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Abstract. The number of wildfire incidents affecting communities in Wildland–
Urban Interface (WUI) areas has been rapidly increasing. Understanding the fire

spread between structures and evaluation of the response of the communities to the
possible wildfire scenarios are crucial for proper risk management in the existing and
future communities. This paper discusses a stochastic methodology to evaluate the
community’s response to potential wildfire scenarios. The methodology has three pri-

mary features: (1) it is based on stochastic modeling of fire spread; (2) it breaks the
wildfire incident into two consecutive segments: spread inside the wildland and spread
inside the community; (3) it integrates the two spread models in the form of a condi-

tional probability. The paper focuses on fire spread inside the community and applies
the proposed methodology to two case studies in California, US. The two case stud-
ies demonstrate variations in fire spread within the communities for the given fire sce-

narios approaching from the wildland. The performance of communities is
characterized using cumulative distribution functions of the number of ignited build-
ings over time.

Keywords: Risk assessment, Wildfires, Wildland–urban interface, Stochastic simulation, Ignited build-

ings

1. Introduction

The economic and social impacts of wildfires have been rising in recent years and
the wildfire hazard represents a global concern now [1–4]. The frequency and
intensity of wildfires are expected to increase due to changing weather patterns
and human suppression activities of the past century [5–8]. Destructive fires will
continue to pose risks to communities, especially those built in the wildland-urban
interface. Records show that 8 out of the 10 most destructive fires in California,
US, in terms of insured losses, happened since 2017; also 6 out of the 10 most
destructive fires, in terms of structure losses happened since 2017 [9, 10]. Mean-
while, expansion of major wildfires is found beyond the Western US, such as the
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2016 Gatlinburg fire in the Southeast US [11], the 2017 fires in Portugal, and the
2018 Mati fire in Greece [12].

The current approach to manage the fire hazard within wildland–urban inter-
face (WUI) communities is neither sufficient nor sustainable. Here, WUI is defined
as a geographic boundary that human developments and flammable vegetation
merge in a wildfire-prone environment [13]. Large losses from wildfires have led to
the development of educational programs and recommendations for mitigation
actions to reduce the vulnerability of structures in WUI communities [14–16].
However, only a few of these recommendations have been validated [17, 18]. For
example, no data could be found to support that the clear distance between
homes can be reduced from 30 ft to 15 ft if in-home sprinkler systems are instal-
led, a recommendation by NFPA 1141 [18]. Thus, science-based guidelines on
WUI communities, such as home spacing, width of the roadways, effectiveness of
fuel breaks, and defensible spaces, are needed to understand how the community
responds to a wildfire under different scenarios.

A workshop on ‘‘Preparing for Disaster: Advancing WUI Resilience’’ was held
in 2020, wherein the knowledge gaps on wildfire risk assessment and WUI disaster
resilience were identified and the required steps to establish solutions were dis-
cussed [19]. The workshop outcomes indicated the need to go beyond single struc-
tures and establish community-based approaches to WUI resilience. Also,
quantifying the risk and developing validated models for fire spread in WUIs and
in transition from wildland to WUI were introduced as some of the knowledge
gaps and research needs [19]. Having a structured methodology to conduct risk
assessment on communities helps with the mitigation, planning for suppression
and evacuation, and response [20]. The rest of this section provides a brief back-
ground on wildfire modeling and risk assessment in the wildland and communi-
ties.

1.1. Background

Performing risk assessment of WUI communities that are exposed to wildfires and
quantifying the potential damage requires an understanding of both the wildfire
hazard in the wildland and the vulnerability of communities. In another word, the
probability of ignition and fire scenarios in the wildland should be combined with
the associated response of the communities to quantify risk. For example, Haas
et al. [21] introduced and discussed a methodology to account for WUI fire risk
by combining a wildfire hazard map and a WUI map of the population, but
raised the need for the fire simulation inside/around populated areas for a better
estimation of the risk. In another study on structures affected by historic wildfires,
the location and arrangement of structures were found to be strong contributing
factors to the fire risk [22]. In general, the risk assessment can be conducted using
analysis of historic events, simulation of fire scenarios, or a combination of both.
One issue with relying on past events is that sufficient data on extreme scenarios
may not be available. Hence, validated models could be employed to simulate
potential scenarios based on their likelihood of occurrence and to conduct
stochastic studies considering uncertainties in the process. It is preferred for the
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models to be computationally efficient and flexible enough to accommodate the
simulation of several hundred to thousand scenarios.

Significant research has been conducted to understand wildfire behavior in the
wildland, where land is mainly covered with vegetation [23–26]. One of the widely-
used models in the US to simulate wildfire in the wildland is the Rothermel model
[27], which combines data on fuel (i.e., vegetation), weather, and topography to
calculate the rate of spread (ROS) of fire. Other models, such as Cheney’s or
McArthur’s have been developed to predict wildfire spread in the Australian
Grasslands [28, 29]. Several tools are available to simulate fire spread in the wild-
land. For example, the Fire Area Simulator (FARSITE) is a common tool in the
US for operational purposes. FARSITE calculates fire growth, mainly in the wild-
land, using deterministic approaches [30] and is widely used by the California
Department of Forestry and Fire Protection and the US Forest Service [31].
WFDSS-FSPro is another tool used in the US to calculate the probability of fire
spread in the wildland for risk measurements [32].

There has also been significant research on fire dynamics inside buildings and
the response of individual structural components to fire (e.g., roofing material)
[33–35]. However, research on large outdoor fires within communities (e.g., due to
wildfires), and the connection between mitigation actions at the household level
and the wildfire response at the community level lag behind [36]. Meanwhile, not
much data on large-scale building fires is available for the validation of simula-
tions. WUI Fire Dynamic Simulator (WFDS) is a physics-based model, which is
an extension of the Fire Dynamic Simulator (FDS), developed by NIST to simu-
late WUI fires [37]. FDS was mainly established for application to structural and
stationary fires and WFDS was expanded to include vegetative fuel to the plat-
form [38–40]. Meanwhile, due to the challenges in capturing the physics of the fire
spread and the required input data, cellular automata and probabilistic methods
have become popular. For example, Jiang et al. [41] developed a model based on
cellular automata with applicability to both wildland and WUI fires. Such models
usually include simplifying assumptions on the physics of the process but are sig-
nificantly faster than those using computational fluid dynamics and detailed phy-
sics-driven models. Khakzad [42] developed a methodology for modeling fire
spread in wildland-industry interface (WII), a similar problem as discussed in this
paper, with the assumptions tailored toward the industrial plants. The method is
based on the most probable path of fire and is developed using a Dynamic Baye-
sian Network [42]. Cicione et al. [43] developed and applied a semi-probabilistic
fire model to simulate fire spread in informal settlements.

One important aspect in understanding wildfires is the spatiotemporal scales of
interest when it comes to resolving the fire spread outside and inside the commu-
nity. Progression of a fire line over a few feet (in the space domain) and a few
minutes (in the time domain) is typically not recorded when an intense fire is
burning across hundreds to thousands of acres in the wildland. However, similar
distance and time intervals can make a difference when the fire spreads between
buildings. Thus, fire spread within the wildland and a community is typically stud-
ied using different spatiotemporal scales and platforms. Given that WUI commu-
nities are most often threatened by fires that start in the wildland and spread far
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enough to reach the community, two platforms might be needed to properly cap-
ture the behavior of fire across the two domains. If two platforms are used to sim-
ulate fire spread, the boundary information from one platform to the other should
be transferred properly.

In summary, limited options are available to study fire spread in WUI and
response of communities, when comparing the modeling techniques and tools for
wildland fires and structural fires. Thus, there is a need for additional research to
better understand the fire spread between structures and the associated risks
within WUIs. There is typically a mixture of both structures and vegetation in
WUIs. Structures and vegetation have different heat release rates, duration of
burning, and different responses to external triggers such as flame and firebrands
(e.g., time to ignition). Moreover, the required resolution of analysis (in both
space and time) is higher for the inputs when analyzing wildfire in communities.

1.2. Objectives

The objectives of this paper are to (1) discuss the steps to integrate stochastic
modeling of wildfires in WUI communities within a holistic probabilistic risk
assessment framework, and (2) introduce a stochastic methodology to simulate fire
spread in WUI communities and characterize the community performance.

� Section 2 of the paper discusses assumptions and components of a probabilistic
risk assessment framework, including: (1) wildfire model: capturing the likeli-
hood of the wildfire hazard and the potential exposure of the WUI community
by simulating various scenarios of fire spread in the wildland, (2) transitioning
the fire hazard from the wildland to the WUI community with quantifiable
parameters that can be used as input for the community model, and (3) com-
munity model: characterizing the response of communities to wildfire scenarios
considering individual building features as well as their aggregated behavior.

� Section 3 of the paper proposes a stochastic ‘‘community model’’ to capture
uncertainties in fire spread within WUI. The methodology is applied to two
WUI communities for pre-defined fire scenarios, i.e., the ‘‘wildfire model’’ and
the ‘‘transition to the community’’ are not simulated. The Streamlined Wildland
Urban Interface Fire Tracing (SWUIFT) model [44] is used as the basis to
introduce uncertainties in the fire spread model and characterize the perfor-
mance of communities using measurable metrics.

2. Probabilistic Risk Assessment Framework

This section discusses a methodology to enable risk assessment of WUI communi-
ties, relying on stochastic-based models to capture the progression of fire within
the wildland, from the wildland to the community, and within the community.
Such methodology can be used to establish working protection plans and mitiga-
tion strategies for a community considering various potential fire scenarios and
the features of the community (e.g., layout and construction materials) that could
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affect the vulnerability of the community subjected to a wildfire. Given the large
number of variables involved, their high degree of uncertainty, the level of com-
plexity and interactions between parameters, and their effects on the fire behavior,
a stochastic approach is needed.

The framework comprises of five components: (1) inputs, (2) a platform to sim-
ulate wildfire ignition and spread in the wildland (hereinafter ‘‘wildfire model’’),
(3) a platform to simulate fire spread inside the community (hereinafter ‘‘commu-
nity model’’), (4) a link bridging the two platforms, and (5) outputs. The outputs
represent the consequences of various wildfire scenarios and can be defined to
communicate the wildfire risk for the community. The framework is demonstrated
in Figure 1. The rest of this section introduces the five components and describes
the structure of the risk assessment framework.

2.1. Components of the Framework

Input: Several well-established variables affecting wildfire behavior have been
widely incorporated in simulation platforms. Topography (mainly slope), land
cover (mainly type and density of vegetation, the corresponding amount and
release rate of energy, and moisture content), and weather parameters (e.g., wind
speed and direction, temperature, and humidity) are the most frequently used
inputs. There are also anthropogenic factors, such as human-caused ignitions and
suppression activities, that have a significant influence on the number of fire
occurrences and the final size of burned areas. The characteristics of the commu-
nity is another important input; details such as the layout and configuration of the
community components (buildings, roadways, vegetation areas) and the type of
construction material for structures should be defined in the model. This informa-
tion in particular distinguishes the risk outcome for the community of interest.

Wildfire model: The wildfire model consists of two parts: (1) a stochastic igni-
tion model defining location and time of the ignition(s) within the domain of the
analysis, and (2) a spread model which can work either probabilistically (e.g., cel-
lular automata models) or deterministically (e.g., WRF-Fire [45]) given the igni-
tion(s). The spread model should characterize the behavior of the fire using
quantifiable variables such as the ROS, fire perimeter, and fire intensity.

Community model: The community model should capture the fire spread prop-
erly; thus, the model should include: (1) high spatial and temporal resolutions; (2)
timber structures as combustible fuel versus steel or concrete structures and the
natural and man-made fire breaks, such as roadways, parking lots, and ponds;
and (3) the uncertainties in the behavior of fire (e.g. spot fires). It is preferred for
the model to have a fast processing time to enable a large number of simulations
for capturing the uncertainties.

The link between the wildfire and community models: The link between the two
models should translate the output of the wildfire model to a quantified input for
the community model. In other terms, the community model requires initial igni-
tion(s) as an input, which is adopted from the result of the wildfire model. A com-
munity can be attacked by a fire line approaching from the wildland and/or by
fire spotting before the fire front reaches the community. Different platforms
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Figure 1. Stochastic-based methodology for risk assessment of WUIs
for wildfire (Color figure online).
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might be used for the wildfire and community models based on the interest of
users. Hence, introducing a link between the wildfire and community components
is necessary for the completeness of the framework. There is a need to systemati-
cally define and distinguish between potential scenarios for the community. The
considered domain within which the community is defined and the decision on
when to switch from the wildfire model to the community model depend on the
models in use and the standardized definitions to be researched and agreed upon.

Output: The output of the community model, which is used for communicating
the risk, should be tangible, and more importantly, comparable across communi-
ties. Hence, quantities that are introduced as outputs should be established in
coordination with community partners. This paper discusses three potential out-
puts to be considered individually or in combination to communicate the conse-
quences of a wildfire in a community: (1) the expected total number of ignited
structures; (2) the cumulative probability distributions of the number of ignited
structures over time; this parameter is also a proxy for the rate of fire spread
inside the community, (3) triggers of conflagration, when a large number of struc-
tures are ignited during a short time frame, and the corresponding time at which
conflagration occurs. It is not intended to report the statistics of outputs only
(e.g., median and standard deviation). Such static measures do not necessarily
reflect the evolution of fire events within a community; for example, there could
be an area within the community that is vulnerable and fire tends to spread
quickly, leading to conflagration. Thus, the results could be characterized based
on the distribution of potential outcomes but should provide the flexibility to
assess various scenarios in detail.

2.2. Description of the Framework

The framework combines the responses in both wildland and WUI communities,
providing the ability to estimate the probability of loss in a community condi-
tioned on the probability of wildfire scenarios (real or simulated). The choice of
modeling tools depends on the user’s preferences and the specific features/capabili-
ties of such platforms. The methodology is generalized enough for application to
any community as long as the stochastic simulations are conducted properly and
the outputs capture the consequences in WUI communities.

The stochastic procedure starts with sampling from all relevant input variables.
A random fire ignition spreads following the chosen wildfire model. Ignition, in
particular, might be based on statistical analyses of historical events. Here, the
term ignition carries the concepts of time and space. Given the importance of fire
spotting, its influence on the advancement of a wildfire, and the high level of
uncertainty associated with this fire spread mechanism, it is recommended for the
wildfire model to account for fire spotting. The output to characterize the wildfire
behavior should, at the minimum, include the perimeter/frontline of the wildfire,
the ROS (i.e., how fast the fire advances), and whether or not the fire reaches a
community. Repeating this process for a large number of cases yields an ensemble
of wildfires (e.g., W_1 to W_n in Figure 1) that are ignited at different locations
and have various ROS. The information can be used to define the likelihood of
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the hazard as a joint probability of the time that it takes for the wildfire to reach
the community from the location of ignition and its corresponding intensity when
reaching the community. Wildfire scenarios can be categorized into multiple clas-
ses in terms of intensity and with assigned probabilities.

The ROS and location and direction of the fire front are sufficient information
to initiate the spread in the community model. Simulation of fires in WUI com-
munities should reflect the performance of individual structures as a function of
construction materials as well as the communality configuration (e.g., layout and
distance between buildings, type and density of vegetation). The model should
simulate fire spread with a relatively high spatiotemporal resolution considering
the layout of structures. Moreover, the model should incorporate fire spotting as
it plays a significant role in WUI fire spreads [17, 46].

The community model should keep track of the fire advancement with respect
to the location of buildings to record ROS and the number of ignited structures.
It is assumed that the available, or yet to be created, models have a time compo-
nent included, which provides the ability to track the evolution of fire inside the
community, allowing to follow the progression of fire and ignited structures over
time. Depending on the level of sophistication of the model, different levels of
structural damage can be defined. Until further research is conducted, a simple
and more conservative method may take a binary approach and consider an
ignited structure as completely lost. Once the fire is initiated in the community
model, random sampling of the input variables and model parameters should be
conducted to simulate the fire spread inside the WUI community. By repeating the
procedure, an ensemble of simulated fire spreads inside the community is created
for each of the given wildfire scenarios (e.g., C_1 to C_m in Figure 1). Thus, the
likelihood of outputs from the community model can be conditioned on a certain
wildfire scenario. Repeating the analysis for all simulated wildfires and aggregat-
ing the results will lead to the probability of loss for the community.

3. Stochastic Spread Model in the Community

This section discusses simulation of fire spread in WUI communities including
uncertainties in the process, that is the focus is on the ‘‘community model’’ indi-
cated by the red box in Figure 1. The methodology is applied to two case studies:
(1) the Trails community close to San Diego, CA, which was hit by the 2007
Witch and Guejito fires, and (2) the Fountain Grove community in Santa Rosa,
CA, which was hit by the 2017 Tubbs fire, the second most destructive fire in the
modern history of California as of 2022. The performance of the two communities
is evaluated for the historic 2007 Witch and Guejito fires and the 2017 Tubbs fire
and the results of the stochastic simulations are compared with observations in
reality. Each of the wildfire scenarios can be considered as one of the several sim-
ulations in the ensemble of wildfires (i.e., the output of the wildfire model).

The case studies are selected for two main reasons:
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(1) The two communities have different features and layouts, including the dis-
tance between structures, and the density of vegetation inside and around the
community.

(2) The communities were hit by fires with completely different behaviors. In the
Trails community, the first few structural ignitions were reported as early as
one hour before the fire front reaches the community. These ignitions were
due to firebrands flying ahead of the fire. In this case, the fire was controlled
and suppressed inside the community. On the other hand, the Fountain Grove
was completely burned out by the Tubbs fire, where the fire line swept
through the community.

Details about the two case studies are available in Maranghides and Mell [47]
and Watkins et al. [48].

The Streamlined Wildland–Urban Interface Fire Tracing (SWUIFT) model is
used to establish the stochastic fire spread simulations inside the communities [44].
The SWUIFT model discretizes the community into grid cells of 10 m 9 10 m
resolution and captures the fire spread in 5-min time steps. The current version
includes three types of land cover, namely, vegetation, structure, and non-com-
bustible (roadways, water bodies, and parking lots).

SWUIFT accounts for short-range and long-range fire spread mechanisms, and
simulates fire spread due to radiation and fire spotting. A burnable cell (i.e., vege-
tation and structure cells) can experience three ordered stages if affected by fire:
ignition, fully developed with contribution to spread, and burnt. Structure cells
can ignite if they receive a certain threshold of radiant energy or accumulated
mass of firebrands. The considered value for the critical ignition flux for radiation
is 14 kW/m2, which is slightly larger than reported values in existing experiments
[49, 50] to account for tiling and finishing. Following experiments in the literature
[51], the ignition condition due to firebrands is determined as the accumulation of
24 g of firebrands landed on a circle with a diameter of 10 cm. A contributing
structure cell to fire spread generates firebrands as a function of wind speed fol-
lowing an empirical relationship by Waterman [49, 52]. A vegetation cell ignites
due to spotting if 224 g of firebrands land on the cell. When ignited, a vegetation
cell is assumed to generate 4923 g of firebrands in a timestep, following a study by
Wickramasinghe [53]. The generated firebrands are transported downwind follow-
ing a lognormal distribution as a function of wind speed and dispersed sidewind
following a normal distribution.

For this study, the SWUIFT model is selected as it is designed to have a man-
ageable computational cost, i.e., in the order of minutes for each simulation, to
conduct probabilistic analysis. Monte Carlo simulations with Latin hypercube
sampling are set up to capture uncertainties in fire spotting, ignition criteria, wind
speed, etc. More details about SWUIFT and the input raster for the two case
studies can be found in Masoudvaziri et al. [44]. It should be noted that the pro-
posed framework in Section 2.0 is generalized enough that can be used with other
spread simulation tools. The rest of this section will focus on the definition of ran-
dom variables and the corresponding distributions to be included in SWUIFT,
and the quantification of damage in the two listed communities.
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3.1. Random Variables

The uncertainty in the SWUIFT’s input parameters should be characterized to
conduct stochastic analysis. Table 1 summarizes the parameters, their default val-
ues in SWUIFT, and the proposed distributions. A brief description of the model
parameters is provided, followed by a sensitivity analysis to identify the influenc-
ing parameters.

Heat radiation is one of the fire spread mechanisms implemented in SWUIFT,
which is assumed to be generated by and causes ignition in structure cells.
Research on spontaneous ignition of wood shows that the critical radiant heat
flux across bare wood grains is 12 kW/m2 [49, 50]. The threshold is taken as
14 kw/m2 in SWUIFT to account for tiling and finishing. Hence, for the sensitiv-
ity analysis, a uniform distribution between 12 kW/m and 16 kW/m2 is consid-
ered for the parameter ‘‘Radiation_threshold’’ as listed in Table 1.

Fire spotting is another fire spread mechanism in SWUIFT, which is a function
of a number of parameters. Due to the high level of uncertainty involved in fire
spotting, probability distributions are typically defined to model the process. Fire-
brand generation for vegetation is a function of the mass of firebrands, as deter-
mined by experiments and vegetation type. Firebrand generation for structures is
a function of the mass of firebrands and wind speed. The transport of firebrands
depends on wind speed and direction.

Table 1
Random Variables in SWUIFT and the Corresponding Distributions

Parameter Description Point value Distribution

Radiation_threshold The threshold for a structure grid cell to ignite

due to radiation

14,000 [W/

m2]

Uniform

(12,000,

16,000)

Fb_wind_coef The coefficient for longitudinal distribution of

firebrands along the wind direction. The coeffi-

cient is used to determine the mean value of the

distribution

30 [–] Uniform

(20, 40)

Fb_wind_sd The standard deviation for the longitudinal dis-

tribution of firebrands along the wind direction

0.3 [m] Uniform

(0.25, 0.4)

Fb_wind_sd_transverse The standard deviation for the transverse distri-

bution of firebrands (perpendicular to the wind

direction)

4.85 [m] Uniform (3,

9)

Fb_mass Mass of generated firebrands 0.5 [g] Beta (2, 7,

0.05, 1)

Fb_dist_mu Mean value for the distribution of firebrand dis-

persion on a structure grid cell, when landed

0.01 [m] Uniform

(0.001, 0.2)

Fb_dist_sd The standard deviation for the distribution of

firebrand dispersion on a structure grid cell,

when landed

0.5 [m] Uniform

(0.01, 1)

Wind_speed Average wind speed over each time step Varies with

time step

[m/s]

Weibull

(14, 8)
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Transport of the firebrands from structures and vegetation is typically modeled
by two independent distributions: (1) a log-normal distribution along the wind
direction (longitudinal), and (2) a normal distribution perpendicular to the wind
direction (transverse). Each of the two distributions is characterized by two
parameters, the mean and the standard deviation. Equation 1 shows that the
mean of the distribution in the longitudinal direction (lx) is a function of wind
speed. As part of the transport model, three random variables are defined: (1) the
coefficient ‘‘Fb_wind_coef’’ when defining the mean of the distribution in the lon-
gitudinal direction, (2) the standard deviation for the distribution in the longitudi-
nal direction ‘‘Fb_wind_sd’’, and (3) the standard deviation for the distribution in
the transverse direction ‘‘Fb_wind_sd_transverse’’. The mean for the transverse
distribution is set equal to zero to avoid an inclination of firebrands to one side
when considering the direction perpendicular to the wind.

lx ¼ ln Fb wind coef � wind speedð Þ ð1Þ

Given that more in-depth studies are required for proper quantification of the
parameters of firebrand distributions and understanding the phenomenon, in gen-
eral, uniform distributions are assigned to the parameters, as listed in Table 1.

The mass of firebrands is an important factor in all stages of fire spotting. In
SWUIFT, the mass of firebrands affects the generation and ignition criteria. Stud-
ies show that the mass distribution of firebrands is highly skewed with most of the
sample population being very light [54–56]. To account for variation in the
observed data, a Beta distribution is considered for the mass of firebrands ‘‘Fb_-
mass’’. Note that to keep the computations manageable, all firebrands for a given
simulation in SWUIFT have the same mass; the defined Beta distribution is used
to randomly generate the mass of firebrands between simulations.

The final stage in fire spotting is the ignition due to firebrands landing on
unburned fuels. In the case of structures, SWUIFT assumes that ignition may
occur if enough firebrands are accumulated toward the edges of the structure cells.
SWUIFT tracks the source of generated firebrands and calculates the dispersion
of firebrands as a cluster based on existing experiments on mass accumulation of
firebrands [51, 57, 58]. The distribution for dispersion of the landing firebrands is
assumed to be log-normal. The parameters of the lognormal distribution,
‘‘Fb_dist_mu’’ and ‘‘Fb_dist_sd’’ in Table 1, follow a uniform distribution.

A Weibull distribution can be assumed for wind speed following the literature
and current practice [59, 60]. In SWUIFT, wind speed can vary over time, but as
part of the sensitivity analysis to investigate the effect of wind speed, constant val-
ues are used in each simulation.

3.2. Sensitivity Analysis

A sensitivity analysis is completed on the input parameters to identify the critical
random variables for which the SWUIFT model is sensitive and should be inclu-
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ded in the stochastic analysis. The results of the sensitivity analysis can be used to
(1) reduce the number of random variables in the stochastic study and help with
the required computational resources, (2) provide insight on the parameters with
significant influence to be researched in the future and improve the model perfor-
mance.

Random variables are generated using Monte Carlo simulations with Latin
hypercube sampling following the distributions in Table 1. The random variables
are considered independent. For the sensitivity analysis, batches of simulations
were run, where one parameter was assigned as a random variable in each case,
and all other parameters were set to their default values in SWUIFT (i.e., the
point value in Table 1). In addition, a batch of simulations was run with all the
parameters varied, note that the random variables are assumed to be independent.
Based on the listed distribution in Table 1, the first and third quartiles of the wind
speed are 7.32 and 8.19 m/s, respectively. Given the range for the transport
parameters in the longitudinal direction (Fb_wind_coef and Fb_wind_sd in
Table 1), the expected distance for firebrand transport ranges from 151 m to
317 m, and 169 m to 355 m for the first and third quartiles of the wind speed,
respectively. The wind speed makes a notable difference in the right tail of the
transport distribution (i.e., 317 vs. 355 m).

Figure 2 presents the mean, standard deviation, and coefficient of variation of
the number of ignited structures for both communities with varying random vari-
ables. The results show that three random variables have the most influence on
the outcome: (1) Wind_speed, (2) Fb_dist_sd, and (3) Fb_wind_coef (shown in red
in Figure 2). The figure also includes the results for a case where the three critical
parameters are taken as random variables (shown in green in Figure 2). Compar-
ing the results for the case with three critical variables and the case with all
parameters taken as random (shown in blue in Figure 2) indicates that the former
provides more conservative results, capturing scenarios with a higher number of
ignited buildings. Thus, the rest of this study will include the three identified
parameters as random variables in the stochastic simulations with the rest of the
parameters set to the default value in SWUIFT.

Convergence analysis is conducted on both case studies to confirm the required
number of simulations for the stochastic study, where the above-mentioned three
parameters are randomly generated. Batches of 200, 500, 1000, 2000, and 5000
simulations with Latin hypercube sampling are generated. For each batch, the
mean, minimum, maximum, and standard deviation of the total number of ignited
structures are reported, shown in Figures 3 and 4. The figures also include the
breakdown of the number of ignitions due to fire spotting and radiation. Conver-
gence is achieved when the change in the simulated number of ignited structures is

c

Figure 2. Results of the sensitivity analysis on the parameters of
SWUIFT for (a) the Fountain Grove community and (b) the Trails
community (note: labeled values in the figure represent mean,
standard deviation, and coefficient of variation of the number of
ignited structures, respectively) (Color figure online).
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less than 10%. Based on the results, batches of 2000 simulations ensure conver-
gence and increasing the number of simulations will not result in changes more
than 10%; thus, simulations with 2000 random realizations will be used in the fol-
lowing sections. Note that for the minimum and maximum plots, the sum of igni-
tions due to radiation and fire spotting does not yield to the total number of
ignitions. This is due to the fact that the plotted number of ignited structures as a
function of ignition type does not map to the same simulation. For example, a
minimum value of zero for fire spotting and radiation does not imply that both
mechanisms produced zero ignition in the same scenario.

3.3. Quantification of Community Response

In this study, the response of the WUI community to the wildfire scenarios is
characterized using the distributions of the number of ignited structures over time.
The stochastic simulations include uncertainty in the selected SWUIFT parameters
from Sect. 3.1 (Wind_speed, Fb_dist_sd, Fb_wind_coef) as well as randomness in
the transport of firebrands following the defined longitudinal and transverse distri-
butions, and landing of firebrands within structure cells [44]. Given that the two

Figure 3. Convergence analysis for the Fountain Grove community.
Mean, minimum, maximum, and standard deviation for the number of
ignited structures are examined (Color figure online).
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Figure 4. Convergence analysis for the Trails community. Mean,
minimum, maximum, and standard deviation for the number of
ignited structures are examined (Color figure online).

Figure 5. Wind direction used in simulations for each case study
(Color figure online).
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communities are being analyzed for real fire scenarios, the wind direction is mod-
eled based on historical data. Figure 5 shows the wind directions used in each
timestep for both cases. The geographical north is the reference for the provided
values. In general, wind speed and direction should both be considered as random
variables, when conducting risk assessment for a community.

The simulations are used to generate the cumulative distribution functions
(CDF) of the number of ignited structures at 30-min time intervals, with the ini-
tial ignition inside the community as the reference time. The CDFs provide the
probability of having ‘‘x number of ignited structures or less’’ at a given time. The
information in the form of CDFs can be used to identify the potential for a sud-
den increase in the number of ignitions, as an indicator for conflagration or fast
fire spread. The selected metric helps locate the vulnerable locations in a commu-
nity and is practical for response and evacuation planning. The status of the indi-
vidual structures can also be obtained from the implemented model. The
probability of having a structure ignited, the cause of ignition (e.g., radiation or
fire spotting), and the expected time of ignition can be tracked in the model. Such
information can be used for mitigation at the building level and to strengthen
structures against firebrands or radiation based on a quantified assessment of the
community.

3.4. Results

Figures 6 and 7 illustrate the CDFs of the total number of ignited structures for
the Fountain Grove and Trails communities, respectively. The CDFs are also

Figure 6. Result of the stochastic simulations of the community model
(SWUIFT) for Fountain Grove (Color figure online).

1394 Fire Technology 2023



plotted for ignitions due to radiation and due to fire spotting (i.e., the breakdown
of total ignitions as a function of the spread mechanism).

The results show that both radiation and spotting play an important role in the
Fountain Grove community, while in the Trails community, spotting is the main
mechanism of fire spread. Two factors are the cause of this difference: (1) commu-
nity layout: buildings are more distant in the Trails community compared to the
Fountain Grove and vegetation coverage is lower inside the community; (2) initial
ignitions: there are a few separated and distant ignitions in Trails before the fire
front reaches the community, while in Fountain Grove, ignitions begin with the
fire front. Hence, a larger area of vegetation and number of structure grid cells
are ignited early in the simulation, which corresponds well with observations in
reality.

The first result to investigate is the number of ignited structures at the end of
the simulations. In the case of the Trails community, the number of ignited struc-
tures after 180 min range between 39 and 198, with a median of 74. In reality, 90
structures were affected 74 of which were destroyed [47]. In the case of Fountain
Grove community, the value ranges from 115 to 211 after 120 min with a median
of 185. In reality, almost all the structures in the community (208 inside the simu-
lated area) were destroyed. Comparing the two cases, the distribution of ignitions
for the Trails community is left-skewed whereas the CDF is right-skewed for the
Fountain Grove community. This implies that most simulations in Fountain
Grove experienced a large number of ignitions. Figures 8 and 9 showcase the
spread in each community for the two scenarios of median and maximum number
of ignited structures. Fire propagation in the median scenario for the Trails com-

Figure 7. Result of the stochastic simulations of the community model
(SWUIFT) for the Trails community (Color figure online).
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Figure 8. Fire spread in Fountain Grove: (a–d) showing a case
representing a median scenario, and (e–h) showing a scenario with
the maximum number of ignited structures (Color figure online).
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Figure 9. Fire spread in Trails: (a–d) showing a case representing a
median scenario, and (e–h) showing a scenario with the maximum
number of ignited structures (Color figure online).
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munity is close to what happened in reality [47], whereas the maximum scenario
for the Fountain Grove community is close to field observations [48].

The results indicate that 120 min after the wildfire reaches both communities,
the minimum number of ignited structures in Fountain Grove is 115 whereas the
maximum number of ignited structures in the Trails community equals 85 (i.e.,
lower than the minimum in Fountain Grove). Also, after 30 min, only a few igni-
tions are recorded in the Trails community whereas in some cases all structures
are ignited in Fountain Grove. The median number of ignitions for the Fountain
Grove community after 30 min is 12 structures, which is manageable to respond
to, but the extreme cases indicate most of the structures on fire, which makes the
fire hard to control in such a short time interval. The 2017 Tubbs fire affecting
Fountain Grove was an example of one of the extreme simulated cases. Mean-
while, for the Trails community, no significant fire activity takes place before the
first 60 min, and the number of ignited structures start to increase for some cases
only at 90 min. This indicates a more manageable scenario for a community in
terms of response and suppression.

Breakdown of ignitions due to radiation and spotting indicates that the number
of ignitions is similar for both spread mechanisms in Fountain Grove (in the
order of 150). In some cases, the two modes reinforce each other: a few sparse
spot ignitions appear based on the locations and density of vegetation and struc-
ture cells, followed by further spread due to radiation and close proximity of
structures. However, the same cannot be concluded for the Trails community. The
number of ignitions due to fire spotting is significantly higher than radiation. Lar-
ger distances between structures and lower coverage of vegetation inside the com-
munity are the main reasons for slower spread and fire spotting as the main drive
for fire spread.

Given the CDFs of the number of ignited structures, loss in terms of the mone-
tary value of damaged buildings and the associated risk can be assessed when the
results are conditioned on the probabilities of the fire scenarios obtained from the
wildfire model (i.e., joint probability of spread direction and ROS). A binary crite-
rion can be selected where an ignited structure is assumed to burn completely.
Future research will expand to include different types of structures based on occu-
pancy type and construction details, and different damage levels in response to
fire. In addition, the loss assessment can go beyond monetary values to include
social and environmental consequences.

4. Conclusion

The paper discussed a framework for risk assessment of WUI communities sub-
jected to wildfires. The framework intends to integrate stochastic analyses of fire
spread in WUI regions within available methodologies that capture probability of
wildfire hazard in the wildland. The outcomes of the fire spread in WUI regions
are conditioned on the outcomes of the wildfire scenarios in the wildland. The
framework is flexible and can be used with different modeling tools.
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The paper introduced a novel stochastic community model to capture uncertain-
ties in fire spread within WUI. Random variables and the corresponding distribu-
tions were defined and a sensitivity analysis was conducted to identify the
influencing parameters. The model was applied to two real wildfire events in Califor-
nia. The response of the communities against the corresponding wildfires was inves-
tigated and compared using cumulative distribution functions (CDFs) of the
number of ignited structures over time and as a function of different fire spread
mechanisms. It was demonstrated that the CDFs of the number of ignited structures
can be used to evaluate the likelihood of how fast the fire spreads, whether or not
the fire can be controlled, and the primary fire spread mechanism in the community.

The assigned distributions for some of the input parameters in the stochastic
simulations of fire spread within a WUI community can be refined upon availabil-
ity of more data from experiments or field observations. In general, the modeling
capabilities can be enhanced as wildfire science advances, new methods of data
collection are developed, and an improved understanding of fire dynamics and
interactions of buildings and vegetation in WUI areas is established. Future stud-
ies will include a case study with the full application of the framework, incorpo-
rating probabilistic hazard assessment in conjunction with community response.

Finally, the proposed risk assessment framework for WUI communities can be
used to guide mitigation actions within a community. Mitigation actions reduce
the risk by preventing building ignition or spread of fire and are divided to those
that can be applied to existing communities (e.g., use of fire-resistant construction
material such as upgrading roofing material, provision of firebreaks across a com-
munity) and those for new land development (e.g., building layout and separa-
tions). Considering recent advances and evolving models in the field, the proposed
framework can be used to investigate the influence of mitigation actions on the
likelihood of the number of ignited structures during a certain period of time for
a given fire scenario. The rate of increase in the number of ignited structures pro-
vides a measure for whether or not a successful suppression is possible (as was the
case for the Trails community). The proposed approach will enable a quantified
evaluation of the effects of individual structure and community features on the
response of the community to a wildfire event.
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7. Hurteau MD, Bradford JB, Fulé PZ, Taylor AH, Martin KL (2014) Climate change,

fire management, and ecological services in the southwestern US. For Ecol Manag

327:280–289
8. Goss M, Swain DL, Abatzoglou JT, Sarhadi A, Kolden CA, Williams AP, Diffenbaugh

NS (2020) Climate change is increasing the likelihood of extreme autumn wildfire con-

ditions across California. Environ Res Lett 15(9):094016
9. Insurance Information Institute, 2020. Facts + Statistics: Wildfires. https://www.iii.org/

fact-statistic/facts-statistics-wildfires Accessed 29 Nov 2022
10. California Department of Forestry and Fire Protection., 2020. Top 20 Most Destructive

California Wildfires. https://www.fire.ca.gov/media/t1rdhizr/top20_destruction.pdf
Accessed 29 Nov 2022

11. Park, M., 2016. Wildfires blaze in Gatlinburg, TN; thousands evacuated. The CNN. htt

ps://www.cnn.com/2016/11/28/us/southern-fires-gatlinburg-smokies/index.html Accessed
29 Nov 2022

12. Haynes K, Short K, Xanthopoulos G, Viegas D, Ribeiro LM, Blanchi R (2020) Wild-

fires and WUI fire fatalities. In: Manzello Samuel L (ed) Encyclopedia of wildfires and
wildland-urban interface (WUI) fires Springer, Cham, Switzerland, p 16

13. Bailey D (2013) WUI fact sheet. International Association of Wildland Fire and Inter-
national Code Council, Missoula, MT

14. Scott JH, Gilbertson-Day JW, Moran C, Dillon GK, Short KC, Vogler KC (2020)
Wildfire Risk to Communities: Spatial datasets of landscape-wide wildfire risk compo-
nents for the United States. Fort Collins, CO: Forest Service Research Data Archive.

Updated 25 Nov 2020. https://doi.org/10.2737/RDS-2020-0016
15. National Fire Protection Association (NFPA). Firewise USA: residents reducing wild-

fire risks. https://www.nfpa.org/Public-Education/Fire-causes-and-risks/Wildfire/Firewis

e-USA Accessed 29 Nov 2022
16. National Fire Protection Association (NFPA). Outthink wildfire: wildfire action poli-

cies. https://www.nfpa.org/About-NFPA/Outthink-Wildfire Accessed 29 Nov 2022
17. Caton SE, Hakes R, Gollner MJ (2016) A review of pathways for building fire spread

in the wildland urban interface part I: exposure condition. Fire Technol 53:429–473

1400 Fire Technology 2023

https://www.iii.org/fact-statistic/facts-statistics-wildfires
https://www.iii.org/fact-statistic/facts-statistics-wildfires
https://www.fire.ca.gov/media/t1rdhizr/top20_destruction.pdf
https://www.cnn.com/2016/11/28/us/southern-fires-gatlinburg-smokies/index.html
https://www.cnn.com/2016/11/28/us/southern-fires-gatlinburg-smokies/index.html
https://doi.org/10.2737/RDS-2020-0016
https://www.nfpa.org/Public-Education/Fire-causes-and-risks/Wildfire/Firewise-USA
https://www.nfpa.org/Public-Education/Fire-causes-and-risks/Wildfire/Firewise-USA
https://www.nfpa.org/About-NFPA/Outthink-Wildfire


18. Hakes R, Caton SE, Gollner MJ (2017) A review of pathways for building fire spread
in the wildland urban interface part II: response of components and systems and miti-
gation strategies in the United States. Fire Technol 53:475–515

19. Gollner, M., Theodori, M., Cove, T.J., Johansen, N., Kimball, A., Kuligowski, E.,
Lakhina, S.J., Steinberg, M., 2021, Preparing for disaster: workshop advancing WUI
resilience, workshop proceedings, FPRF-2021–03, National Fire Protection Association,
Quincy, MA, USA

20. Flynn SE (2017) Wildfire: a changing landscape. Northeastern University, Global Resi-
lience Institute

21. Haas JR, Calkin DE, Thompson MP (2013) A national approach for integrating wild-

fire simulation modeling into wildland urban interface risk assessments within the Uni-
ted States. Landsc Urban Plan 119:44–53

22. Syphard AD, Keeley JE, Massada AB, Brennan TJ, Radeloff VC (2012) Housing

arrangement and location determine the likelihood of housing loss due to wildfire.
PLoS ONE 7(3):e33954

23. Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 1: physical and
quasi-physical models. Int J Wildland Fire 18(4):349–368

24. Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 2: empirical and
quasi-empirical models. Int J Wildland Fire 18(4):369–386

25. Sullivan AL (2009) Wildland surface fire spread modelling, 1990–200. 3: Simulation

and mathematical analogue models. Int J Wildland Fire 18(4):387–403
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