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Abstract. The fire smoke exhaust behavior of tunnels with naturally ventilated verti-

cal shafts at high altitude area is different from that at standard atmospheric pressure
due to the unconventional fire smoke transportation at reduced pressure. Smoke
layer plug-holing is an unfavorable phenomenon for the smoke exhaust efficiency of

tunnels with vertical shafts. Therefore, theoretical analysis and numerical simulation
of the smoke layer plug-holing behavior of the naturally ventilated vertical shafts at
ambient pressure of 60 kPa, 70 kPa, 80 kPa, 90 kPa and 101 kPa were conducted.
Since the flame height for tunnel fires with the same heat release rate increases at

reduced pressure, the smoke temperature and flow velocity beneath the ceiling are
enlarged, which increases the horizontal inertia force of smoke beneath the bottom of
the shaft to cause high smoke temperatures and violent smoke diffusion within the

shaft, and then the degree of smoke layer plug-holing is weakened. The critical
Richardson number (Ri ´) for predicting the occurrence of plug-holing falls to 1.08 at
60 kPa and has a non-linear relationship to the pressure coefficient. Similarly, the

plug-holing height decreases with the decrease in ambient pressure, and a global cor-
relation for the plug-holing height that is positive to the 1.77 power of the Richard-
son number is proposed based on the theoretical analysis and simulated results.
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Abbreviations

A1-4 Fitting coefficient

Ashaft Vertical shaft cross-sectional area (m2)

Cp Specific heat of air (J/kg·K)

D* Characteristic diameter

d Smoke layer thickness below the shaft opening (m)

* Correspondence should be addressed to: Jie Wang, E-mail: wangjie87@wust.edu.cn
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dg Grid size (m)

Fh Horizontal inertia force (N)

Fv Vertical buoyancy force (N)

g Gravitational acceleration (m2/s)

H Hydraulic tunnel height defined as the ratio of 4 times the tunnel cross- sectional area to the

tunnel perimeter (m)

h* Dimensionless shaft height

h Shaft height (m)

hc Heat of combustion (kJ/kg)

hp
* Dimensionless plug-holing height

hp Plug-holing height (m)

hshaft Shaft height (m)

k1-7 Fitting coefficient

lshaft Shaft length (m)

M Molar mass of air (g/mol)

_m Burning rate (kg/s)

n Amount of gas substance

P Pressure of ideal gas (kPa)

p Ambient pressure (kPa)

px Reduced pressure of x kPa (kPa)

pstd Standard atmospheric pressure (kPa)

Qc Convective heat release rate (kW)

Q* Dimensionless heat release rate

R Ideal gas constants

Ri’ Richardson number

Ri* Richardson number defined by Zhao et al.’s study

Rix Richardson number at the reduced pressure of x kPa

T Thermodynamic temperature of ideal gas (K)

Ta Ambient temperature (K)

Ts Smoke temperature below the shaft (K)

ΔTs Smoke temperature rising below the shaft (K)

V Volume of ideal gas (m3)

v Horizontal flow rate of the smoke below the shaft (m/s)

w Width of the tunnel (m)

ws Width of the shaft (m)

x Longitudinal position from the fire source (m)

Greek symbols

α Pressure coefficient

Δρ Density difference between smoke and ambient air (kg/m3)

ρ Smoke density (kg/m3)

ρair Air density (kg/m3)

ρs0 Density of smoke without smoke exhaust(kg/m3)

1. Introduction

Recently, many high-altitude tunnels have emerged the world, such as the Yankou
mountain tunnel in China and the Eisenhower-Johnson Memorial tunnel in the
United States. Smoke is the most fatal factor for the tunnel construction and the
trapped people [1]. Vertical shafts as a natural smoke extraction mode are widely
used in tunnels due to their economy and environmental protection [2]. For exam-
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ple, the high-altitude Kunming metro system using vertical shafts has achieved
great operational and economic benefits. Meanwhile reduced pressure which alters
fire smoke transportation brings a major challenge to the naturally ventilated ver-
tical shaft design of high-altitude tunnels [3].

Considerable research has been conducted on tunnel fires with naturally venti-
lated vertical shafts, and mainly focuses on the fire smoke characteristics (Li et al.
[4],Tang et al. [5], and Ren et al. [6], etc.), smoke exhaust efficiency and optimiza-
tion (Kashef et al. [7], Yi et al. [8], and Ji et al. [9], etc.), tunnel fire evacuation
(Cano-Moreno et. al [10], Chen et al. [11], Krol et. al [12]), smoke back-layering
length (Li et al. [13], Zhang et al. [14], Zhang et al. [15], etc.), and influence fac-
tors for smoke layer plug-holing (Zhao et al. [16], Liu et al. [17], Liu et al. [18],
etc.). In the aspect of smoke layer plug-holing behavior in tunnel shafts which
havs a significant impact on the smoke extraction efficiency, Ji et al. [19] firstly
revealed two special phenomena (plug-holing and boundary layer separation) and
proposed a critical plug-holing judging criterion (i.e., a new Richardson number
Ri’). Then, some researchers [20, 21] verified the applicability of the critical plug-
holing criterion under different conditions. For example, Jiang et al. [20] con-
ducted a series of tunnel fire experiments on smoke exhaust under the vertical
shaft and longitudinal ventilation, which showed that the critical plug-holing crite-
rion Ri’=1.4 was still applicable. The smoke exhaust characteristics of shafts
arranged in the middle and above the sides of the tunnel were also studied by
Jiang et al. [21], who concluded that Ri’=1.4 is still applicable to explain the
plug-holing and boundary layer separation phenomena associated with smoke
boundary layers. Zhang et al. [22] further studied the influence of the shaft size on
the plug-holing height which indicates the degree of smoke layer plug-holing, and
built a model for predicting the critical shaft height through a series of numerical
tunnel fi re simulations. However, Zhao et al. [23] gave a new dimensionless Ri*

by finding that Ji’s plug-holing criterion [19] could not be applied to large cross-
section shafts, and then proposing a prediction model for the plug-holing height
based on tunnel fire simulated data. As can be seen, Ri’ or Ri* can describe the
smoke flow pattern within tunnel shafts, and its critical value can predict the
occurrence of the smoke layer plug-holing. However, the above studies are carried
out at standard atmospheric pressure (101 kPa), and then the critical Ri’ criterion
and the plug-holing height model may not be applicable to the tunnel fires at
reduced pressure owing to the various smoke movement patterns at reduced pres-
sure.

Ji et al. [24] carried out a series of simulations in full-scale highway tunnels to
explore the effect of ambient pressure on the temperature distribution in tunnel
fires, and the results showed that the longitudinal temperature distribution
increased with the decrease of ambient pressure. Tang et al. [25] found that longi-
tudinal smoke temperature decays faster at reduced pressure through numerical
simulations. Feng et al. [26] and Liu et al. [27] found that the CO concentration
and smoke movement speed in high altitude tunnel fires were different from those
standard atmospheric pressure, and the smoke movement speed increased with the
increase in altitude. Wang et al. [28–34] investigated the influence of reduced pres-
sure on the ceiling temperature profile, CO concentration profile and flame height
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by full-scale aircraft cargo compartment fire tests to derive prediction models of
these fire plume characteristics applicable at reduced pressure. Obviously, the
decrease of ambient pressure can change the tunnel fire smoke transportation
characteristics, which have a significant impact on the smoke movement pattern
during natural smoke extraction from the shaft and the crucial plug-holing criteria
values. For this aspect, Yan et al. [35] calculated the critical plug-holing criterion
Ri’ at 60 kPa, 80 kPa, and 100 kPa and found that Ri’ decreased at reduced pres-
sure. However, the mathematical relationship between the critical plug-holing cri-
terion and reduced pressure is not clarified. Moreover, the plug-holing height
reflecting the degree of smoke layer plug-holing at reduced pressure has rarely
been addressed in previous studies.

Therefore, this work conducted theoretical analysis and numerical simulations
to clarify the reduced pressure effects on smoke temperature and velocity in a nat-
ural ventilated tunnel with a vertical shaft to present the critical plug-holing crite-
ria and plug-holing height. A new plug-holing criterion and a new prediction
model for plug-holing height of tunnel fires with a natural ventilated vertical shaft
are proposed to extend the application range of the criterion and prediction model
including the standard atmospheric pressure and reduced pressure.

2. Theoretical Analysis

2.1. Plug-Holing Criterion for Vertical Shafts at Reduced Pressure

Ji et al. [19], based on the analysis of the main driving dynamics in the natural
smoke exhaust process of the shaft, proposed the dimensionless Ri’ number to
determine the flow field structure in the shaft, which is defined as the ratio of
the vertical thermal buoyancy (Fv) to the horizontal inertial force (Fh) of the
smoke, i.e.

Ri0 ¼ Fv
Fh

¼ DqghAshaft

qs0v2dws
ð1Þ

where Δρ is density difference between smoke and ambient air without smoke
exhaust, g is the gravitational acceleration, h is the shaft height, Ashaft is the verti-
cal shaft cross-sectional area, ρs0 is the density of smoke without smoke exhaust, v
is the horizontal flow rate of the smoke below the shaft without smoke exhaust, d
is the smoke layer thickness below the shaft without smoke exhaust, and ws is the
shaft width.

If the ambient pressure changes, Δρ and ρs0 will change as well. According to
the ideal gas law:

PV ¼ nRT ð2Þ

where P is the pressure of ideal gas, V is the volume of ideal gas, n is the amount
of gas substance, R is the ideal gas constants, and T is the thermodynamic tem-
perature of ideal gas. It can be obtained from the ideal gas equation:
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p / qT ð3Þ

where ρ is the smoke density. The density difference between smoke and ambient
air can be estimated by [36]:

Dq ¼ DTs
Ts

qair ¼
DTs

Ta þ DTs
qair ð4Þ

where Ts and ΔTs are the smoke temperature and the smoke temperature rising
below the shaft, Ta is the ambient temperature, ρair is the air density.

He [37] proposed an empirical equation for predicting the velocity of smoke
below the ceiling based on experimental results and theoretical analysis of narrow
and long space fires, ie.

v ¼ 0:8
gQcTs

2CpqairT 2
a w

� �1=3

ð5Þ

where Qc is the convective heat release rate, Cp is the specific heat of air, and w is
the width of the tunnel.

The heat release rate can be expressed as [38]:

Qc ¼ _mhc ð6Þ

where _m is burning rates and hc is the heat of combustion.
Wieser et al. [39] obtained the average burning rate of n-heptane fire is approxi-

mately proportional to the 1.3 power of atmospheric pressure:

_m / p1:3 ð7Þ

where p is the ambient pressure.
Combining Eqs. (6) and (7), the relationship between the heat release rate and

pressure can be expressed as:

Qc / p1:3 ð8Þ

Then, the velocity of smoke under the same heat release rate and reduced pressure
can be expressed as (ignoring the influence of pressure on the gravitational accel-
eration):

v / QcTs
qair

� �1
3

ð9Þ

The smoke temperature Ts can be expressed as:

Ts ¼ Ta þ DTs ð10Þ
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Yin et al. [40] obtained the relationship between plume temperature and pressure
through high-altitude combustion chamber experiments, which can be expressed
as:

DTs
T0

� ð p
Qc

Þ�2=3 ð11Þ

Gong et al. [41] pointed out that the longitudinal temperature distribution of the
tunnel can be expressed as:

DTs
Ta

¼ A1 expð� x=w
A3

Þ þ A2 expð� x=w
A4

Þ ð12Þ

where A1,A2,A3 and A4 are just fitting coefficients, and x is the longitudinal posi-
tion from the fire source.

Finally, Yan et al. [35] have pointed out that the influence of pressure on the
smoke layer thickness is very small, so ignoring the influence of pressure on the
smoke layer thickness. Combining the Eqs. (1), (3), (4), (5), and (9), the expres-
sion of Ri’ under the same heat release rate at reduced pressure can be expressed
as:

Ri0x ¼ k1
px
pstd

� ��0:3

þk2
px
pstd

� ��0:1
" #�2

3

Ri0 ð13Þ

where k1, k2 are just fitting coefficients, pstd and px are the standard atmospheric
pressure and reduced pressure of x kPa.

2.2. Plug-Holing Height at Reduced Pressure

According to previous studies [23], the plug-holing height is related to Ri’ and
shaft shape. In order to reveal the quantitative relationship between ambient pres-
sure and plug-holing height, the concepts of pressure coefficient and dimensionless
shaft height are introduced here. The pressure coefficient is defined as the ratio of
ambient pressure to standard atmospheric pressure:

a ¼ px
pstd

ð14Þ

The plug-holing height is more sensitive to the shaft opening length [22], and the
dimensionless shaft height (h*) is defined as the ratio of the shaft length to the
shaft height as follows.

h� ¼ lshaft
hshaft

ð15Þ
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where lshaft is the shaft length and hshaft is the shaft height.
The dimensionless heat release rate can be calculated as follows [42].

Q�¼ Qc

qairTaCpg1=2H 5=2
ð16Þ

where H is the hydraulic tunnel height defined as the ratio of 4 times the tunnel
cross- sectional area to the tunnel perimeter.

Therefore, the dimensionless plug-holing height can be expressed as:

h�p ¼
hp

hshaft
¼ f ðRi0; h�;Q�; aÞ¼k3Ri0k4h�k5Q�k6ak7 ð17Þ

where hp is the plug-holing height. k3, k4, k5, k6 and k7 are the fitting coefficients.α
is the pressure coefficient. h* is the dimensionless shaft height.

3. Numerical Modeling and Setting

3.1. Fire Scene

A natural ventilated tunnel of 120 m (length) 9 m (width) 6 m (height) with a ver-
tical shaft model is established by FDS 6.6, as shown in Fig. 1. The shaft is loca-
ted at the longitudinal centerline of the tunnel and 57.5 m from the left tunnel
opening. The shaft cross-sectional size is 9 m2, 3 m length (l) and 3 m width (w),
and the shaft height is adjustable in the range of 0–5 m. For comparison, a fire
scenario with no shaft is set up to evaluate the original horizontal inertia force of
the smoke. In order to obtain the best simulation result, additional extension
areas denoted by yellow are added to the model in Fig. 1.

The ambient pressures are set to 60 kPa, 70 kPa, 80 kPa, 90 kPa, and 101 kPa,
which is sufficient to cover the ambient pressure variation characteristics from 0 to
4500 m in altitude [43]. N-Heptane fire sources of 2 m (length) 2 m (width) are
located at the longitudinal centerline of the tunnel floor, 37.5 m away from the
left tunnel opening. The heat release rates are 3 MW and 10 MW to represent the
most common car fires (3 MW) and truck fires (10 MW) in the tunnel. The initial
ambient temperature of the tunnel is 20 ˚C and the duration of the numerical sim-
ulation is 1200 s to form the steady state of the smoke movement in the tunnel
and the shaft. The fire simulation conditions are summarized in Table 1.

Temperature and velocity vector slices are located at the longitudinal centerline
of the shaft to visualize the smoke temperature distribution and flow field. In
addition, a series of vertical temperature and velocity measurement points are set
up below the shaft opening to get the vertical thermal buoyancy and horizontal
inertia forces of the smoke layer below the shaft. The detailed arrangement of
measurement points in the model is shown in Fig. 2.
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3.2. Mesh Analysis

The grid size has an important influence on the accuracy of simulation and calcu-
lation time. According to the FDS User’s Guide, when the grid size (dg) follows:
dg=1/16D*�1/4D*, the FDS model has high simulation accuracy [44]. The char-
acteristic diameter D* can be expressed as follows:

Figure 1. Schematic diagram of the FDS model tunnel.

Table 1
Fire Condition Setting

Scenario Shaft height (m) Ambient pressure (kPa) HRR(MW)

1–10 – 60, 70, 80, 90, 101 3, 10

11–20 0.5

21–30 1

31–40 1.5

41–50 2

51–60 2.5

61–70 3

71–80 3.5

81–90 4

91–100 5
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D� ¼ Qc

qairCpTa
ffiffiffi
g

p
� �2=5

ð18Þ

According to the ideal gas equation, ρair=PM/RTa, then Eq. (18) can be changed
to:

D� ¼ QcR
PMCp

ffiffiffi
g

p
� �2=5

ð19Þ

where M is molar mass of air.
It can be seen from Eq. (19) that the characteristic diameter increases with the

increase of HRR and decreases with the increase of pressure. Therefore, the grid
independence study is conducted under the conditions of minimum HRR (3 MW)
and maximum ambient pressure(101 kPa). Figure 3 shows the vertical distribution
of temperature and velocity in the tunnel 12 m to the right of the fire source
under different grid sizes. Obviously, when the grid size is less than 0.15 m, there
is no obvious difference in the temperature curve. Therefore, considering the cal-
culation accuracy and simulation time, this paper selects the grid size of 0.15 m
for FDS simulation. The simulation with different fire source and pressure takes
the same grid size (0.15 m) in order to ensure the consistency of the simulation
accuracy for each group of working conditions.

Figure 2. Setting of measurement points in tunnels and shafts.
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3.3. Model Validation

Considering the numerical simulation accuracy and calculation time, the FDS grid
size was selected as 0.15 m 0.15 m 0.15 m. Since most of the simulated conditions
in the work are carried out under pressure boundary conditions, the numerical
simulation results by FDS at reduced pressure are compared and verified before
carrying out the simulations. Yan et al. [45] conducted six full-scaled fire experi-
ments in the Baimang Snow Mountain No. 1 Tunnel, Yunnan Province, where
the ambient pressure was approximately 62.63 kPa, the air density was approxi-
mately 0.8353 kg/m3, and the ambient temperature was approximately 13.5 ˚C in
the experimental section of the tunnel. The tunnel ambient characteristics are
replicated using FDS, and a typical experimental situation with a fire source
power of 0.72 MW is simulated. In comparison to the experimental longitudinal
temperature distribution, the results of the numerical simulation of the smoke
temperature at 0.12 m below the tunnel ceiling are displayed in Fig. 4a. The
smoke temperature is selected from the experimental data at the fully developed
stage of the fire. The results show that the simulated temperature is in good agree-
ment with the experimental data.

At the same time, the FDS simulation results under standard atmospheric pres-
sure are also verified. Cong et al. [46] conducted a series of experiments in a 1:15
small-scale tunnel. The full-scale tunnel corresponding to the experimental model
is almost the same size of the model tunnel constructed in this paper. Enlarge the
small-scale model to a full-scale model scale, and compare the numerical simula-
tion results with the experimental results of the small-scale model, as shown in
Fig. 4 (b). It can be seen that under the standard atmospheric pressure, the tem-
perature simulation results below the tunnel ceiling are not significantly different
from the experimental data.

(a) The vertical temperature distribution
at the location of 12 m away from fire 
source

(b) The vertical velocity distribution 
at the location of 12 m away from fire 
source

Figure 3. Velocity and temperature distribution under different grid
sizes.
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In order to verify the accuracy of the FDS simulation of vertical shaft smoke
exhaust, the simulation results were compared with the smoke movement pattern
in the 1:6 reduced-size model tunnel by Ji et al. [19]. Ji et al. [19] presented
detailed experimental conditions in their study, and the boundary conditions can
be well reproduced by FDS. Two representative operating conditions with HRR
of 20.21 kW are reproduced in FDS. Figure 5 shows the centerline temperature
distribution in the shaft area (left) compared with the experimental results of Ji
et al. [19] (right). It can be seen that when the shaft height is 0.2 m, no plug-hol-
ing occurs, and when the shaft height is 0.4 m, significant plug-holing has occur-
red. The two smoke movement patterns are in good agreement when the modeling
findings and experimental phenomena are compared side by side. In summary,
numerical simulations can satisfy the research needs.

To verify the accuracy of numerical simulation results under other heat release
rates, the smoke flow velocity below the tunnel ceiling was compared with previ-
ous studies [47]. The comparison between the FDS simulation results and the
smoke velocity prediction model Eq. (5) proposed by He [37].

Figure 6 shows the comparison between the smoke flow velocity at a distance of
12 m to the left of the fire source and the predicted results of the Eq. (5). It can
be seen that the numerical simulation results are in good agreement with the pre-
dicted values of the empirical equation.

In summary, the accuracy of the FDS numerical model is reliable, and it is fea-
sible to simulate fires in high-altitude tunnels under different environmental pres-
sure.

a p=62.63kPa b p=101kPa
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Figure 5. Vertical shaft plug-holing: simulated by FDS (left) and
experimental results by Ji et al. [19] (right).
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4. Results and Discussion

4.1. Smoke Temperature Profile and Velocity Field in the Vertical Shaft

Figure 7 shows smoke temperature distribution at the longitudinal central plane
of vertical shafts with different heights at 60 kPa and 101 kPa for 3 MW tunnel
fires. When the shaft height is 2 m, the smoke layer below the shaft can still main-
tain a stable layered structure. However, a low-temperature depression area below
the shaft has occurred, where smoke with temperature lower than 40 ˚C starts to
invade the smoke layer at the bottom of the shaft. When the shaft height approa-
ches 2.5 m, smoke with a temperature below 25 ˚C has obviously descended into
the shaft. Since more cold air is sucked into the shaft directly due to the stronger

Figure 7. Smoke temperature distribution for different shaft heights
at 60 kPa and 101 kPa (HRR=3 MW).
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stack effect of high vertical shaft, the smoke layer thickness beneath the bottom of
the shaft decreases to zero, and then smoke layer plug-holing occurs.

With the increase in shaft height, the highest point of the recessed region sur-
passes the bottom of the shaft and then an obvious cold air cone appears in the
shaft. In accordance with the Ri’ criteria put forward by Ji et al. [19], smoke layer
plug-holing appears in the shaft when the vertical thermal buoyancy causing the
stack effect of the smoke is greater than its horizontal inertia force. Thus, for tun-
nel fires at same pressure, the degree of plug-holing is enhanced by the increasing
shaft height, just like the elevating smoke depression point of higher shaft in
Fig. 7. Comparing smoke depressed areas for the same shaft height at different
pressures, the smoke depression point at 60 kPa is lower than it at 101 kPa, that
is, the degree of plug-holing is weakened by the reduced pressure. The quantita-
tive analysis of plug-holing degree and its induced mechanism at reduced pressure
is expressed in Sect. 4.3.

The smoke flow velocity field in the shaft can be used to determine the bound-
ary layer separation which means that a vortex area appears on the upstream
sidewall of the shaft [48]. Figure 8 shows the smoke flow velocity field in the shaft
with different shaft heights at 60 kPa and 101 kPa for 3 MW tunnel fires. When
the shaft height is 2 m, a vortex area near the upstream sidewall of the shaft is
observed, indicating that boundary layer separation has occurred. And the hori-
zontal inertia force of the smoke is the main driving factor for smoke flow in the
shaft, since the stack effect is insufficient to overcome the adverse resistance to
smoke exhaust caused by the inverse pressure gradient. The boundary layer sepa-
ration phenomenon exists when the shaft height is less than 2 m. With the shaft
height increasing to 2.5 m, a vortex area near the sidewalls of the shaft disappears
and vertical flow vectors appear at the shaft center. Smoke layer plug-holing
replaces boundary layer separation and continues to occur for higher shafts, while
the stack effect of the shaft is the main driving factor for smoke flow. Clearly, the
reduced pressure lengthens the existence of boundary layer separation phe-
nomenon and postpone the occurrence of plug-holing.

According to the smoke temperature and flow velocity field in the shaft, the
smoke boundary layer separation and plug-holing phenomena for different shaft
heights at different pressures are summarized in Table 2.

4.2. Plug-Holing Criterion at Reduced Pressure

According to the numerical data of smoke temperature rise, smoke layer thickness
and smoke velocity listed in Table 3, the critical Ri’ at different pressures is calcu-
lated using Eq. (1) as shown in Fig. 9. The critical Ri’ at standard atmospheric
pressure (1.38) agrees with the conclusion reached by Ji et al. [19], and the critical
Ri’s at 60 kPa and 80 kPa (1.08 and 1.34 respectively) correspond to Yan’s study
[35] which further verifies the accuracy of our simulation results further. Obvi-
ously, reduced pressure leads to a reduction in the critical Ri’ for smoke layer
plug-holing. Because the faster smoke flow velocity at reduced pressure caused by
a higher smoke temperature as presented in Sect. 4.1, enhances the horizontal
inertial force of the smoke layer below the shaft. Figure 10 shows the relationship
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between Ri’ and ambient pressure, i.e. the ratio of Rix’ at reduced pressure to Ri’
at standard atmospheric pressure has a non-linear relationship to the pressure
coefficient, which corresponds to the theoretical analysis (Eq. 13).

Therefore, the judging criterion of smoke layer plug-holing at reduced pressure
Rix’ can be expressed as Fig. 10.

4.3. Reduced Pressure Effect on Plug-Holing Height

The concept of plug-holing height is proposed to describe the degree of plug-hol-
ing, which is defined as the vertical height difference between the bottom opening
of the shaft and the highest point of the low-temperature depression zone at 5 ˚C
temperature rise in the shaft, denoted as hp [23]. Figure 11 gives the plug-holing
height at different pressures for 3 MW tunnel fires with 5 m shaft height through
smoke temperature fields in the shaft. The plug-holing height decreases by 66%

Figure 8. Smoke flow velocity field for different shaft heights at
60 kPa and 101 kPa (HRR=3 MW).
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when the pressure decreases from standard atmospheric pressure to 60 kPa.
Reduced pressure has a non-negligible influence on the plug-holing height.

Figure 12 presents all plug-holing heights for tunnel fires of different heat release
rates with various shaft heights at different pressures, showing that the plug-holing
height decreases with the decrease of the ambient pressure for tunnel fires with the
same heat release rate, and the heat release rate decreases the plug-holing height for
the same pressure and shaft height condition. In addition, at the same pressure, the
plug-holing height shows an overall upward trend with the increase in shaft height,
which supports Zhao’s [23] study at standard atmospheric pressure.

Table 2
Smoke Boundary Layer Separation and Plug-Holing Phenomena for
Different Shaft Heights at Different Pressures

Shaft

height

(m)

HRR

60 kPa 70 kPa 80 kPa 90 kPa 101 kPa

3 MW 10 MW 3 MW 10 MW 3 MW 10 MW 3 MW 10 MW 3 MW 10 MW

0.5 B B B B B B B B B B

1 B B B B B B B B B B

1.5 B B B B B B B B B B

2 B B B B B B B B B B

2.5 P B P B P B P B P P

3 P P P P P P P P P P

3.5 P P P P P P P P P P

4 P P P P P P P P P P

4.5 P P P P P P P P P P

5 P P P P P P P P P P

‘‘B’’ indicates the occurrence of boundary layer separation phenomenon, ‘‘P’’ indicates the occurrence of plug-

holing phenomenon

Table 3
Smoke Layer Parameters Below the Shaft Opening

Ambient pressure

(kPa)

HRR

(MW)

Smoke temperature ris-

ing (K)

Smoke layer thick-

ness (m)

Smoke velocity

(m/s)

60 3 45.4 1.8 2.2

10 107.9 1.9 3.6

70 3 43.0 1.8 2.0

10 103.2 1.8 3.5

80 3 38.9 1.7 1.8

10 92.5 1.9 3.1

90 3 36.8 1.8 1.8

10 89.8 1.9 2.9

101 3 35.3 1.8 1.7

10 81.4 1.9 2.8
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Figure 9. Ri’ values of smoke plug-holing tunnel shaft at different
pressures.
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Figure 10. Correlation between Rix’/Ri’ and ambient pressure
coefficient.

Figure 11. Plug-holing height of the shaft at different pressures
(HRR=3 MW, h=5 m).
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Through the theoretical analysis in Sect. 2.2, the dimensionless plug-holing
height can be expressed by Eq. (17). Based on the critical Ri’ values from the
numerical results, Fig. 13 gives the correlation of dimensionless plug-holing height
by introducing pressure coefficient α, and the dimensionless shaft height h*,
expressed as:

h�p ¼ 0:09a0:83Ri01:77h�1:22Q��0:17 ð20Þ

Figure 12. Plug-holing height at different pressures (60, 70, 80,
90, 101 kPa) and shaft heights.
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Figure 13. Dimensionless plug-holing height correlation at different
pressures.
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5. Conclusion

The plug-holing behavior of smoke layer of tunnel fires with natural ventilated
vertical shafts at reduced pressure is studied through theoretical analysis and
numerical simulations. The impact of reduced pressure on smoke temperature and
flow velocity in the vertical shaft is clarified. And the plug-holing criterion for the
smoke layer at reduced pressure, together with the critical judging values, are pre-
sented. Then the plug-holing heights at reduced pressure are analyzed. The main
conclusions include:

(1) The plug-holing criterion Ri’ for tunnel fires with natural ventilated vertical
shafts at reduced pressure is given through theoretical analysis, which has a
non-linear relationship to the ambient pressure. The critical judging values of
Ri’ at 60 kPa, 70 kPa, 80 kPa, 90 kPa are calculated as 1.08, 1.18, 1.25, 1.34
respectively to verify that the critical plug-holing criterion decreases with the
reduction of the ambient pressure.

(2) The plug-holing height decreases with the decreasing pressure, that is, the
plug-holing degree of the smoke layer in tunnel fires with a vertical shaft is
weakened by the reduced pressure. Because the horizontal inertia force of fire
smoke is enhanced by the increasing smoke flow velocity and temperature at
reduced pressure.

(3) A global prediction model (Eq. (20)) for the plug-holing height of tunnel fires
with a vertical shaft is proposed by introducing a pressure coefficient and
extending the engineering application range. The plug-holing height is propor-
tional to the 1.77 power of Ri’, 1.22 power of h*, the − 0.17 power of the Q*

and the 0.83 power of the pressure coefficient.
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