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Abstract. Building fires are one of the most common fire types and tend to cause

heavy casualties. During the evacuation, the shortest path makes the escapees leave
the accident scene faster. Meanwhile, the safety of escapees in the evacuation process
cannot be ignored. Optimal path should both ensure evacuation efficiency and maxi-

mize the safety of escapees. A bi-objective path planning model, which considers both
path risk and path length, is presented. Path risk is based on five risk factors that are
likely to cause casualties in a fire: carbon monoxide (CO), hydrogen cyanide (HCN),
temperature, visibility, and crowding. The linear weighted sum method is used to

convert the risk-objective model and the length-objective model into a dynamic bi-ob-
jective path planning model. The Dijkstra algorithm is modified to solve the model.
The modified algorithm outperforms the traditional Dijkstra algorithm in terms of

both efficiency and adjustment ability. The simulation analysis of a building fire
shows that the bi-objective model and algorithm can plan a combined optimal evacu-
ation path for escapees considering risk and path length, which avoids the area with

high risk level and optimizes the evacuation path length.

Keywords: Multi-exit building fire, Path risk, Dynamic bi-objective path planning model, Homogeniza-

tion of risk characterization, Modified Dijkstra algorithm

1. Introduction

The fire situation in China has undergone remarkable changes with rapid eco-
nomic growth in recent years [1]. Buildings with complex structure, such as stadi-
ums and shopping malls, began to proliferate to meet the needs of consumers.
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Meanwhile, the frequent occurrence of building fire has caused serious mass disas-
ters. For example, a fire occurred in Jilin Shopping Mall on November 5, 2010
with a death toll of 19 [2] and Anyang Trade Company fire happened in Novem-
ber 21, 2022 with a death toll of 38. Statistics from the Fire and Rescue Depart-
ment Ministry of Emergency Management showed that 168 people have died in
building fires in China in 2021. Asphyxiating and irritating gases generated in
building fires threaten the safety of evacuees, and those who successfully escape
but have been exposed to high temperatures and concentrations of hazardous
gases also face the possibility of death even after the fire has ended [3]. Therefore,
emergency evacuation should focus not only on improving evacuation efficiency
and shortening evacuation time but also minimizing the risks that evacuees may
suffer in the process of evacuation.

Evacuation of pedestrians is a process of path decision and moving to the emer-
gency exit when threatened. Conventional static path indication signs guide pedes-
trians to escape in unfamiliar environments, but static signs fail to predict the
risks that people may encounter in escape paths. Therefore, researchers have paid
considerable attention to the field of evacuation path optimization in recent years.
Many studies have focused on optimizing evacuation time or path length to
ensure the safety of evacuees from the perspective of evacuation efficiency [4–13]
but ignore the potential risks caused by the spread of fire to different paths. Some
scholars have used fire risk as the optimization objective. Balboa et al. [14] pro-
posed a pathway to prohibit excessive hazardous gases and avoid the risk of haz-
ardous gases in fires. Wang et al. [15] put forward an optimization objective that
minimizes the total amount of harmful gas inhalation. Faouzi Kamouna [16] con-
sidered the concentration of harmful gases, temperature, and crowding in the
path. Wang et al. [17] took into account the influence of smoke temperature, visi-
bility, and CO concentration on evacuation in drilling platforms. In addition to
considering the risk of combustion product in fire, many studies have emphasized
evacuation models that integrate fire risk with other influencing factors. Chu et al.
[18] established a model for optimizing variable pedestrian evacuation guidance
that considers congestion, hazard, and compliance behavior. Mirahadi and
McCabe [19] used evacuation time, proximity of evacuation path to the fire loca-
tion, crowding, and next expected isolation of the fire area (unpassable areas) as
optimization objectives. Song et al. [20] proposed an evacuation route selection
approach that considers hazards and time for indoor spaces and assessed fire haz-
ard using the fractional effective dose of carbon monoxide, oxygen, and carbon
dioxide and heat.

Although these studies have introduced path risk into the path planning model,
the selection of path risk factors presents limitations. Faouzi Kamouna [16] and
Song et al. [20] neglected visibility. Risk factors proposed by Wang et al. [17]
failed to consider the harm caused by heat. On the basis of previous studies, this
work optimized risk factors, including smoke toxicity, temperature, visibility, and
crowding. However, the risk classification standard is unclear. Song et al. [20]
assessed the fire risk through the fractional effective dose although this method is
not applicable to the evaluation of crowding. Shi et al. [21] assessed risk in fire
evacuations from several aspects but the calculation of risk levels lacks homoge-
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nization. A semiquantitative method is cited in this study to homogenize the risk
characterization and classify the different degrees of potential harm to personnel.

Researchers have proposed various methods for solving the path planning prob-
lem and achieving the optimization objective. A* [22] is a widely used heuristic-
based algorithm that has been successfully used to solve the shortest path problem
and obtain the optimal path for various path planning problems. However, it does
not apply to path planning of multiple exits. Evolutionary computing (EC) meth-
ods, such as genetic algorithm (GA) [23], particle swarm optimization (PSO) [24],
ant colony optimization (ACO) [21], and artificial bee colony (ABC) [25], have
been gradually introduced into path planning in recent years. Meanwhile, the
modification of these methods and integration of different algorithms have rapidly
developed [26] despite demonstrating some drawbacks. For instance, GA typically
converges prematurely to the local optimal solution, and its ability to explore
space is limited. PSO depends on users to adjust the control parameters and
achieve the required solution. In addition, premature convergence also exists in
the evolution process when PSO is used to deal with complex problems. Prema-
ture convergence is not ideal because the result is only locally optimal instead of
being globally optimal. The typical occurrence of premature and stagnation phe-
nomena in ant colony algorithms when the swarm scale is large imposes restric-
tions on further applications [25]. Dijkstra algorithm is a simple but powerful
classical method that has been widely used in various fields for path selection and
solving single-objective shortest path problems in static networks [27–32]. How-
ever, the Dijkstra algorithm is unsuitable for solving shortest path problems in
dynamic networks as well as the multi-exit path planning problem. The modified
Dijkstra algorithm utilized in solving the bi-objective model proposed in this study
can be applied to the calculation in dynamic networks. This extended algorithm
significantly optimizes the solution efficiency of the model in multi-exit building
fires and solves the bi-objective model to find a comprehensive optimal solution
with dynamic adjustability that traditional algorithms lack.

A bi-objective model that considers path risk and length is proposed in this
study. The risks considered in the model are more comprehensive than those of
previous studies because they take into account hazardous gases, temperature, vis-
ibility, and crowding. A semiquantitative risk classification standard is adopted to
characterize the risk in a more homogeneous manner. The Dijkstra algorithm is
optimized to differentiate it from the classical version in the following aspects:
dynamic adjustability, path disabling, and efficiency. The model and algorithm in
this study will contribute to solving the multi-exit fire evacuation problem by
planning a safe and efficient evacuation path for escapees.

2. Path Planning Models

2.1. Building Emergency Evacuation Network

Path selection is a multi-objective optimization problem that must weigh many
factors during evacuation. Intricate passages within the building form a connected
network graph on the basis of graph theory. The passage is regarded as the arcs,
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the intersections of the passage are the nodes, and the arcs represent the connec-
tions between nodes of the network. A building with fifteen rooms and two exits
will be taken as the objective of the study, and its emergency evacuation network
is shown in Figure 1.

The emergency evacuation network is defined as an undirected graph G(V ;E),
as shown in Figure 1, where V is the set of nodes and E is the set of arcs, and
v1,v2, …vn is set as the nodes in the network, that is,V= {v1,v2, …vn}. vn is the
destination node, vs is the source node, and eij is the physical length of (vi; vj).

The two optimization objectives herein are path risk level and length. The opti-
mal evacuation path refers to the path that encompasses the risk level as low as
possible and the length as short as possible. The bi-objective optimization model
can be formulated as follows:

F 1 ¼ minf 1 ð1Þ

F 2 ¼ minf 2 ð2Þ

in which f 1 represents the risk level in the evacuation path, F 1 is the minimum
risk level among all evacuation paths. f 2 is the physical length of the evacuation
path, and F 2 is the minimum physical length in all evacuation paths.

2.2. Risk-Objective Model

2.2.1. Establishment of the Model The principle of the risk-objective model is to
prioritize the safety of evacuees, with the goal o1f mitigating potential harm to
evacuees during the evacuation. The following additional notation is used.

(1) Rij: The risk level of arc (vi; vj).
(2) xij: The decision variable with xij ¼ 1 if arc (vi; vj) is included in the fixed path

and 0 otherwise.

The formulation of the risk-objective model under the real-time development of
fire is described as follows:

Model I:

F1 ¼ min f1 ¼
Xn

i¼s

Xn

j¼s

xijRij ð3Þ

S.t.

Xn

j¼s
j6¼i

xij �
Xn

j¼s
j6¼i

xji ¼

1 i ¼ s
�1

i ¼ n
0 otherwise

8
>>>>><

>>>>>:

ð4Þ
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Xn

j¼s
j6¼i

xij ¼
� 1 i 6¼ n
¼ �1 i ¼ n

8
><

>:
ð5Þ

xij ¼ 0; 1; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; n ð6Þ

where Eq. (3) represents the objective of model, which minimizes the risk level
along the path. Constraint (4) guarantees a feasible path from source node vs to
destination node vn by restricting the value of xij. Considering the feasibility of the

evacuation plan and the urgency of the evacuation time, Constraint (5) is used to
ensure that there are no paths with loops [33]. Constraint (6) is the 0–1 integer
constraint of the decision variable xij.

2.2.2. Characterization of Rij Any fire risk that causes physical and psychological
damage to evacuees increases the possibility of death. Asphyxiating gases, such as
carbon monoxide (CO) and hydrogen cyanide (HCN), and high temperatures are
the main causes of death during and after fires [3]. Smoke output from a fire can
reduce visible distance and delay escape time as it spreads out in the path [34].
Overcrowding also increases the stay time of evacuees at the fire scene. Huo et al.
[35] studied the effect of pedestrian density on evacuation results and showed that
the greater the pedestrian density, the more the pedestrians fall to the ground and
die. Therefore, we use risk factors, including CO concentration, HCN concentra-
tion, temperature, visibility, and crowding, in calculating the path risk level.

1 2 3

4 5 6

7 8

9 10 11 12 13

14 15 16

17 18

Figure 1. Emergency evacuation network structure.
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Rij is the weighted average and expressed as follows:

Rij ¼ a1rCOij þ a2rHCNij þ a3rTij þ a4rVisij þ a5rDij ð7Þ

where the sum of weight coefficients ai 2 ½0,1� is 1. These coefficients denote the
weights of different risk factors. The risk index is defined as the value converted

from real-time changes of risk factors in arc (vi; vj). rXij 2 ½0,1� corresponds to the

risk index associated with CO, HCN, temperature, visibility, and crowding.
A semiquantitative method is cited to homogenize the risk characterization and

classify the different degrees of potential harm to personnel from risk factors [16].
Risk classification are listed in Table 1.

(1) rCOij and rHCNij

Acute exposure guideline levels (AEGLs) represent threshold exposure limits
(adverse health effects are likely to occur beyond this level) for the general public
and are applicable to emergency exposures ranging from 10 min to 8 h [36]. Three
levels, namely, AEGL-1, AEGL-2, and AEGL-3, were developed and differenti-
ated for five exposure periods (10 min, 30 min, 1 h, 4 h, and 8 h) using various
degrees of toxic effects. AEGLs refer to airborne concentrations of chemicals
above which a person could experience evident discomfort or irritation (AEGL-1),
serious and long-lasting health effects (AEGL-2), and life-threatening effects or
death (AEGL-3). AEGLs with exposure times of 10 and 30 min were selected as
the risk index of CO and HCN [36, 37]. According to Table 1, ranges for CO
levels are converted into risk indexes [16] (Table 2).

Similarly, ranges for HCN levels are converted into risk indexes on the basis of
AEGLs at exposure times of 10 and 30 min of HCN (Table 3).

(2) rTij

Human tolerance to high temperature is limited. The maximum tolerance time
(s(T)) as a function of temperature can be summarized as Eq. (8) [21]. The results
are listed in Table 4.

s Tð Þ ¼ 1812e�0:046T ð8Þ

High temperatures indicate a short tolerance time of humans. The tolerance time
of a human is only 7 min at 120 �C. Hence, the maximum tolerance time of 7 min
is defined as the highest risk classification.

Ranges for temperature levels are converted into the risk index rTij on the basis
of the calculated maximum tolerance time at different temperatures (Table 5).

(3) rVisij

The risk classification criteria of visibility are based on the experimental data of

British subjects [38]. rVisij is determined according to the visible distance when evac-
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uees choose to turn. The experimental results demonstrated that 100% of experi-
menters choose to change direction when the visible distance of the passage is less
than 0.6 m; therefore, the visible distance of 0.6 m is defined as the highest risk
classification. Only 9% of experimenters chose to change direction when the visi-
ble distance of the passage is greater than 3.7 m; hence, the visible distance of

Table 1
Risk Classification and Risk Index

Risk Classification Risk Index

I 0

II 0.5

III 0.7

IV 1

Table 2
Classification of rCOij

CO(ppm) Risk Classification rCOij

CO< 150 I 0

150 £ CO< 420 II 0.5

420 £ CO< 600 III 0.7

CO ‡ 600 IV 1

Table 3
Classification of rHCNij

HCN (ppm) Risk Classification rHCNij

HCN< 10 I 0

10 £ HCN< 17 II 0.5

17 £ HCN< 21 III 0.7

HCN ‡ 21 IV 1

Table 4
Maximum Human Tolerance Time at Different Temperatures

Temperature/�C 40 60 80 100 120

Time/min 290 115 46 20 7
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3.7 m is set as the acceptable risk. Visible distance values converted into the risk

index rVisij are presented in Table 6.

(4) rDij

Crowding exerts a significant effect on the evacuation time because it determi-
nes the walking speed of evacuees. Interpersonal walking contact and stagnation
occur when the crowd density reaches 4 person/m2 [39]; therefore, the crowd den-
sity of 4 person/m2 is defined as the highest risk classification. Evacuees can walk
freely without contact when the crowd density is below 1.8 person/m2; thus, 1.8
person/m2 is defined as the acceptable risk. Ranges for density levels converted to
the risk index are listed in Table 7.

2.3. Length-Objective Model

In addition to risks in the emergency evacuation path, the length of the path is a
key factor that must be considered. Although the chosen evacuation path is low
risk in some cases, it requires a large number of detours. Related studies have
shown that crowding typically happen at the intersections of two arcs in the emer-
gency network [33]. Meanwhile, an excessively long evacuation path will also
inevitably affect the evacuation time, thereby increasing the probability of suffer-
ing from risks. On the basis of the risk-objective model proposed in Sect. 2.1, a
length-objective model is established with the aim of minimizing the length of
evacuation paths.

The formulation of the length-objective model is as follows:
Model II:

Table 5
Classification of rTij

temperature T(�C) Risk Classification rTij

T< 60 I 0

60 £ T< 80 II 0.5

80 £ T< 120 III 0.7

T ‡ 120 IV 1

Table 6
Classification of rVisij

Visible Distance (m) Risk Classification rVisij

Vis > 3.7 I 0

1.8<Vis £ 3.7 II 0.5

0.6<Vis £ 1.8 III 0.7

Vis £ 0.6 IV 1
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F2 ¼ min f2 ¼
Xn

i¼s

Xn

j¼s

xijeij ð9Þ

S.t.
(4), (5) and (6)

2.3.1. Bi-objective Model Models I and II can be planned for the evacuation path
with the minimum risk level and the evacuation path with the minimum length,
respectively. However, this section establishes a bi-objective path planning model
on the basis of Models and II to obtain the integrated optimal evacuation path
with respect to fire risk and path length as well as the Pareto optimal solution of
the two objective functions.

A bi-objective optimization problem will involve multiple objective functions
and constraints. The other objective may deteriorate when one objective reaches
optimality. Obtaining the optimal solution for all objectives is difficult in the case
of mutual constraints and interactions of objective functions. Different levels of
attention should be given to each optimization objective, especially when the risk
level in the path is excessively high, and the weight of the risk in the objective
function should be increased. Moreover, the value of the optimized objective func-
tion corresponding to a specific Pareto optimal solution will likely fail to meet the
actual needs of evacuees. Multiple Pareto solutions can be determined on the basis
of the Dijkstra algorithm, and the results can be dynamically adjusted as the fire
spreads. Linearly weighing the optimization objectives is a common method for
solving the bi-objective optimal path [21]. Each weight represents the relative
importance of each objective to some extent.

We use the linear weighted sum method to convert the risk and length-objective
models into a bi-objective path selection model as shown below:

F ¼ c1
f 1

f �
1

þ c2
f 2

f �
2

ð10Þ

S.t.
(3), (4), (5), (6) and (9)in which c1 � 0; c2 � 0, and c1 þ c2 ¼ 1. f �

1 denotes the
ideal risk level in the evacuation path, representing the minimum risk level from vs

Table 7
Classification of rDij

Crowd Density (person/m2) Risk Classification rDij

D< 1.8 I 0

1.8 £ D< 3 II 0.5

3 £ D< 4 III 0.7

D ‡ 4 IV 1
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to vn; f �
2 denotes the ideal path length in the evacuation path, representing the

shortest length from vs to vn. If the objective weight vectors c1 and c2 vary, mono-
tonic decreases and increases occur in f 1 and f 2, respectively.

3. Modified Dijkstra Algorithm

3.1. Main Part and Calling Algorithm

The classical Dijkstra algorithm is modified to solve the dynamic bi-objective
model. The main part of the newly modified algorithm is shown in Figure 2, and
algorithm b is the calling algorithm of the main part. The problem is reduced to
using c1 ¼ 0 or c2 ¼ 0 to ensure that Algorithm b can be applied directly when
solving the single objective problem. However, if a bi-objective is to be solved,
then the optimal path will be constructed at the end of algorithm b through the
search space of the weight vector in Figure 2. The essential idea of the calling
algorithm b is that each additional subsequent node will update the weights of the
network on the basis of the path that was found when implementing the Dijkstra
algorithm [40]. The following notations are used to express the main part of the
algorithm (see Figure 2) and the calling algorithm (see Algorithm b).

Let p(vj) be the minimum value of objective function F among the evacuation
paths. Bj represents the path with F equal p(vj);S is the set of nodes for which the

shortest path has been found; d represents the optimal point; f 1(d) and f 2(d) rep-
resent the values of f 1 and f 2 in the path of F ¼ p(vj), respectively; K denotes the

number of arcs in the selected path; r� denotes a set criterion that represents the
upper limit of the ideal risk level, that is, humans will likely suffer from the threat
of fire beyond this point; and r� is set to 0.7.

Algorithm b

3.2. Risk Threshold

The risk threshold is imposed on each arc. If a risk factor of the objective node
reaches the risk threshold when the algorithm searches for the path with the mini-
mum objective value F , then the algorithm will ignore this node and search again
for the path with the minimum objective value F . The node with crowding reaches
the risk threshold and the four other risk factors that fail to reach the risk thresh-
old will be reconsidered when all paths that can be selected are unavailable. These
risk thresholds can be determined on the basis of the results of the analysis in 2.1,
where the value of a risk index reaching 1 is set as the risk threshold. Therefore,
the risk threshold is 600 ppm for CO, 21 ppm for HCN, 120 �C for temperature,
0.6 m for visible distance, and 4 persons/m2 for crowded density.

3.3. Super-Destination Node

Several exits exist in the majority of modern buildings, and the evacuation prob-
lem can be solved in an emergency evacuation network with multiple destination
nodes. The emergency evacuation network in Figure 1 shows the problem of mul-
tiple destination with source nodes. The classical Dijkstra algorithm requires two

2862 Fire Technology 2023



exits (v3andv18) as destination nodes and others as source nodes. The algorithm
must be repeatedly and inefficiently called 16 times to solve the model. Note that
demanding high efficiency in solving the algorithm is logical considering the
urgency of evacuation.

The modified algorithm establishes a super-destination node [41], which con-
nects all exits to change the original network structure and sets the weights of
edges connecting each exit to the super-destination node to zero. Moreover, it
transforms super destination node into a source node and transforms each source
node into a destination node. Therefore, the optimal path from the super-destina-
tion node to other nodes can be solved by calling the Dijkstra algorithm only
once and then converting the original problem into a single source node and sin-
gle destination node problem. This method does not affect the final result and sig-
nificantly improves the efficiency of the solution. The structure of the changed
network is shown in Figure 3.

4. Case Study

A simulation experiment of a building fire is used in this section to demonstrate
the reliability and feasibility of the bi-objective model and modified Dijkstra algo-
rithm.

Figure 2. The main part of the modified algorithm.
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4.1. Introduction of Simulation Scenario and Risk Factor Weight

The simulation experiment is based on a building with fifteen rooms, two exits
(Exits A and B), and a total area of 1640 m2. The emergency evacuation network
is shown in Figure 1. A 3D model of the building is built using PyroSim software,
and internal channels are evenly arranged with CO detectors, HCN detectors, visi-
bility detectors, temperature detectors, and thermocouples. The initial temperature
was set to 20 �C. The sofa rest area in the corner was selected as the fire point.

The worst-case scenario considered in the experiment assumes that the sprinkler
system fails and the combustion surface is set to sustainable combustion. The
HRR (heat release rate) is the product of the fire area and HRRPUA (heat
release rate per unit area). HRRPUA is set to 2000 KW/m2 and the burning area
of the fire source is set to 0.45 m2 in the PyroSim model; hence, HRR is equal to
900 KW. The completed 3D PyroSim model is shown in Figure 4.

The numerical simulation of fire was carried out after building the model. Data
of 30-, 90-, and 200-s moments were used in the analysis. The fire development
process can be seen through a 3D smoke dispersion simulation and CO, HCN,
visibility, and temperature slices. The CO slice is taken as an example. Fire condi-
tions at 30-, 90-, and 200-s moments were obtained through the 3D smoke disper-
sion simulation (Figure 5).

Weight coefficients of five risk factors in this experiment are set according to
the statistical data of fire death causes. Asphyxiating gases, especially CO, are the
most lethal risk factor in case of fire. Although inhalation of HCN may lead to
rapid incapacitation, its effects are smaller than those of CO in many cases. For
instance, fires that produce cyanide give off CO and combustion conditions pro-
ducing high yields of HCN also lead to high yields of CO [3]. CO is generally a
more lethal risk factor in building fires compared with HCN; therefore, the weight
of asphyxiating gases, especially CO is set higher in this case, with temperatures

1 2 3

4 5 6

7 8

9 10 11 12 13

14 15 16

17 18

Figure 3. The structure of the modified emergency network.
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(a) Frontal top view perspective of the model

(b) Side top view perspective of the model

(c) The location of the fire

A

B

Figure 4. PyroSim 3D model.
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(a) 30s

(b) 60s

(c) 200s

Figure 5. 3D smoke dispersion and CO slice.
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being second only to both. Visibility and crowding affect the speed of people but
could not this cause crowd crash, which in turn causes death; thus, the weight of
visibility and crowding is typically minimized. Weight coefficients of the five risk
indexes in this case were finally set to a1 ¼ 0.4,a2 ¼ 0.3, a3 ¼ 0.2,a4 ¼
0.05,anda5 ¼ 0.05.

4.2. Simulation Results and Analysis

Data of visibility, CO concentration, HCN concentration, and temperature in
each path can be obtained through the detectors in the channel. Crowd density is
set randomly via MATLAB. Fire data and crowd density of each path at 30, 90,
and 200 s are listed in Tables 8, 9, and 10, respectively.

The bi-objective path planning model and algorithm are programmed using
MATLAB, and optimal evacuation paths of different nodes at various moments
and their objective value F are generated by combining fire data within each seg-
ment of the path obtained from the PyroSim simulation and the set crowding
data. Node 7 is used as an example to analyze the optimal evacuation paths of
people in this position at 30, 90, and 200 s. The optimal evacuation path is
marked in green and the path where the risk factor reaches the risk threshold is
marked in orange. The results of the optimal evacuation path for node 7 are
shown in Figure 6.

The smoke does not spread widely when the fire lasts for 30 s. The optimal
evacuation path at this time is determined via path crowding and length. Paths
v5–v7 and v12–v15 will be ignored by the algorithm because they reach the risk
threshold at 30 s. Finally, the optimal evacuation path of node 7 is determined as
v7—v8—v6—v3. The optimal evacuation path is the evacuation path with the mini-
mum path length of 34.7 m and objective value F of 0.035. The smoke spreads
nearly throughout the building when the fire occurs for 90 s, but other paths,
except for v1—v4, v4—v10, v9—v10, and v10—v17, fail to reach the risk threshold.
The optimal evacuation path at this time is mainly determined on the basis of the
risk level. The optimal evacuation path for node 7 at 90 s is determined as
v7—v11—v12—v15—v14—v18, with an evacuation path length of 42.3 m and objec-
tive value F of 0.042. The majority of paths have reached the risk threshold when
the fire occurs for 90 s due to the prolonged diffusion of smoke. The algorithm
will resume the forbidden paths and retraverse them to obtain the path with the
minimum objective value F because paths of the nodes are generally infeasible.
The optimal evacuation path for node 7 at 200 s is still determined as
v7—v11—v12—v15—v14—v18, with an evacuation path length of 42.3 m and objec-
tive value F of 1.302. The optimal evacuation path for node 7 is summarized in
Table 11. Combined with the fire numerical simulation results of PyroSim and
smoke dispersion simulation, the optimal evacuation path is obtained through the
path planning model and algorithm by avoiding the area with high risk level and
optimizing the evacuation path length. If the classical shortest path algorithm is
used, then the path chosen will always be v7—v8—v6—v3 or v7—v5—v6—v3. How-
ever, this approach has failed to provide safe path for escapees as the fire pro-
gresses Figure 7.
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Node 1 is at the center of the fire, and the path length objective function exerts
a strong effect on the objective value F because of its far distance from Exit B.
The optimal evacuation path planned for it by the bi-objective path planning
model and algorithm is always v1—v4—v5—v6—v3 with a path length of 47.6 m.
The shortest evacuation path v1—v4—v5—v6—v3 is determined to be the optimal
evacuation path with an objective value F of 1.768 given that paths around Exit
A are typically not disabled by the algorithm at 30 s of the fire. At 90 s of the
fire, the risk level at node 1 is higher than that of other locations because this
node is in the center of the fire. Paths around node 1 have generally reached the
risk threshold, and people here face the situation of infeasible paths; hence, the
algorithm restores forbidden paths and re-traverses them to obtain the path
v1—v4—v5—v6—v3 with the minimum objective value F , which is 2.688; The
majority of locations in the building are filled with a high concentration of smoke
and almost all paths have reached the risk threshold at 200 s of the fire. There-
fore, the algorithm restores the forbidden paths, and the minimum path length
v1—v4—v5—v6—v3 with an objective value F of 2.772 is still determined to be the
optimal evacuation path. The optimal evacuation path for node 1 is summarized
in Table 12.

The optimal evacuation path for node 1 is different from the case of node 7,
which is situated in the center of the building and far from the fire location. The
optimal evacuation path of node 7 is determined via the crowding and path length

Table 8
Fire Data and Crowd Density for Each Path at 30 s of fire

Path

Visibility

(m)

CO

(ppm)

HCN

(ppm)

Temperature

(�C) Crowd Density (person/m2)

v1—v4 1.808 208 12 35.709 1.403

v4—v5 2.166 170 12 33.23 2.600

v4—v10 2.034 182 13 33.55 0.309

v2—v5 30 0 0 20.524 1.452

v5—v6 30 0 0 21.523 2.176

v3—v6 30 0 0 21.52 1.142

v5—v7 30 0 0 21.522 4.330

v6—v8 30 0 0 21.521 1.626

v8—v13 30 0 0 21.522 2.951

v7—v8 30 0 0 21.522 1.768

v9—v10 12.556 29 2 20.661 1.098

v10—v11 30 0 0 21.526 0.772

v11—v12 30 0 0 20.522 1.881

v12—v13 30 0 0 20.522 1.281

v12—v15 30 0 0 20.523 4.210

v10—v17 30 0 0 20.523 1.368

v14—v18 30 0 0 20.512 1.624

v14—v15 30 0 0 20.512 3.490

v15—v16 30 0 0 20.517 1.254

v7—v11 30 0 0 20.523 1.211
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when the smoke does not spread widely. The shortest evacuation path
v7—v8—v6—v3 that avoids the congested path is optimal at 30 s. However, the fire
risk objective function exerts a strong influence on the target value F as the fire
progresses. The optimal evacuation path of node 7 at 90 and 200 s will no longer
choose Exit A with a high risk level. Node 1 is located in the center of the fire
and far from Exit B. Subject to the path length objective function, paths with
extremely long lengths will be given high objective value and therefore will not be
prioritized at three moments. The optimal evacuation path v1—v4—v5—v6—v3 is
always the path with the minimum objective value F .

4.3. Feasibility Analysis of Model Application

The application of the method in actual cases will be presented in this sec-
tion. Detection data of the on-site path risk factor plays a decisive role in the
accuracy of the calculation results of the model. CO concentration, HCN concen-
tration, and visibility can be detected by fire smoke sensors; environment tempera-
ture in the path can be measured by temperature sensors; and crowd density in
the path can be measured by IR camera when this model is applied to multi-exit
buildings. The optimal evacuation path can be displayed in intelligent evacuation
signs that can change the direction of indication in real time through the real-time
calculation of path risk and length rather than being static similar to traditional
evacuation signs that can direct escapees to a dangerous path.

Table 9
Fire Data and Crowd Density for Each Path at 90 s of Fire

Path

Visibility

(m)

CO

(ppm)

HCN

(ppm)

Temperature

(�C) Crowd Density (person/m2)

v1—v4 1.186 325 23 50.168 1.934

v4—v5 1.342 281 19 43.09 2.372

v4—v10 0.803 486 34 54.231 1.032

v2—v5 1.626 224 15 32.102 0.430

v5—v6 3.3 109 8 27.727 2.126

v3—v6 2.096 165 13 29.694 0.303

v5—v7 2.302 157 11 29.495 1.050

v6—v8 5.469 65 4 24.345 0.344

v8—v13 26.14 14 1 21.712 0.542

v7—v8 26.483 13 1 21.710 0.516

v9—v10 0.812 466 32 44.908 1.358

v10—v11 2.38 152 11 29.824 0.049

v11—v12 8.427 42 3 23.683 1.940

v12—v13 7.37 48 3 23.107 0.313

v12—v15 5.14 69 5 24.212 0.086

v10—v17 0.593 653 45 51.071 1.376

v14—v18 30 0 0 21.093 0.368

v14—v15 30 0 0 21.093 1.145

v15—v16 30 0 0 20.159 0.645

v7—v11 5.497 65 4 26.963 1.646
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5. Discussion

5.1. Meaning

The length of evacuation path (which may result in additional evacuation time) as
well as the harmful effect of fire on human health (which may lead to casualties)
are considered in the proposed evacuation path decision model. Risk factors con-
sidered in this model are more comprehensive than most current models with fire
risk as the optimization objective. Distinguishing from the way risk has been
quantified in previous studies, a more homogeneous semiquantitative approach is
used to quantify the effects of CO, HCN, temperature, visibility, and crowding on
escapees. The risk index is calculated with reference to numerous previous studies
to enhance the scientificity of the results. For example, AEGLs are used as a basis
for quantifying CO and HCN.

Moreover, the modified Dijkstra algorithm improves not only the calculation
efficiency in the case of multiple exits but also adjusts the weights of path length
and risk in the optimal path. Compared with the conventional method that only
sets risk thresholds for hazardous gases or temperatures, the modified Dijkstra
algorithm does not initially consider the paths where CO, HCN, temperature, visi-
bility, and congestion reach the risk threshold to ensure the safety of evacuation
paths further. The model and method presented in this study will be useful for
intelligent evacuation [42] in building fires and management of building fire safety.

Table 10
Fire Data and Crowd Density for Each Path at 200 s of Fire

Path

Visibility

(m)

CO

(ppm)

HCN

(ppm)

Temperature

(�C) Crowd Density (person/m2)

v1—v4 0.678 581 42 61.135 0.913

v4—v5 0.897 424 29 47.576 0.548

v4—v10 0.532 734 51 56.605 0.651

v2—v5 0.753 494 34 40.918 0.733

v5—v6 1.066 345 24 36.992 0.817

v3—v6 0.843 439 31 36.992 0.648

v5—v7 1.055 345 24 35.846 0.689

v6—v8 1.198 303 21 33.398 0.170

v8—v13 0.965 375 26 32.395 0.542

v7—v8 1.095 329 23 31.159 0.338

v9—v10 0.466 822 57 49.531 0.286

v10—v11 0.839 442 31 40.106 0.661

v11—v12 1.171 310 21 32.645 0.537

v12—v13 0.901 403 28 33.709 0.461

v12—v15 1.002 363 25 33.737 0.948

v10—v17 0.423 923 64 56.316 0.241

v14—v18 30 0 0 21.44 0.972

v14—v15 30 0 0 21.706 0.471

v15—v16 8.756 40 3 22.585 0.345

v7—v11 1.052 346 24 35.499 0.252
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5.2. Limitations

In this study, some necessary assumptions are given directly, whose credibility
cannot be proven at present, but may be verified in the future.

(1) The grading standards are assumed directly in Table 1 (the risk index corre-
sponding to each risk level is set to 0, 0.5, 0.7, and 1). Only four risk classifi-

(a) Optimal evacuation path at 30 s of fire  (b) Optimal evacuation path at 90 s of fire

 (c) Optimal evacuation path at 200 s of fire
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The paths to reach the
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Optional paths

Figure 6. Optimal evacuation paths for node 7.

Table 11
Optimal Evacuation Path for Node 7

Node Time Optimal evacuation path Objective value Path length

v7 30 s v7—v8—v6—v3 0.035 34.7 m

90 s v7—v11—v12—v15—v14—v18 0.042 42.3 m

200 s v7—v11—v12—v15—v14—v18 1.302 42.3 m
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cations exist, and the range of risk factor levels corresponding to each risk
classification may be a wide range, such as a CO concentration of 150 and
400 ppm, both of which correspond to a risk index of 0.5. Future investiga-
tions may focus on working out a more detailed risk classification and nar-
rowing the range of levels corresponding to each risk classification.

(2) The risk level corresponding to CO and HCN may be different from the
actual situation, and the threshold of concentration may be small because

(a) Optimal evacuation path at 30 s of fire   (b) Optimal evacuation path at 90 s of fire

(c) Optimal evacuation path at 200 s of fire
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Figure 7. Optimal evacuation paths for node 1.

Table 12
Optimal Evacuation Path for Node 1

Node Time Optimal evacuation path Objective value Path length

v1 30 s v1—v4—v5—v6—v3 1.768 47.6 m

90 s v1—v4—v5—v6—v3 2.688 47.6 m

200 s v1—v4—v5—v6—v3 2.772 47.6 m
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AEGLs are established on the basis of susceptible people who are more sensi-
tive to harmful gases than the general population. Hence, the results may be
conservative. Future investigations can focus on exploring the risk classifica-
tion criteria for hazardous gases with high applicability to most populations.

(3) We set the weights of the five risk factors in the path risk level in the case
study depending on how different risk factors affect evacuation and the degree
of hazard to humans. For example, asphyxiating gases in fire, especially CO,
present the maximum lethal risk factor and cause more than 50% of deaths
due to asphyxiation (Statistics from Fire and Rescue Department Ministry of
Emergency Management in China [43]). We therefore assigned a high weight
to CO and HCN. However, our assumptions lack experimental basis. This
supposition will be the premise of our future work to determine the weights of
risk factors on the basis of a more scientific and rigorous approach.

6. Conclusion

A new decision method is proposed for generating optimal evacuation paths in
real time. The method involves evacuation models that consider path length and
risk and an optimization algorithm with dynamic adjustment capabilities.

The optimal evacuation path based on path length and risk considers risks,
including CO concentration, HCN concentration, temperature, visibility, and
crowding. A Semiquantitative approach was used to characterize the risk level of
paths to improve the homogeneity of data. The modified Dijkstra algorithm was
applied for optimization and the adjustment of the Pareto optimal solution of the
two objectives as the fire progresses. The bi-objective model and algorithm directs
pedestrians toward a safe path. The rationality and feasibility of the optimal evac-
uation path are verified using simulation experiment. The case analysis results
showed that the optimal evacuation path obtained from the model can be adjus-
ted with fire progression through the fire objective function.

The proposed method can plan an optimal path for evacuees of a multi-exit
building fire in terms of combined path risk and length while ensuring safety and
efficiency. However, this study neglected the physiological factors of people in fire
events, such as falls, trips and walking speed. Moreover, a future investigation can
focus on the validity of risk classification criteria in this study and risk factor
weights as well as refining the case study methodology.
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