in liver

enzymes (ALT and AST) and peroxide radicals (MDA)

parallel to the time of pollution suggesting its function in

improving liver protection. Our results are in accor-

dance with Wang et al. (2006) in which dietary

supplementation of high level of b-carotene to the

ornamental fish, characins Hyphessobrycon callistus,

lead to maximal increase in antioxidant capacity indices

in form of serum antioxidant enzymes [superoxide

dismutase (SOD), glutathione peroxidases (GPx)], and

serum transaminases [alanine aminotransferase (ALT),

aspartate aminotransferase (AST)]. Carotenoids sup-

press the respiratory burst in vivo as alternative way to

protect host cells and tissues from excess free radicals,

thereby stimulating the generation of specific immune

responses (Chung and Secombes 1988).

Studies by others have also showed that carotenoids

improve fish health (Torrissen and Christiansen 1995;

Christiansen and Torrissen 1996). There wascorrela-

tion between dietary astaxanthin concentration and

antioxidant status in liver and muscle in Atlantic

salmon (S. salar) (Christiansen et al. 1995). Moreover,

dietary astaxanthin have been shown to improve the

antioxidant status in penaeid postlarvae and enhance

their resistance against various environmental stress-

ors (Chien and Shiau 2005).

While almost all hematological parameters mea-

sured significantly decreased in response to mercuric

intoxication, dietary supplementation of b-carotene

has improved all parameters significantly near to their

control levels. Carotenoids have been implicated in

1038 Fish Physiol Biochem (2013) 39:1031–1041
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enhancing the immune response such as proliferation,

induction of specific effector cells as well as the

secretion of cytokines (Bendich 1991). b-carotene

levels up to 200 mg kg-1 diet enhanced some immune

parameters like serum complement and total plasma

immunoglobulin in the experimental rainbow trout

(AMAR et al. 2000a). Moreover, immuno-enhance-

ment of b-carotene involves the quenching of free

radicals or the lowering of lipid peroxide levels and

alterations in membrane fluidity (Bendich 1991),

which account on increasing the levels of RBCs, Hb,

and PCV upon its supplementation in diet to alleviate

the toxic effect of mercury.

In the present study, dietary supplementation of b-

carotene showed significant decrease in Hg accumu-

lation in both liver and muscle tissue of Nile tilapia

compared to the M group, which clues that addition of

b-carotene remediated the effect of HgCl2 toxicity.

Similar to the present data, Kaoud et al. (2012) showed

that addition different concentration of Lemna gibba

L-extract to water containing 0.06 mg L-1 doses of

HgCl2 reduced significantly the Hg level in water and

the metal uptake as compared to fish exposed to Hg

alone. In the same event, polysaccharide from

Acanthophyllum bracteatum 1 % weight/weight

(w/w) was added to 60 mg L-1, tested its efficacy in

reducing toxicity of HgCl2 in Atlantic salmon, and the

Hg analysis showed that there was a significant

depletion of Hg in blood, liver, and tissues of fish

treated with polysaccharide (Jahanbin et al. 2012).

In conclusion, this study clearly demonstrated the

effect of HgCl2 on the hematological, plasma, and

lipid parameters in Nile tilapia, inducing significant

variations, suggesting that it play a major role

promoting the immune depressive and oxidative stress

response. Correspondingly, our results further showed

that b-carotene-supplemented diet stimulate the

immune and antioxidative response. Thus, b-caro-

tene-supplemented diet could be beneficial in toxicity

reduction by modulating the immune and antioxidant

functions that could be used to overcome the immune

depressive stressful condition in farmed Nile tilapia

that of a great significant when planning good

management to protect farmed fish stocks.
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