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Abstract. Early detection of fire is key to mitigate fire related damages. This paper
presents a differential pyro-electric infrared (PIR) sensor and deep neural networks

(DNNs) based method to detect fire in real-time. Since the PIR sensor is sensitive to
sudden body motions and emits a continuous time-varying signal, experiments are
carried out to collect human and fire motions using a PIR sensor. These signals are
processed using one-dimensional continuous wavelet transform to perform feature

extraction. The corresponding wavelet coefficients are converted into RGB spectrum
images that are then used as inputs for a deep convolutional neural network. Various
pre-trained DNN architectures are adopted to train and identify the collected data

for background (no motion), human motion, and fire categories: small quasi-static
and spreading fires. Experimental results show that the ShuffleNet architecture yields
the highest prediction accuracy of 87.8%. Experimental results for the real-time strat-

egy which works at a speed of 12 frames-per-second show 95.34% and 92.39% fire
and human motion detection accuracy levels respectively.

Keywords: Fire detection, Human motion detection, Pyro-electric infrared (PIR) sensor, Deep neural

networks (DNNs), Continuous wavelet transform (CWT)

1. Introduction

Early fire detection in residential or industrial buildings is very important to take
appropriate actions to prevent human and property losses, physical and mental
trauma. Yet, fires can be avoided or controlled if identified at the incipient stage.
Fires happen due to various reasons such as negligence, electronic device malfunc-
tioning, cooking, smoking, flammable liquid and gas leakages, arson, etc. The
stages of a fire can be described as incipient (ignition), growth, fully developed,
and decay [1]. Fire growth and the maximum heat release rates mainly depend on
the building design features including flammable cladding and the types of com-
bustibles (fire loads) such as interior decorations, furniture, etc. [2, 3]. According
to one of the common building communication standards BACnet, fire safety is
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given the highest priority in building automation [4]. With the increased complex-
ity in building operations, it is important to improve sensitivity and accuracy of
fire detection [5].

There are various fire sensing technologies developed to reduce fire accidents [1].
The commonly used point sensors like smoke, heat, and gas sensors have limited
capabilities [6]. A fire has to burn for a while to reach the sensor and to exceed
the set threshold point to initiate a warning alarm [7]. This gives plenty of room
for a normal fire to spread rapidly. Due to the limited coverage area, conventional
sensors are not efficient in large rooms and open spaces like backyards, car parks,
forests, etc. In addition, their accuracy is affected by the external disturbances
such as steam, smoking, light smoke from cooking, causing to trigger false alarms.
According to fire and rescue services (FRSs) in England for the year ending
December 2020, the false fire alarms amount to 42% of the incidents attended [8].

In order to address issues in conventional fire sensors, advanced smoke and fire
detection systems use video fire detection techniques to recognise fires at their
early stages [9]. Various colour analysis and machine learning techniques are used
to extract and identify fire in recorded images and videos. Even though vision-
based techniques are more accurate and capture a detailed view of the environ-
ment, complexity in fire spread and other interfering background events in practi-
cal settings affect their feature extraction capability [10]. It is also noted that fixing
cameras in workplaces may affect employee performance by creating an environ-
ment of personal privacy issues [11]. Infrared (IR) imaging systems are effective to
address issues like poor visible light or image blending with the background [1].
These systems are highly reliable and can act as surveillance videos to detect fires.
Though they have many advantages, they also have certain disadvantages. Cam-
eras and onboard computers pose cost barriers for a scalable solution. They give
false alarms depending on the proximity to the sensor or any other interference
such as lamp lights, hot air flow, workshop or industrial activities, that affect the
sensitivity [12]. In order to address data loss and data distortion issues in IR flame
detection, a robust fusion algorithm based on Radial Basis Function neural net-
work with Takagi–Sugeno fuzzy model is proposed in [13]. Image processing using
deep learning (DL) technology gives significantly high performance in fire detec-
tion [14]. However, there are challenges such as the need for a large number of
training data collected at various settings and fire types, identification of simulta-
neous fires, illumination changes, and quantification of fire flame and smoke
intensity [9].

This paper proposes a new technique to detect fires in enclosed spaces using a
differential PIR sensor and DNNs. PIR sensors detect IR radiation emitted by
objects. They are sophisticated, yet low cost and highly capable of detecting any
abrupt changes in IR radiation from object movements within its viewing range
[15–17]. Hence, PIR sensors are versatile to detect a flame spread. Moreover, dif-
ferential detection in PIR sensors is useful to avoid false alarms caused by small
but uniform IR changes in its viewing range such as indoor temperature or sun-
light variations. This is due to the sensor arrangement in which the sensor is split
into two halves and they are wired up together. Unless there is not sufficient
increase in IR radiation to capture from one half, the output signals produced
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from the two halves will cancel each other. Due to the relatively high viewing
range of 7 m (when used with Fresnel lens) in an angle covering 110 degrees, it is
suitable to monitor large rooms with high ceilings [18]. In addition, the PIR sen-
sor approach requires low processing power compared with computer vision
(surveillance) smoke or fire detection systems [11]. Unlike in security cameras,
human privacy intrusion issues will not arise with PIR sensors because the sensor
output is merely a digital or an analog signal [19].

Different types of real fire spreads and human motion data in an indoor setting
are collected in this paper using a differential PIR sensor. These signals are pre-
processed using wavelet transform [20]. The wavelet coefficients that correspond to
the extracted fire features are fed as inputs to train a selected class of DNNs to
classify fire and non-fire events i.e., fire categories and human motion, within the
viewing range of the PIR sensor. Image pre-processing increases the accuracy of
flame recognition rate in DNNs [21, 22]. Conventional machine learning approa-
ches need a considerable amount of expertise to extract features, classify them,
and predict a fire spread. Due to complex image feature extraction capability and
availability of pre-trained CNNs like AlexNet, ResNet, GoogLeNet, etc., DL
approach can be used to detect fire flames robustly [10, 12, 14, 21, 23]. In addi-
tion, compact variants of CNN architectures such as NasNet-A-Mobile and Shuf-
fleNetV2 are used in [24] with modified layers to improve non-temporal fire and
no-fire classification. The proposed method in [24] shows 95% full frame and
94.4% superpixel based fire detection. In our work, the adopted pre-trained CNN
models are also modified to improve accuracy at the cost of training time. The
CNN network architecture with the highest validation accuracy is used to demon-
strate the real-time fire prediction.

In Sect. 2, the proposed methodology is presented under event categorisation,
data acquisition, signal processing, deep learning frameworks, DNN architecture,
and the real-time working strategy. Fire prediction results along with real time
performance are presented in Sect. 3. Discussion and conclusion are given in
Sects. 4 and 5.

2. Proposed Methodology

In this work, changes in IR radiation for fire and non-fire events are recorded
using an HC-SR501 PIR motion sensor [25]. The experimental setup to collect
data is shown in Fig. 1. All experiments are carried out following health and
safety guidelines and regulations for fire experiments.

In the proposed technique, the differential PIR sensor is configured with an
Arduino Uno micro-controller (ATmega328P). The data from the differential PIR
sensor is a continuous time-varying analog signal. Its amplitude is proportional to
the hot body size, speed of the motion, and distance from the sensor. The signal is
processed using wavelet transform. The wavelet coefficients are converted to RGB
(Red-Green-Blue coloured) spectra. Due to this colour segmentation process in
RGB space, most likely flame regions can be identified and fed as compatible
input images to pre-trained DNNs to classify the events happening within the
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viewing range of the sensor. Figure 2 represents the proposed fire detection tech-
nique.

The rest of the section explains the key areas of this work under event categori-
sation, data acquisition, digital signal processing, data pre-processing, DNN archi-
tecture, and real-time performance strategy.

2.1. Events Categorisation

Since the proposed fire detection technique is intended for indoor settings and the
differential PIR sensor is sensitive to movements, variables such as distance from
the sensor, different human motion patterns, and moving speeds are also consid-
ered in this work. Therefore, PIR sensor data are collected for the following five
different motion events to record their changes in IR radiation.

Figure 1. Experimental setup during data collection. Sub figures (A),
(B), and (C) are the photos captured during the events of spreading
wood fire, propane gas fire, and small wood fire respectively. The PIR
sensor and the Arduino Uno is packed inside a transparent plastic
box.
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1. Background (no motion)
2. Human motion (within 1 m from the sensor)
3. Human motion (more than 1 m from the sensor)
4. Fire category 1 (small wood fire)
5. Fire category 2 (both spreading wood and propane gas fires)

When there is no motion in front of the sensor, it is categorized as the back-
ground event. The human motions within 1 m and beyond contain sensor signals
for human motion within the ranges 0.2 m to 1 m and 1.1 m to 3 m respectively.
Since the PIR sensor is sensitive to motion, the fluctuations of the output voltage
are high or low for fast or slow motions respectively. Thus, both human slow
walking motion and human fast walking motions are recorded. In addition,
human movements on a swivel chair are also recorded. Finally, two fire category
events are recorded (see Fig. 1). The fire category 1 has the recording of small
wood fire between 0.5 m and 3 m from the sensor. The fire category 2 consists of
larger or uncontrollable fire. Spreading wood fire and propane gas fires are
recorded for this event. The area coverage of wood during the event of small
wood fire and spreading wood fire are 10 cm2–12 cm2 and more than 12 cm2

respectively.

Figure 2. The fire detection technique adopted in this paper. The left
side of the chart denotes offline learning including data collection,
event categorisation, and the DNN training. The right side illustrates
the inference process. The methodology of the inference process
during real-time is shown in Fig. 6.
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2.2. Data Acquisition

The two pyro-electric sensing elements inside the PIR sensor generate positive or
negative differential changes if a warm body enters or leaves the sensor detecting
area which is bounded by two slots on the sensor. Hence the sensor produces high
or low digital voltage signals depending on variations in IR radiation levels. Since
the amplitude of these signals are very small, the amplified analog signals are
extracted from the PIR sensor by tapping directly from its sensor circuit amplifier
chip BISS0001. Thus, the amplified analog signals are recorded during the five
events explained in Sect. 2.1. The output signals are shown in Figs. 3 and 4.

Since the focus is on fire, the flame flickering frequency should be considered
for signal sampling. The flame flicker behaviour is a wideband frequency range
covering 1 Hz–13 Hz [17]. Considering the sampling rule, the sampling rate is
selected as 50 Hz, which is more than twice the flame flickering frequency. The
analog signal from the PIR sensor is transferred to Arduino Uno which is then
transferred to the computer for further signal processing. The Arduino Uno is
configured using MATLAB [26] to perform signal processing using the trained DL
network.

Figures 3 and 4 show that the samples of amplified PIR signals have different
characteristics for the events considered in time domain. During the background
event where no motion occurs, the signal amplitude varies from 0.58 V to 0.59 V.
This range acts as the centre line around which the signal fluctuates when a
motion is detected. When the intensity of the infrared heat increases, the ampli-
tude increases (above or below the centre line). Since the PIR is sensitive to infra-
red heat motion, the amplitude fluctuation decreases when the distance of the
event increases and vice versa. It can be seen from Fig. 3 that the fire categories 1
(small wood fire) and 2 (spreading wood fire and propane gas fire) signals have
almost similar trends with varying distances. For instance, the spreading wood fire
and propane gas fire signals within and at 1 m have amplitude variations between
0 V and 1.09 V. However, when the distance increases (at 2 and 3 m), their fire
signal amplitudes narrow down to a range between 0.5 V and 0.8 V. Since the
spreading fire (category 2) occupies a wider space within the viewing range of the
sensor, its motion is detected better than the small fire (category 1). For example,
at 1 m distance, small fire signal amplitude drops to a range between 0.35 V and
0.94 V, whereas spreading fire signal amplitude stays between 0 V and 0.96 V.

In contrast, human movement signals within 1 m show an amplitude range
between 0.08 V and 0.83 V (see Fig. 4). Similar to fire signals, this range narrows
down further with the distance. It is observed that there is no noticeable difference
in the amplitude for human slow and fast walking motions beyond 1 m. In addi-
tion, it can be seen that the human motion and the fire beyond 2 m have similar
amplitude ranges. This makes it challenging to differentiate daily human activities
from a fire using amplitude-based event categorisation.

2.3. Signal Processing

Signal processing focuses on analysing, modifying, and synthesising a signal based
on the user requirements [27]. Due to the dynamic nature of fire flame radiation
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Figure 3. The PIR sensor signals of fire category 1 (small wood fire),
fire category 2 (spreading wood fire), fire category 2 (propane gas
fire) and background (no motion) from the distance of within 1 m, at
1 m, 2 m, and 3 m. The x-axis consists of 1000 data points captured
for 92 s. The y-axis represents the amplitude of the sensor. This is not
a continuous recording of data from 0 s to 92 s. During data
collection, each event (at all distances) is continuously recorded for 4
mins. For the demonstration purpose of this paper, all the data
captured at varying distances are trimmed to 20 s or 25 s portions,
merged as a continuous flow of data, and sorted in colours. The
highest and lowest values of each event are marked.
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levels, the fire signals are non-stationary. Widely used signal processing techniques
such as Fourier transform assumes the signal being processed is stationary. Hence,
in this work, the PIR sensor signals are analysed using wavelets. Unlike Fourier
transform, the wavelet analysis helps to build a time-frequency relationship using
both time and frequency domains [28]. Wavelets also have inbuilt filters which
eliminate noises from the signal and have less computational cost than Fourier
transform.

Wavelets are asymmetric and irregular waveforms that last for a short period of
time with an average value of zero. Wavelet analysis produces constituent wave-
lets of different scales and positions of the mother wavelet [20]. Therefore, in con-
tinuous wavelet transform (CWT), the input signal is multiplied by delayed and
stretched versions of the chosen wavelet and then integrated over the time dura-
tion of the signal. This process generates wavelet coefficients C. The process can
be shown as:

Figure 4. The PIR sensor signals of human motion (within/at 1 m)
and human motion (more than 1 m). The x-axis consists of 1000 data
points captured for 92 s. The y-axis represents the amplitude of the
sensor. This is not a continuous recording of data from 0 s to 92 s.
During data collection, each event (at all distances) is continuously
recorded for 4 mins. For the demonstration purpose of this paper, all
the data captured at varying distances are trimmed to 20 s or 25 s
portions, merged as a continuous flow of data, and sorted in colours.
The highest and lowest values of each event are noted.
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Cðscale; positionÞ ¼
Z 1

�1
f ðtÞwðscale; position; tÞdt ð1Þ

where f ðtÞ is the original signal (the PIR signal in this case) in time domain and
wðtÞ is the mother wavelet function. There are different types of mother wavelet
functions such as Haar, Daubechies, Coiflets, Symlets, Biorthogonal, etc. The
mother wavelet needs to be appropriately selected to match the transient spikes of
the original PIR sensor signal. Then, better noise cancellations without distortions
can be achieved [28]. The wavelet coefficients C indicate how closely the chosen
wavelet is correlated across sections of the original signal.

In this paper, the Morse wavelet [29] in the MATLAB Wavelet toolbox [30] is
used. The amplified analog output from the PIR sensor is affected by noise and
signal drift due to atmospheric temperature variations. The CWT filter bank is
used to filter this noise and yield the signal with respect to frequencies. In general,
the PIR signal oscillation frequency for a flickering flame is higher than that of
PIR signals of a moving object [17]. Various parameters of filter bank are changed
in order to visualise distinct features for each event.

2.4. Deep Learning Frameworks

DL frameworks provide building blocks for designing and training deep neural
networks using their algorithms, pre-trained models, and applications as well as
visualization of the model training progress. Widely used DL frameworks are
TensorFlow, Keras, PyTorch, Theano, Caffe, etc. In this paper, the DL toolbox in
MATLAB is used [31].

2.5. Data Pre-processing and Dataset Construction

Since the input data structure for DNN should be in image format (3-D array),
data pre-processing is carried out. The data collected from the PIR sensor is in a
continuous time series format (refer Figs. 3, 4) which is then segmented in lengths
of 50 data points in steps of 5 for training the DNN. These 50 data points are
assigned as data sets that are processed through CWT.

Then, the size of the resulting 2-D matrix with absolute coefficients is 61� 50 in
which each row and column corresponds to a scale and a data point respectively.
These absolute coefficients are re-scaled and converted into a spectrum of size
61� 50� 3 (scale� datapoints�RGB). The selected DNN architecture (refer
Table 4) requires an array of size 224� 224� 3 as the input data. Thus, scalo-
grams from CWT are transformed into RGB image format and are resized as
required using data augmentation techniques.

Figure 5 shows examples of RGB image format of the scalograms with respect
to the five events generated by CWT. From the 224� 224� 3 matrix (spectrum
image size), the DNN extracts the distinct features for each class/event and learns
to recognise the event happening in front of the sensor. To avoid overfitting prob-
lems, the same number of data should be provided during the training progress.
Thus, each class/event (refer Sect. 2.1) consists of 5915 RGB spectra for training,
2535 for validation, and 1690 for testing.
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2.6. DNN Architecture

CNN is the most established DL algorithm to process data patterns, extract, and
classify features [32]. The DNN architecture has three key layers: convolution,
pooling, and fully connected. The convolutional layer plays an important role in
DNNs. In order to perform feature extraction, convolution requires a specific size
kernel or filter to slide over the input image based on the stride given. The stride
which is the distance between two consecutive kernels, determines the columns in
which the filter should move on the input image. During the process, the element-
wise matrix multiplication is achieved at every location between the kernel and the
input to extract the feature map from the image. Likewise, multiple kernels act as
different feature extractors. During the training process, the best kernels in the
convolution layers and weights in the fully connected layers are identified for the
training data set. The convolutional layer proves effective because the layers closer
to the input learn low level features such as lines, curves, etc. and as the layers go
deeper, the network learns high level features such as shapes, specific objects, etc.

Figure 5. Examples of scalograms with respect to the five events.
The colour of the spectrum varies from min to max colours specified in
the scale. Each event consists of a single set of samples (50 data
points) which are processed using CWT and converted into RGB
spectrum images of size 224�224�3 as required input dimensions
for DNN architectures specified in Table 1. The x and y axes are
reshaped data points and the scaling factor respectively.
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In this work, MobileNet-v2, ShuffleNet, VGG-16, GoogLeNet, and custom-de-
signed DNNs are chosen to train data (see Table 1).

During training, the selection of hyper-parameters such as the stride, number,
and the size of kernels play a vital role in optimising the model. All NNs are
trained using the Stochastic Gradient Descent with Momentum (SGDM) opti-

miser. The initial learning rate of 1.0 e�4 is assigned with a mini-batch size of 84.

Table 2
Modified GoogleNet Architectures for Models 1–4

GoogleNet [33] Model 1 Model 2 Model 3 Model 4

convolution 1 1 1 1

max pool 1 1 1 1

convolution 1 1 1 1

max pool 1 1 1 1

inception (3a) 1 1 1 1

inception (3b) 1 1 1 1

max pool 1 1 1 1

inception (4a) 1 1 1 1

– – – dropout (60%) dropout (60%)

inception (4b) 1 1 – –

inception (4c) 1 1 1 1

inception (4d) 1 – – –

inception (4e) 1 1 1 –

max pool 1 1 1 1

inception (5a) 1 1 1 1

inception (5b) 1 1 – –

avg pool 1 1 1 1

dropout(40%) dropout (60%) dropout (60%) dropout (60%) dropout (60%)

linear 1 1 1 1

softmax 1 1 1 1

In here, ‘‘1’’ and ‘‘–’’ denote inclusion and elimination of a particular layer respectively

Table 1
DNN Architectures Used in This Work

DNN architecture No. of layers No. of parameters (M)

1. VGG-16 16 138

2. Modified GoogLeNet (Model 1) 144 7

3. Model 2 130 6.04

4. Model 3 103 4.15

5. Model 4 88 3.88

6. MobileNet-V2 154 3.4

7. ShuffleNet-V2 50 1.4

They are sorted according to the number of parameters, from highest to the lowest. The models 1–4 are custom-

designed DNNs which are trimmed versions of GoogLeNet [33]. Their architectures are illustrated in Table 2
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In addition, a dropout regularisation technique (Table 2) is utilised to reduce
the error by fitting a function appropriately for the given training dataset and to
avoid overfitting [32]. An attempt to increase the dropout layers in the custom-de-
signed DNN is also achieved to evaluate the performance. Throughout the train-
ing process, the model is saved in every 5 epochs. Each training process is set to
10 epochs. After completing 10 epochs, the training data is validated. If the loss is
not decreased in nearly 3 epochs, the training model is stopped to avoid overfit-
ting.

2.7. Real-Time Working Strategy

The schematic diagram of the real-time working strategy is shown in Fig. 6. The
two stages are explained below.

2.7.1. Sleep Mode When no motion is detected, it is known as the normal state or
sleep mode. The digital output of the PIR sensor acts as a trigger. In the normal
state, the digital output of PIR will be LOW which shuts down the signal process-
ing unit and the DNN. Meanwhile, the analog output from the PIR sensor is
stored in the storage device.

2.7.2. Active Mode When a motion is detected, the digital output from the PIR
will be HIGH. This initiates the trigger which turns on the signal processing unit
and the DNN to classify the event happening inside the viewing range of the sen-
sor. The system works until the DNN classifies the background (no motion).
Then, it goes back to the SLEEP MODE (shutting down the signal processing
unit and the DNN model).

Figure 6. The ShuffleNet-V2 architecture functioning in either
‘‘SLEEP MODE’’ or ‘‘ACTIVE MODE’’ depending on the PIR sensor
output being either LOW or HIGH.
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Thus, the algorithm works when a motion is detected. This makes the model
energy-efficient by resisting the signal processing unit and deep CNN model at the
normal state. During active mode, the last 50 data points are processed by the sig-
nal processing unit and DL network to classify the event. As a result, the entire
real time working strategy is similar to a video stream that refreshes every time
when a new data point is collected from the PIR sensor. The refresh rate is dis-
cussed in Sect. 3.3.

Table 3
DNN Training Results

DNN architecure Validation accuracy (%)

1. VGG-16 80.02

2. Modified GoogLeNet (model 1) 82.50

3. Model 2 81.47

4. Model 3 78.33

5. Model 4 78.11

6. MobileNet-V2 78.65

7. ShuffleNet-V2a 82.64

8. ShuffleNet-V2b 83.6

aWithout pre-trained weights
bWith pre-trained weights. Its validation accuracy and training loss are shown in Fig. 7

Table 4
ShuffleNet-V2 Architecture [36]

Layer Output size Ksize Stride Repeat Output channels 0.5�

Image 224� 224 3

Conv1 112� 112 3� 3 2 1 24

MaxPool 56� 56 3� 3 2 24

Stage2 28� 28 2 1 48

28� 28 1 3

Stage3 14� 14 2 1 96

14� 14 1 7

Stage4 7� 7 2 1 192

7� 7 1 3

Conv5 7� 7 1� 1 1 1 1024

GlobalPool 1� 1 7� 7

FC 1000

FLOPs 41M

Weights 1.4M
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3. Experimental Results

This section describes the training and CNN validation results. Then the real time
performance observation is presented for the five events selected in this work.

3.1. Training Results

All DNNs listed in Table 1 are trained using the experimental data for the five
events collected in a controlled environment (see Fig. 1). The corresponding train-
ing results are given in Table 3. When GoogLeNet with the default dropout layer
is used, the validation accuracy is 79.91%, whereas GoogLeNet without any drop-
out layers gives a validation accuracy of 78.1%. However, adding more dropout
layers (refer Table 2) gradually brings down the accuracy of the GoogLeNet
model as shown in Table 3. A batch normalization (BN) layer is added to the
GoogLeNet architecture to improve the training speed and the performance. Fol-
lowing the guidelines from [34], the BN layer is added inside the last 4 inception
modules out of 9 modules stacked linearly in GoogLeNet architecture [35]. How-
ever, when the dropout layer of GoogLeNet is removed, the accuracy is 76.25%
which is less accurate than using the default GoogLeNet.

Table 3 shows that the ShuffleNet with pre-trained weights gives 83.6% valida-
tion accuracy. Since it has a lesser number of layers and parameters (refer
Table 1), its computational cost is also low. Thus, the ShuffleNet-v2 is chosen as

Figure 7. ShuffleNet-V2 validation accuracy and validation loss with
respect to epochs.
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the DNN model for this work and the architecture is illustrated in Table 4. Here,
the DNN architecture inputs are the wavelet coefficients of PIR sensor signals
converted to RGB spectra. When the ShuffleNet-V2 architecture is trained using
1-channel PIR sensor data, the validation accuracy drops to 80.86% compared to
83.6% using RGB spectra. The training progress of ShuffleNet-V2 is shown in
Fig. 7.

3.2. Test Results

Figure 8 shows that the true positives (predictions) are higher than false predic-
tions. Each event has 1690 images, in which the background has the highest true
positives of 99.9%. Human motion predictions achieved 86% accuracy within 1 m
and 89.8% for more than 1 m. The fire category 1 and fire category 2 score an

Figure 8. ShuffleNet-V2 confusion matrix. Each event consists of
1690 images.
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accuracy of 82.9% and 80.4% respectively. Since both fire categories have similar
features such as flame length, flame tilt angle, etc. at some instances, there are
false positives for the two fire categories. False positive rate for fire category 1 is
2.5%, while that for fire category 2 is 1.8%. Similar predictions occur in human
motion events as well. However, false predictions occur only within the main cate-
gory events: fire and human motions. Overall, the accuracy rate of true prediction
and false prediction are 87.8% and 12.2% respectively. When a counter system is
introduced, the final fire detection is 95.34% and human motion detection is
92.39% as given in Table 6. In this system, an alarm is triggered only when a fire
is predicted more than three times, without any oscillations to human motion or
background.

3.3. Real-Time Performance Observation

The real-time performance evaluation is conducted on Intel Core i9-9980HK
2.4GHz CPU with 32 GB RAM and Nvidia GeForce RTX 2060. The real-time
performance is carried out at the speed of 12 frames per second. Observations for
the selected real-time fire events are discussed below. Some samples of model pre-
dictions captured during the real-time performance are shown in Fig. 9. The key
to refer prediction probabilities is given in Fig. 9(M).

3.3.1. Background As shown in Fig. 8, the real-time performance for background
prediction is almost 100% true positive prediction.

3.3.2. Human Motion (Within and Beyond 1 m) Human slow and fast walking
motions, and human rotating on a swivel chair are observed in this category.

� Within 1 m: The true positive is higher than false positive. In case of mixed
events (see Fig. 9G) with the small wood fire and human motion (within 1 m),
the model predicted 81.8% as human motion (within 1 m) and fire category 1
as 16%.

� From 1 m–3 m: In this occasion, the probability of true positives is almost 87%.
False predictions occur in between true predictions within the 12 predictions per
second. Most of the false predictions are human motion (within 1 m).

3.3.3. Fire Category 1 (Small Wood Fire)

� Within/at 1 m: The algorithm yields high true predictions of nearly 95% (see
Fig. 9A). However, a small percentage (1.8%) gets misclassified to fire category
2 if the small wood fire moves faster due to wind.

bFigure 9. Some samples of real-time fire and human motion model
predictions captured during experiments. Figure 9(M) shows the
default position of the RGB spectrum and the bar chart reference
(prediction probability) on the laptop screen.
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� From 1 m–2 m: It predicts high true positives (86%) with less false positives
(14%) as shown in Fig. 9D. During the event, 0.9% of the predictions oscillate
to human motion (1 m+) in between the true positive predictions.

� From 2 m–3 m: Within 2 m–3 m distance from the fire, high false positives are
noted mostly due to human motion (1 m+).

3.3.4. Fire Category 2 (Spreading Fire)

� Within/at 1 m: In both spreading wood and propane gas fires, 100% true pre-
dictions are achieved without any false prediction oscillations during the real
time performance (see Fig. 9B, C, E, H). The model also performs well in
mixed events of propane gas fire (category 2) and human motion (at 1 m) as
shown in Fig. 9J. Since the propane gas fire is smaller at that instance, the
model predicts fire category 1, human motion (within 1 m), and fire category 2
as 37%, 25%, and 18% respectively.

� From 1 m–2 m: In this occasion (spreading wood fire and propane fire), almost
90% true positives are observed with less false predictions of small wood fire
(see Fig. 9F, I, K).

� From 2 m–3 m: During the spreading wood fire, high true positive predictions
are noted. However, high oscillations of false predictions are observed during
propane fire. Due to the distant view (see Fig. 9L), the propane gas fire is pre-
dicted as almost 50% for both fire categories 1 and 2. There is a 50% chance to
predict a propane gas spread fire as a small fire at a distance of 2 m–3 m.

4. Discussion

In this paper, experiments are carried out using a PIR sensor to collect human,
fire, and background data to train DNNs and then the fire detection is tested in
real-time. Since, the ShuffleNet-V2 yields the highest validation accuracy of 87.8%
at the speed of 12 frames per second, it is used along with the PIR sensor to per-
form real-time fire detection experiments. PIR sensor based fire detection is almost
equivalent in performance to a video-based fire detection system. However, video-
based systems are relatively more expensive. Unlike in vision-based fire detection
systems, the PIR sensors can detect fire using one-dimensional signals with less
computational cost. In addition, the real-time working strategy is modified to
reduce false alarms and hence to use computational power effectively. As dis-
cussed in Sect. 3.3, real-time predictions can fluctuate within the 12 predictions
per second period. Hence, a counter is built to initiate an alarm if a fire is pre-
dicted in more than 3 predictions, i.e., for 0.25 s, without any oscillations to
human motion or background. This counter system effectively reduces the false
alarm rate as shown in Table 5.

In literature, PIR sensors are used mainly to detect either fire/flame or human
motions [17, 37, 38]. In our proposed methodology, a PIR sensor is used to pre-
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dict both fire and human motion in real-time when happening within the viewing
range of the sensor. Table 6 illustrates some fire and human motion detection pre-
dictions found in literature compared with the proposed model predictions. The
proposed model shows promising results in detecting both fire and human motion.
The referenced models intended either to detect fire or human motion patterns;
not both. According to [17, 37], the events are categorised only as fire and non-
fire events, in which the authors consider paper and alcohol fire as the fire cate-
gory. Work in [38] focuses only human motion event detection. In our proposed
method, the intention is to detect the spread of fire using two different fire sources
and human motion patterns. In addition, the proposed model is capable of differ-
entiating the fire as small or spreading fire within 2 m (see Fig. 9).

Table 5 illustrates the background (no motion), fire and human detection rates
as 99.71%, 95.34% and 92.39% respectively. As shown in Fig. 9, our proposed
method tests both fire and human motion categories: small and spreading fire, and
human motion within 1 m and beyond 1 m from the PIR sensor. Figures 3 and 4
show that the small wood fire at 3 m is similar to a human motion at a distance
of more than 1 m; specifically at 3 m. This shows that different human motion
patterns result in different patterns of PIR data which are similar to fire patterns

Table 5
Event Detection Percentages of the Proposed Model with Counter
System Enabled

Events Number of cases Number of true predicted cases Percentage of detection (%)

Fire test 322 307 95.34

Human motion test 841 777 92.39

Background test 349 348 99.71

Each sequence consists of three sets of samples (50� 3 data points) to make three predictions to trigger an alarm.

In this case, random data sets are tested from the five categories noted in Sect. 2.1

Table 6
Comparison of Results from the Proposed Method (After Enabling
Counter System) and Other Similar Models

Model references True positive event True negative event

[17]—Fire detection Fire test: 98% Non-fire: 100%

[37]—Fire detection Fire test: 98% Non-fire: 100%

[38]—Human detection Human motion: 96% Background: 100%

Proposed model for both fire and human detectiona

- Fire detection Fire test: 95.34% Non-fire: 99.69%

- Human detection Human motion: 92.39% Background: 99.71%

aFire, human motion, and background detection are done simultaneously even though they are shown separately

for comparison purpose. All three categories of data sets are used together in training and testing as shown in sample

Fig. 9G and J
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at some instances. As noted in Table 5, this issue is addressed in our model using
the counter system to stop confirming any false fire predictions or detection.

The DNN is trained with limited data for human motion because the human
motion has various patterns of movement. The PIR sensor produces different out-
put data for different human movements/actions. For instance, the human walk-
ing motion is different from human running motion; human hand waving above
the head is different from human dancing movements. Hence, it is emphasised
that the DNN is trained with limited data from human slow walking, fast walk-
ing, and rotating on the swivel chair. Thus, during real-time prediction, if a
human does some irregular motions (excluding the trained human motion events)
such as dancing in front of the sensor, there is a higher possibility to predict it as
fire. But, a high true positive prediction is obtained when testing with three simple
patterns of human motion mentioned above.

The accuracy and robustness of the algorithm can be improved by training it
with different human motion patterns and fire categories. Moreover, this work can
be extended to use alternative DL networks such as the variations of Long short-
term memory (LSTM) as presented in [5, 39] to improve fire detection reliability.

In this study, the PIR sensor did not experience occlusions. The literature on
visual recognition of objects with occlusions use extensive training of DNNs with
labelled images of objects with occlusions [40]. A similar approach can be used for
fire categorization with occlusions. The accuracy can be further increased by using
additional sensors such as smoke sensors.

In advanced high-tech buildings, the motion sensors are used as automatic on/
off light switches to reduce power consumption. Our fire and human motion
detection results indicate that the proposed technique can be extended to incorpo-
rate those light on/off switch systems to serve multiple purposes such as fire and
human action detection. Human detection can also work like a burglar alarm
which can be turned on when the user is outside the office or residential building.

5. Conclusion

In this paper, a fire detection algorithm based on a differential PIR sensor and
DNNs is proposed. Experiments are carried out using a PIR sensor to collect
human motion, small and spreading wood fire, and background data which are
then used to train DNNs. Comparative training results with various DNN archi-
tectures are presented. Since, the ShuffleNet-V2 yields the highest validation accu-
racy of 87.8% at the speed of 12 frames per second, it is used to carry out real-
time fire detection with the PIR sensor. The system predicts two categories of fire
and three patterns of human motion successfully during real-time experiments.
The detection rates for background (no motion), fire types, and human motions
are 99.71%, 95.34%, and 92.39% respectively. Moreover, enabling the counter
technique in the system reduces the false alarm rate by 65.66%. The overall false
prediction is 12.2% before the counter technique, and it drops to 4.19% after the
counter technique. This study indicates that the proposed system can be used to

3548 Fire Technology 2022



differentiate varieties of fire types and human motion patterns if sufficiently
trained.

6. Supplementary information

A video showing the experiments conducted to collect fire data and for real-time
fire predictions, is submitted along with the manuscript.
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