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Abstract. Post-earthquake fire (PEF) ignition events constitute a secondary conse-
quence of an earthquake and may result in the loss of life and substantial property
damage, especially in urban areas where the potential for fire spread and conflagra-

tion exists. These secondary hazards can cause severe structural and non-structural
damage, potentially more significant damage than the direct damage caused by the
initial earthquake, and can lead to catastrophic structural failures, devastating eco-

nomic losses, and casualties. To manage the impact of PEF in urban areas, it is
important to identify the potential ignition sources and quantify the vulnerabilities of
these ignition sources as a result of earthquake-induced structural damage. The

results of such analyses can be used to offer resiliency improvement investments and
mitigation strategies in urban areas located in seismically active regions. Most of the
previous PEF studies are data-driven, utilizing ignitions reported following recent
earthquakes. However, in areas for which historical PEF data are not available, such

as the Midwestern United States, a different methodology for developing a PEF
model is needed. This paper describes an analytical model for quantifying the vulner-
abilities of residential buildings to PEF by estimating the failure of ignition sources

upon a probable seismic event. The underlying concept in developing the method is
that (1) ignition sources in residential buildings remain unchanged before and after
an earthquake, and (2) the total probability of PEF occurrence can be estimated by

adjusting the probabilistic fire occurrence data for normal conditions (everyday oper-
ation of ignition sources) to account for the effect of the earthquake. This paper’s
contribution to state of the art is in developing a new framework for estimating the
probability of PEF for areas in which historical PEF data is unavailable. The devel-

oped framework uses the likelihood of ignition occurrence during normal condition
as a baseline; this baseline is then adjusted using certain key parameters to capture
spatial characteristics, ignitability, and potential seismic intensity of the study area to

estimate the probability of PEF as a function of projected earthquake characteristics.
The model was tested for St. Louis City as a populated area with potential future
earthquake hazard because of its proximity to the New Madrid Fault zone. Using the

National Fire Incident Reporting System dataset, the frequency of normal condition
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ignitions was determined as 1.97E-03 ignition per unit per year. Using the proposed

PEF model considering PEFs caused by damage to drift and acceleration sensitive
equipment and human actions, the projected frequency of PEF was estimated
between 2.79E-06 and 2.81E-06 ignitions per household per year. Using this model,

and the average number of households between 2010 to 2015, 175,854 households, it
was estimated that in the next 50 years, approximately 25 households would experi-
ence fires related to probable earthquake events in St. Louis City.

Keywords: Post-earthquake fire, Vulnerability assessment, Probabilistic modeling, Ignition sources

1. Background

1.1. Overview of Ignition Sources

Fires following an earthquake can increase the adverse consequences of an earth-
quake, cause substantial damage and lead to a widespread disaster [1–7]. The
adverse consequences of post-earthquake fires (PEFs) and the challenges in identi-
fying the location of ignitions following an earthquake, estimating the number of
ignitions, and evaluating the fire spread mechanism have motivated researchers to
focus on these topics over the past 20 years. PEFs have been observed following
several large earthquakes, including the Northridge (1994) [2] and Loma Prieta
(1989) earthquakes [5] in US; the two earthquakes in Christchurch New Zealand
(2010 and 2011) [8]; and the Hanshin (Kobe) (1995) [9] and Fukushima (2011)
earthquakes in Japan [10]. Post-earthquake fire studies can be grouped into three
different categories including, (i) fire initiation, which focuses on the local level of
PEFs [11–14], (ii) fire spreads [9, 15, 16], and (iii) fire suppressions [17]. The last
two categories can be categorized as the global level of PEF [18]. Improving fire
initiation models to estimate the probability of ignitions following an earthquake
enhance the realism in estimating fire spread, and as such will provide better input
for risk mitigation strategies. The significance of PEF in populated areas is that
such events may spread to large areas, hampering the emergency response and
impeding the rescue activities at the time that these services are vitally needed [6].
To manage the impact of PEF on urban areas, quantification of the prevalent risk
and preparation of a mitigation strategy for future hazard are necessary. Methods
to estimate the risk of PEF are especially beneficial to engineers and architects in
urban planning design and in the estimation of the potential economic losses.

Fire in urban areas can be started from an ignition within buildings. Structural
damages may cause ignitions by either extensive differential displacement causing
failures of system utilities (e.g., gas pipeline) or damage to the non-structural ele-
ments following building failures. Additionally, non-structural components and
contents within a building (e.g., stove) can damage and result in ignitions. Zolfa-
ghari et al. [12] categorized intra-structure post-earthquake fire ignition sources
into three main groups: (i) utility networks such as gas and electricity, (ii)
ignitable braced non-structural equipment such as fireplaces, (iii) ignitable un-
braced equipment such as TVs. The failures of the first two categories identified
by Zolfaghari depend on the structural damage, i.e., the function of earthquake
lateral loads while ignitable unbraced equipment are more sensitive to earthquake
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acceleration [12]. Damage occurred to household equipment, and the existence of
heat sources, such as spark of electrical utilities, can result in fire initiation during
an earthquake [19]. Another PEF study identified ignitions occurring in buildings
due to (1) occupant behavior and (2) code deficiency of equipment and structural
systems [13]. During an earthquake, occupants’ increased stress and anxiety, espe-
cially in areas where earthquake events are rare, can be sources of fire following
an earthquake in a building [20, 21].

It is useful to consider ignition sources in fires occurring during normal condi-
tions (i.e., without the occurrence of externalities increasing the probability of
fires). The term ‘‘normal condition,’’ as used here, refers to the everyday operation
of ignition sources. Based on the ignition data between 2003 to 2016 published by
US Fire Administration (USFA),1 which are utilized by the USFA in developing
the ‘‘Fire Estimated Summary Series’’, two common sources of fire ignitions dur-
ing normal condition are cooking and heating equipment, representing around
46.3% and 13.4% of the normal condition ignitions (excluding ignitions due to
natural hazards such as high winds and floods) within residential buildings,
respectively, over this time period. A 2013 Japanese firefighting white paper exam-
ining ignition sources in normal condition ignitions resulting in fatalities identified
cigarettes and stoves as the two most common ignition sources, accounting for
15.6% and 11.7%, respectively, while 45.2% of the ignitions had an unknown
ignition source [22].

During an earthquake, ignition sources identified in normal condition ignitions
are expected to become more likely to cause an ignition. This is mainly because
the ground shaking and potential structural damage during an earthquake make
household equipment more vulnerable to malfunction and failure thereby increas-
ing their probability to cause fire. On this basis, the probability of fire occurrence
during everyday activities and routine operation (normal condition ignition) can
be used as a baseline to evaluating PEF probability. The probability of normal
condition ignition (NCI) needs to be adjusted based on the severity of probable
earthquake events and the seismicity of the area [23]. Certain types of equipment
(such as water heaters) are more vulnerable to ground motion and may suffer
damage due to either overturning or movement and dislocation [24].

While most of the ignition sources within a building during an earthquake exist
prior to an earthquake, earthquakes can create additional ignition sources that do
not exist during normal conditions, such as pipeline ruptures or arcing from bro-
ken wires. These earthquake-caused ignition sources act as an additional fuel
source, heat source, or both. In the current study, fuel and heat sources are not
modeled independently, but rather the model evaluates fire ignitions occurrence
when both fuel and heat source are present. An Analysis of the National Fire
Incident Reporting System (NFIRS)2 dataset of structural fires occurring in resi-
dential buildings following earthquakes shows that the majority of these ignitions
involve equipment, particularly water heaters and stoves. This is likely due to the
fact that both of these appliances have pilot lights (open flames) that will cause an

1 https://www.usfa.fema.gov/downloads/xls/statistics/residential_nonresidential_fire_loss_estimates.xlsx.
2 NFIRS Pubic Data Release files (1980–2013).
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ignition if exposed to fuel. For example, leaks from natural gas pipelines in a
building can cause a build-up of natural gas resulting in an ignition, if the build-
up reaches a heat source. Therefore, the occurrence of fires involving damage of
utilities within buildings are indirectly evaluated as part of the equipment-based
ignitions.

This study focuses on evaluating the impact of the spatial characteristics and
the failure mechanisms of ignition sources during an earthquake. Two areas
within the US are selected so that the impact of spatial characteristics, such as the
geographic concentration of particular building types, can be examined. Recent
California earthquakes, occurring between 1980 and 1994, were selected to ensure
that the building characteristics such as building structural types are representative
of the currently existing building stock. As additional PEF data becomes available
from new earthquakes, the analysis can be updated to incorporate this data. Like-
wise, historical PEFs occurring in other countries, such as Japan and New Zeal-
and, were not considered in this analysis as the building types, building codes, and
typical operations are different in these countries than those in the US. Future
research is suggested to evaluate the probability of PEFs using the proposed
model for such areas. In this study, the probability of NCI for the two study
areas within the US is assessed using the NFIRS dataset and the detailed PEF
database of ignitions occurring for six recent US earthquakes (including ignition
date, time, and location) published by Davidson et al. [14] was utilized.

1.2. Background of PEF Models

As stated in Lee et al. [25] PEF ignition models aim to assess the numbers, loca-
tions, and times of ignition following an earthquake. Several models have been
developed to predict the risk of fire following an earthquake [14, 24, 26, 27]. Most
such models are data driven and depend on previous statistical records [14]. Data
driven models are generally utilized in PEF risk modeling due to the variety of
potential ignition mechanisms and the inherent variability of ignition occurrences
[14]. These models highly depend upon the spatial characteristics, such as geo-
graphic, demographic, and structural types, of the area for which the PEF data
have been compiled. Lee et al. [25] provided a comprehensive literature review of
ignition models. Scawthorn divided the PEF analysis into empirical and analytical
approaches and introduced a hybrid approach, which is the combination of both
empirical and analytical methodologies [26]. For areas with sufficient PEF data,
empirical models (regression models) can be used to determine PEF frequencies by
identifying the key parameters influencing PEF (e.g., earthquake intensity) [26].
Analytical models such as event tree and fault tree evaluate the event sequences
leading to ignition [28]. Mohammadi et al. and later Williamson et al. [5, 28] uti-
lized the event tree and fault tree approach to evaluate the number of PEF. Zolfa-
ghari developed an analytical approach for modeling PEF considering the factors
leading to ignitions following an earthquake using fault tree analysis [12]. Scaw-
thorn proposed a hybrid approach using historical PEF in order to improve PEF
frequency estimates. In the Scawthorn study, analysis was conducted at the census
tract level and the PEF frequency (ignitions per floor area) was estimated as a
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function of earthquake characteristics, i.e., Modified Mercalli Intensity [26].
Expert elicitation can also provide information on PEF key parameters [29]. In
areas for which historical PEF data are not available, a different methodology to
estimate PEF needs to be considered. Recently, studies have focused on explicit
consideration of parameters affecting ignition occurrence. These parameters can be
grouped into (i) spatial characteristics, such as building types and their response
to an earthquake, (ii) ignitability characteristics such as fuel type, and (iii) earth-
quake characteristics such as peak ground acceleration (PGA). Davidson identi-
fied several parameters affecting PEF rate such as building category, population,
structural type, and earthquake intensity [14]. Elhami Khorasani et al. [11] devel-
oped a probabilistic PEF model using historical data using Geographical Informa-
tion System (GIS)-based tools. The same author previously developed an ignition
model to identify the vulnerability of the community to PEF [30]. Lu et al. [31]
developed a physics-based PEF simulation model, considering building failure fol-
lowing an earthquake. These analytical methods that are based on physical model-
ing of ignition sources and their influencing parameters may then offer an
alternative to data-based methods [23]. These alternative methods may also be
developed using the statistics of fire events under normal condition as a basis and
adjusting these statistics to account for the significance of an earthquake event in
increasing the probability of fire initiation. The frequency of normal condition
ignition can be obtained from fire incident statistics available through fire depart-
ments and other emergency response agencies.

In this paper, the proposed model for evaluating the probability of PEF for res-
idential buildings is explained. The model is applicable to areas with insufficient
historic PEF data. The primary motivation for developing the model is the need
for a PEF risk estimation method for areas of moderate to high seismicity with
little or no historic PEF records. With urban development over the last several
decades, some of these areas are now considered as high density population
regions, and thus more vulnerable to seismic damage effects, including fire. Since
NCI data are generally available for these areas, the models explained in this
paper may offer an alternate approach to estimate the probability of PEF. In
addition to the NCI data, several key factors such as those related to (1) the geo-
graphical and spatial features of the area and the building types, (2) ignitability
potentials of the sources in a building, and (3) seismicity of the area, are also
included in the model. The model was tested using a seismic region for which PEF
data and earthquake source parameters were available. To demonstrate its appli-
cability, the model was used for St. Louis City which is a populated area with the
potential to experience large earthquakes because of its proximity to the New
Madrid Fault zone. The remainder of the paper is organized as follows. Section 2
details the data compilation process in ArcGIS. Section 3 describes the process of
identifying the underlying contributing factors utilized in the proposed model. In
Sect. 4, the proposed model is explained in detail, and the calibration process is
presented in Sect. 4.1. In order to illustrate the applicability of the proposed
model, Sect. 4.2 illustrates the application of this model for St. Louis City. Using
the model, it was estimated that in the next 50 years, 25 households will experi-
ence fires related to expected earthquake events in St. Louis City.
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2. Data Compilation

The development of a PEF model to estimate the probability of ignition occur-
rence for a given area requires adequate data on the (1) fire events caused by
home appliances under normal conditions; and (2) information on the seismicity
of the area including the probability of future earthquake events. Furthermore,
before any such model can effectively be used, it needs to be tested for an area for
which historical NCI and PEF data are available. There are several areas in the
State of California for which both PEF and NCI data are available due to the
occurrence of recent earthquakes. Specifically, the review of the literature reveals
that the ignitions occurred in six recent earthquakes in California have been well
documented and can be used as a basis to test the PEF model. The earthquakes
are the Coalinga (1983), Morgan Hill (1984), Palm Spring (1986), Whittier (1987),
Loma Prieta (1989), and Northridge (1994) Earthquakes. The historical PEF data
for these earthquakes provides the number of ignition occurrences and the loca-
tions of all PEF ignitions [14]. More recently, there have been additional occur-
rences of fires following earthquakes. The most notable are six ignitions which
occurred in the Napa earthquake (2014) [11]. This data became available after the
proposed model had been developed and calibrated and, as such, the data has not
been included in the dataset of this study. Ongoing research by the authors is cur-
rently expanding the study as a means of updating the model considering the sig-
nificance of this new set of data. The probability of PEF needs to be obtained for
a given residential unit and a specific peak ground acceleration (PGA) range.
Thus, to estimate the probability of PEF, the number of ignitions is divided by
the number of residential units experiencing a specific PGA range of each earth-
quake. Using the software ArcGIS [32], the number of residential units that share
the same PGA range is determined. Recently, Elhami Khorasani et al. [11] utilized
HAZUS and ArcGIS to compile ignition incidents, geographic and demographic
information, i.e., census tract, and recorded earthquake PGA values.

In the current study, the PGA map published by the United States Geological
Survey (USGS) [33] overlaid on the census tract map published by the National
Historical Geographic Information System (NHGIS) [34]. In addition, the igni-
tions occurred in each of the aforementioned six earthquakes are added to the
ArcGIS map. Figure 1 shows the PGA map for the Northridge earthquake over-
laid on census tracts. Red dots are ignitions that occurred following the North-
ridge earthquake.

In order to estimate the probability of NCI, a similar process as explained for
evaluating the probability of PEF was utilized. However, depending on the extent
of the available data, the probability of NCI may be computed as a single value
for the entire state or as multiple values, each representing a specific PGA range.
The number of NCIs are obtained from the NFIRS data [35], and the number of
residential units at each census tract are gathered from the NHGIS data [34].

It is noted that uncertainties exist in historical PEF records as not all jurisdic-
tions may report ignitions following earthquakes, ignitions extinguished by occu-
pants may be unreported, and multiple ignitions may occur within a building and
be reported as a single ignition [13]. As such, previous studies tend to exclude
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those areas experiencing non-zero PGA values without reported ignitions, referred
to as ‘zero ignition’ areas [26]. It is indicated that including zero ignitions may
underestimate the probability of PEF, while excluding zero ignitions may overesti-
mate this value [14]. In this paper, the analysis is conducted for two situations of
including and excluding zero ignitions. Thus, combined with the two methods
indicated for handling the probability of NCI assessment, there are four different
sets of data for estimating probability of PEF and NCI. These four sets are
labeled as Sets A, B, C and D as explained below.

Set A Includes zero ignitions and uses NCI data within various PGA ranges

Set B Includes zero ignitions and uses NCI data for the entire state as a constant value

Set C Excludes zero ignitions and uses NCI data within various PGA ranges

Set D Excludes zero ignitions and uses NCI data for the entire state as a constant value

3. Driving Factors in Post-Earthquake Fire Model

The driving factors in the PEF model are identified by reviewing related studies,
which focus on estimating the probability of NCI and PEF. Specifically, the rela-
tive frequency of particular factors employed in previous NCI and PEF models
was considered as an indicator of the importance of the factors in estimating the

Figure 1. Location of PEF ignitions shown in red dots and peak
ground acceleration values observed during the Northridge
earthquake [14, 33].
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probability of ignition occurrence in normal condition and following an earth-
quake. The authors reviewed several previous NCI and PEF models to identify
the most common parameters used in each model type. NCI models is generally
utilized to estimate the ignition frequency, i.e., the number of ignitions normalized
by buildings stock characteristics over a period of time [36]. Most of NCI models
have utilized building floor areas and building sizes as two common factors affect-
ing ignition frequency [37–39]. Building stock characteristics also affect ignition
frequency during an earthquake. Several researchers have identified floor area of
specific building type as a parameter in estimating ignition frequency during an
earthquake. In addition, other factors such as earthquake characteristics (e.g.,
Modified Mercalli Intensity, PGA) identified as significant factors affecting the
likelihood of PEF [29, 40, 41]. The earthquake hazard level in an area can be
qualitatively described as low, moderate or high seismicity. Various measures (for
example, earthquake intensity, or magnitude) can be used to describe these levels.
Using the severity of an earthquake in terms of its magnitude, at 4.9 Richters or
lower, the seismic activity is low, while the moderate is at 5 to 5.9 Richter range.
A severe activity constitutes earthquakes with magnitudes in excess of 6 or higher
Richters [42]. Lee et al. conducted a comprehensive literature review on previous
post-earthquake fire models and identified covariates utilized in the PEF models.
Farshadmanesh et al. [18] provided the details of significant NCI and PEF model
parameters. As stated in this study, these factors are categorized in four groups,
including (1) spatial characteristics (e.g., building floor areas and building cate-
gories); (2) ignitability characteristics, such as availability of ignition source, fuel
type; (3) seismicity of the area including the expected earthquake intensities, such
as Modified Mercalli Intensity (MMI), PGA, or peak ground velocity (PGV); and
(4) the time of earthquake occurrences and seasonality [18].

Figure 2. Relative frequency of significant factors utilized in
previous NCI and PEF studies.
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The relative frequency of NCI and PEF model parameters identified from previ-
ous studies are summarized in Fig. 2. As seen in Fig. 2, floor area is a common
model parameter in previous NCI and PEF models. In addition, there are few
other factors were identified in previous studies such as peak ground velocity
(PGV) [2, 10] which were lumped together and shown as ‘‘Other Factors’’ in
Fig. 2. For example, Trifunac et al. [2] evaluated the density of red tagged build-
ings in terms of horizontal peak ground velocity in San Fernando Valley and Los
Angeles after Northridge earthquake.

4. Proposed Model to Estimate the Probability of Post-
Earthquake Fire

The proposed PEF model provides values for the probability that there will be at
least one earthquake-related fire event in any residential building located in a given
area during a given time period. The residential buildings considered in this study
include single family, multi-family dwellings, and mobile homes. A source of ignition
is considered to be a household appliance or equipment that may fail or malfunction
and cause fire. Examples of such sources include cooking appliances and water hea-
ters. Under normal conditions, ignitions can occur due to (1) occupant interference
and behavior and (2) faulty equipment and appliances, overheated and short circuit
cases and installation practices that violate the code requirements [13]. Ignitions that
occur due to the occupants’ interference and behavior are generally because of the
misuse or mishandling of heat and igniting materials or careless exercises in using
fueling techniques. Upon occurrence of an earthquake, these ignition sources still
exist, except that their contributions to initiate fire will increase because of physical
effects from ground shaking and potential movements of, and damage to, the struc-
ture. It is also noted that during a rare event such as an earthquake, the level of occu-
pants’ anxiety and stress is expected to rise contributing further to the potential for
fire. Although the increased probability of PEF due to occupants’ behavior is addres-
sed by other researchers [20, 21], there are no specific studies that provide guidance
on how to quantify the increase in PEF probability because of this factor. Neverthe-
less, in this paper, a coefficient to account for the significance of occupants’ behavior
in affecting the PEF probability is considered. This coefficient will need to be quanti-
fied in further studies which are beyond the scope of this paper.

Assuming the two major sources of ignition (i.e., human interference and
behavior and equipment malfunction and deficiencies) are independent, the proba-
bility of PEF can be obtained using a negative binomial distribution (Eq. 1).

PPEF ¼ 1� 1� PPEFBehav:ð Þ 1� PPEFMal:ð Þ½ � ð1Þ

where PPEFBehav: is the probability of fire following an earthquake due to human
interference and occupants’ behavior and PPEFMal: is the probability of fire follow-
ing an earthquake due to equipment malfunction and deficiencies.

Similar to estimating the probability of PEF, normal condition ignition sources
are also considered independent, and as such, the probability of NCI within a
building is determined using a negative binomial distribution (Eq. 2).
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PNCI ¼ 1� 1� PNCIBehav:ð Þ 1� PNCIMal:ð Þ½ � ð2Þ

where PNCIBehav: is the probability of normal condition ignition due to human inter-
ference and occupants’ behavior and PNCIMal: is the probability of normal condition
ignition due to equipment malfunction and deficiencies.

In addition, it is assumed that, the probability of fire occurrence due to human
behavior following an earthquake increases by a times. As indicated by Ohta and
Omote, human behavior is highly correlated to seismic intensities; i.e. the increase
of earthquake intensity increases human anxiety, leading to decreased human per-
formance [43]. A recent study investigated human responses during three recent
earthquakes occurred in California including the Whittier Narrows, the Loma Pri-
eta, and the Northridge earthquakes [44]. This study focuses on the relation
between human responses during these three earthquakes and the cultural and
demographic factors. In the absence of any specific information, the relation
between human behavior during the normal condition and an earthquake occur-
rence is assumed to be proportional (Eq. 3).

PPEFBehav: ¼ a � PNCIBehav: ð3Þ

By incorporating Eqs. 2 and 3 into Eq. 1, the probability of PEF can be rewritten
in terms of the probability of equipment malfunction and factor a (Eq. 4).

PPEF ¼ 1� 1� a 1� ½1� PNCI �
1� PNCIMal:½ �

� �� �
1� PPEFMal:ð Þ

� �
ð4Þ

in which PNCI is the total probability of normal condition ignition and PPEF is the
total probability of fire following an earthquake.

It can be assumed that factor a is greater than one. However, it is noted that
currently, there is no comprehensive study to suggest a numerical value for this
parameter. Equation 4 is further expanded by designating X1 as total probability
of NCI and by introducing a coefficient b, which represents the ratio of the prob-
ability of NCI (due to equipment failure) to the total probability of NCI (Eq. 5).

PPEF ¼ PPEFMal: 1� a 1� 1� X1½ �
1� bX1½ �

� �� �
þ a 1� 1� X1½ �

1� bX1½ �

� �
ð5Þ

A function F(x), can be defined as the ratio of the total probability of PEF to the
probability of NCI (Eq. 6).

F xð Þ ¼ PPEF
X1

ð6Þ

Substituting Eq. 5 into Eq. 6, F(x) can be expressed in Eq. 7.

F xð Þ ¼ PPEFMal:a0 þ a1 ð7Þ
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where

a0 ¼
1

X1
� a

1� bð Þ
1� bX1ð Þ

a1 ¼ a
1� b

1� bX1

� �

In order to estimate the probability of PEF due to equipment failure, PPEFMal: , the
seismic failure mechanism of ignition sources in a building were considered. Non-
structural components are grouped in HAZUS based on their seismic behavior
into two categories: (1) acceleration sensitive components (E1) and (2) drift sensi-
tive components (E2) [45]. In this paper, an ignition source, such as a water hea-
ter, stove, and portable heating system, which has the potential for overturning
are categorized into the E1 group while E2 are those ignition sources in which
their failure depends on the building movement such as the inter-story drift. As
these two equipment failure categories are independent, the overall probably of
fire due to equipment malfunction is computed using a negative binomial distribu-
tion following the same form as shown in Eq. 1. Furthermore, the probability of
PEF due to equipment malfunction can be computed as the product of the condi-
tional probability of PEF due to equipment malfunction given PGA and the prob-
ability of PGA. The following sections provide details on computing the
conditional probability of PEF due to equipment malfunction given PGA for
acceleration sensitive and drift sensitive ignition sources.

4.1. Acceleration Sensitive Ignition Sources

To estimate the conditional probability of ignition occurrence of E1 given PGA
within a residential building, the conditional probability of overturning for each
ignition source given PGA and the probability of getting to ignition level for the
overturned ignition source need to be identified. Individual ignition sources in a
building are assumed to be statistically independent. As such, the negative bino-
mial distribution can be used to estimate the total conditional probability of PEF
for k types of ignition sources E1 given PGA. To determine the conditional proba-
bility of PEF for each ignition source E1 given an earthquake occurrence, three
parameters related to each ignition source were identified. The parameters are (1)
the probability of the existence of specific ignition source E1 in a building, (2) the
likelihood of overturning ignition source E1 given an earthquake occurrence, and
(3) the probability of overturned ignition source E1 causing fire. Equation 8 illus-
trates the conditional probability of PEF for k types of ignition sources E1 within
a residential building.

PPEFMal:E1
jPGA ¼ 1�

Y
k

ð1� P ðE1kjBldgÞ � POverðE1kjPGAÞ � c1kÞ ð8Þ
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where PðE1kjBldgÞ is the probability that the kth ignition source type E1 exists
within the residential building, POverðE1kjPGAÞ is the conditional probability of
overturning kth ignition source type E1 given PGA, and c1k is the probability of
getting to ignition level for kth overturned ignition source type E1.

To reduce the complexity of the model, the dominant ignition sources E1

observed to cause ignitions in the previous earthquakes, were identified using the
NFIRS dataset. Structural fires occurring within residential buildings which were
reported in the NFIRS dataset during the six historical earthquakes were identi-
fied. The NFIRS dataset consists of 75% of reported fires within the US and not
all ignitions occurring in the previous earthquakes are included in this dataset. It
is noted that the equipment involved in each ignition is also reported within the
NFIRS dataset. Using expert opinion, the equipment was categorized into E1 and
E2. Additionally, equipment which does not generally exist within residential
buildings, such as vending machines, was excluded. The results of this categoriza-
tion show that the most common source of ignition in the six earthquakes is the
water heater. The next most common equipment causing ignitions is the station-
ary surface unit. Thus, it is precievable to assume that at least one of these types
of equipment is available in a building and can become a source of ignition. This
means E1kjBldgð Þ = 1. Using fragility curves developed in previous studies, the
probability of water heaters and stoves overturning, given an earthquake occur-
rence, can be estimated [24, 46]. It is emphasized that such probabilities will also
depend on whether or not a piece of equipment is secured or strapped to a wall.
Since the seismic code requirement are not the same for the entire United States,
the consideration of ignition source E1 being strapped to the wall depends on the
location of the residential building in a study area. Although strapping water hea-
ter to the wall are required by the code within California [47], based on the recent
survey by the Golden Gate Chapter of the American Society of Home Inspectors,
52% of strapped water heater are insufficient [48]. To provide a conservative esti-
mation of the probability of ignition due to overturned water heaters, the fragility
curve for unstrapped water heaters is considered in this study.

4.2. Drift Sensitive Ignition Sources

The conditional probability of PEF values based on sources E2 are associated
with the inter-story drift of the structure during an earthquake. HAZUS catego-
rized damage of drift sensitive non-structural components during an earthquake
into four levels of damage: slight, moderate, extensive, and complete [45]. Using
the HAZUS definition for each level of damage, ignition source E2 which are
extensively or completely damaged are more likely to cause fire following an
earthquake and, thus, are considered in this study. To determine the conditional
probability of PEF for ignition sources E2 given an earthquake, five parameters
need to be considered and quantified. These parameters are (1) the probability of
the existence of an extensively and completely damaged equipment type E2 in a
building, (2) the likelihood of equipment type E2 getting to a specific damage level
within a specific structural type and specific design level given an earthquake, (3)
the probability that the structure was designed to a specific design level, (4) the
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probability that a specific structural type exists in a residential building type, and
(5) the probability that a damaged equipment E2 will cause an ignition. The con-
ditional probability of PEF due to failure of ignition sources E2 given an earth-
quake event are calculated using Eq. 9.

PPEFMal:E2
jEQ ¼

X
Rb

X
HBa

1�
Y
j

1� P Dsd ¼ dj
� �

HBaRb
� c2j

� 	 !
� P E2jBldgð Þ

� PSt Rbð Þ � PStðHBa jBaÞ
ð9Þ

where P E2jBldgð Þ is the probability that a piece of equipment type E2 exists within

a residential building, P Dsd ¼ dj
� �

HBaRb
Þ is the conditional probability that a piece

of equipment E2 existing in a specific residential building and a particular struc-
tural type designed to a particular seismic design level reaches the jth level of
damage (extensive or complete damage) given an earthquake, PSt Rbð Þ is the proba-
bility that a given residential building was built to sustain one of the four seismic
design levels, PSt HBa jBað Þ is the probability that a given residential building in a
region is a specific structural type, and c2j is the probability that a piece of equip-

ment type E2 at the jth level of damage will cause an ignition.
In the proposed model, it is assumed that the probability of the existence of an

ignition source E2, P E2jBldgð Þ, is equal to one. The level of damage for ignition
source E2 depends on the level of structural damage of the structure in which igni-
tion sources are located. This, in turn, depends on the type of structure. The con-
ditional probability of reaching a level of damage in a particular structural type
given an earthquake can be obtained from information provided for 36 structural
types in HAZUS [45]. Furthermore, the information regarding the seismicity of
the area as well as the year that a given building is constructed is necessary. The
identification of the building construction year is critical in order to take into
account the seismic code provision at the time of the construction. The variables
(median and standard deviation) defining fragility curves for each structural type
within each seismic level are provided in HAZUS. In addition, HAZUS provides
the information regarding the percentage of each structural type in different height
levels within three types of residential buildings, single family, multi family, and
mobile home. The three height levels utilized in HAZUS are low-rise (1–3 stories),
mid-rise (4–7 stories), and high rise (8 stories or greater). While the percentages of
structural types by occupancy type (single family, multi-family and mobile) and
construction year given in HAZUS can be used to approximate the distribution of
structural types in the current building stock, updated structural type distributions
should be used when possible. Obtaining updated structural distributions may be
challenging for multi-family buildings given the variety of structural types. Expert
opinion or sampling through surveys could be used to estimate current structural
distributions in an area of interest. To estimate the probability of single family,
multi family, and mobile home within the three height levels in California, the
1997 Residential Energy Consumption Survey (RECS) micro data were utilized
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[49]. Figure 3 illustrates the percentage of single family, multi family, and mobile
home in different height levels within high-code, moderate code, and pre-code in
California. Utilizing HAZUS guidelines, buildings constructed before 1941 are
grouped into a pre-code level; those constructed between 1941 and 1975 are cate-
gorized within the moderate-code level; and buildings constructed after 1975 are
grouped in the high-code level [45].

The median and the standard deviation of the spectral displacement (SD) at an
extensive and complete damage levels are utilized to create fragility curves. To
estimate SD for a particular structural type, the PGA and spectral acceleration
(SA) values, which are available for six given earthquakes—identified in Sect. 2-
through USGS website [33], were converted to SD using the natural period of
vibration for each structural type. The period for each structural type with a typi-
cal height [45] is estimated using ASCE 7-10 equation [50]. Finally, the condi-
tional probability of ignition occurrence for extensively and completely damaged
ignition sources E2 are incorporated in the proposed model.

5. Model Calibration

In order to improve the predictive power of the developed model, the model is
independently calibrated using each of the four previously identified datasets (A,
B, C, and D). As stated in the ASME guide on verification and validation in com-
putational models [51], model calibration is ‘‘the process of adjusting physical mod-
eling parameters in the computational model to improve agreement with
experimental data’’ [51]. Model parameters that significantly affect the model out-
put and for which empirical data is unavailable are selected as calibration parame-
ters. In this study, the calibration parameters within the model are the probability
of ignition due to the level of damage caused by overturning of an ignition source
or excessive inter-story drift (c1k, c2j) and the increased PEF probability because

Figure 3. Distribution of residential buildings by household type,
height level, and seismic design level in California [45, 49].
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of occupants’ behavior (a). In addition, the probability of fire for other ignition
sources in the E1 category are lumped together and considered as a calibration
parameter (DE1). Using the generalized reduced gradient (GRG) algorithm opti-
mization method [52], the calibrated parameter values of the proposed model are
determined for each dataset. The calibrated model parameter values are those
which produce the greatest coefficient of determination value. In this approach,
several constraints are applied, including: (i) equipment E1 can lead to an ignition
if it overturns during an earthquake (i.e., the potential of damaged equipment
causing an ignition, c1k, is greater than zero); (ii) equipment E2 can lead to an
ignition if it extensively or completely damaged (i.e., the potential of damaged
equipment causing an ignition, c2j, is greater than zero); (iii) the probability of an

ignition occuring is greater for a completely damaged ignition source than for an
extensively damaged ignition source; (iv) as suggested by previous studies on the
effect of increased occupants’ anxiety and stress, the probability of occupant
behavior causing an ignition will increase during an earthquake, i.e., the coeffi-
cient a, which is the probability of PEF because of occupant behavior divided by
the probability of NCI due to the same source, is greater than one.

In order to calibrate the proposed PEF estimation model, the model outputs were
compared with the historical data for the six previously-described California earth-
quakes. The results from the calibration process illustrate that the calibrated model
using Datasets A and C provided greater coefficient of determination values com-
pared with the Datasets B and D. The maximum R2 value for the calibrated model
using Dataset A and C are 0.38 and 0.63, respectively. The higher uncertainty in
Dataset B and D is attributed to considering a constant value for probability of NCI
for the entire state of California leads to higher variation between the results of the
calibrated model and historical data. It is noted that by identifying the underlying
causes of changes in occupant behavior during an earthquake, it may be possible to
more accurately estimate the impact of occupants’ actions on the probability of
PEF. Future research is necessary to improve the estimation of the influence of an
earthquake on occupant behavior. The comparison between function F(x) using the
model and historical data for Dataset A and C is shown in Fig. 4.

As seen in Fig. 4, the calibrated proposed model using Datasets A and C pro-
vides an approximate bound for historical data. Comparison between F(x) from
the calibrated PEF probability estimation model and from historical data illus-
trates a greater agreement in lower PGA values and higher variation in F(x) for
greater PGA values. Nevertheless, Fig. 4 indicates a general agreement between
results from the model and historical data within limitations of the models and
the variability in the aforementioned datasets.

6. Application

The application of the proposed model is considered for St. Louis City. This is a
major populated area in the Midwest in the proximity of the New Madrid Fault Zone.
Although there is no recent significant post-earthquake fire occurred in this area, con-
sidering the USGS Hazard map [53], there is potential for future seismic effect that
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may trigger fires. In order to estimate the probability of PEF for residential buildings
in St. Louis City, the model introduced in the previous sections is employed. To illus-
trate the probability of PEF, the probability of an earthquake occurrence is also nee-
ded. Equation 10 shows the probability of PEF in a one year period of time.

Pf t ¼ 1 yearð Þ ¼
Z

PGA

P FirejPGAð Þ � P PGAð Þ ð10Þ

where P FirejPGAð Þ is the conditional probability of fire following an earthquake given
a specific PGA during an earthquake and P PGAð Þ is the probability of earthquake
occurrence within the specific PGA in a time frame of a year for the study area.

The process of estimating the probability of PEF for St. Louis City includes
four stages, namely (1) estimating the probability of NCI using available NFIRS
data, (2) estimating the probability of earthquake occurrences in St. Louis City,
(3) evaluating the increased probability of PEF for various ignition sources within
residential buildings in St. Louis City, and (4) applying the proposed model
(Eq. 4) to estimate the probability of PEF given various PGA ranges. The
flowchart shown in Fig. 5 illustrates the sequential steps involved in this process.

6.1. Evaluation of the Probability of NCI for St. Louis City

To estimate the probability of NCI, the number of NCI occurred in St. Louis
City within the past few years, were obtained from the NFIRS data. Each repor-
ted ignition within the NFIRS data source has a specific Fire Department Identifi-
cation (FDID) number. The FDID for each ignition source is identified to
estimate the number of ignitions occurred in different localities within St. Louis
City [54]. Since the goal of this study is to assess the probability of PEF within a
residential building, the nonresidential building fires were not considered. Using

Figure 4. Comparing the results of the calibrated proposed model
and the historical data using Datasets A and C.
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the United States Census Bureau data sets (years 2011–2015), the number of resi-
dential units for St. Louis City was determined [55]. Finally, the probability of
NCI were estimated by dividing the number of ignitions over the number of resi-
dential units. This resulted in estimating the frequency of NCI equal to 1.97E-03

Start

State=Missouri
Study area=St. Louise City

Estimate NCI risk for study area

Evaluate within residential building for study 
area

Evaluate within residential building for study 
area

Estimate total PEF risk due equipment failure

Model parameters= α, , , , , 

Determine F(x) utilizing developed PEF model

Determine PEF risk using F(x) and NCI risk value

End

Estimate the probability of earthquake occurrence, 
,  using Hazard Curve in the study area

Increase the range of PGA

Figure 5. Framework of proposed model in estimating the
probability of PEF for St. Louis City.
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ignitions per unit per year. In order to estimate coefficients a0 and a1 in Eq. 7, the
parameter b needs to be quantified. Using NFIRS data for St. Louis City, the
value for b is determined to be 57%.

6.2. Estimation of the Probability of Earthquake Occurrence

The likelihood of earthquake occurrence within a particular PGA value was calcu-
lated using the annual hazard exceedance curves suggested by USGS [56], which
provide the annual frequency of exceedance in terms of various PGA values.

6.3. Determination of the Probability of Equipment Failure

Since Datasets A and C provided a greater coefficient of determination value in
the analysis, the model’s parameters for these two datasets were utilized. As
described in Sect. 4, equipment involved in ignition can be grouped into equip-
ment which are sensitive to acceleration (E1) and to drift (E2). To be able to pre-
dict the increased probability of ignition occurrence caused by equipment E1

subjected to an earthquake, it is assumed the dominant ignition sources for St.
Louis City are similar to that in California. Therefore, a water heater and stove
will be two common ignition sources E1 used in the analysis.

To estimate the probability of PEF of ignition source E1, probability that E1

ignition sources exist in a residential building needs to be determined. Addition-
ally, the probability that a piece of equipment will overturn when an earthquake
with a specific PGA occurs is evaluated. The model parameters for Datasets A
and C were utilized to evaluate the probability of PEF for damaged equipment.

The probability of PEF for the ignition source E2 was determined using fragility
curves (as described earlier). It is assumed that at least one complete or extensive
damaged ignition source exists within the building during the earthquake. The mean
value and standard deviation for creating fragility curve for 36 structural type in
HAZUS were determined at different height levels, i.e., low-rise, mid-rise and high-
rise for Missouri. Using the seismic zone map in Uniform Building Code (UBC)
[57], St. Louis City is located on Zone 2A. As such, buildings constructed before
1940 are assumed to follow the pre-code level, while buildings constructed after
1940 are grouped in low-code level in HAZUS [45]. The percentage of single family,
multi-family, and mobile homes at pre-code and low-code level and within three
height levels (low-rise, mid-rise, and high-rise) are then calculated. Based on data
from RECS in 2009, multi-family buildings will be categorized into (1) 2–4 unit
multi-family, (2) 5 or more unit multi-family [58]. Since there is no data available to
identify height levels for multi-family with 2–4 units within RECS 2009, the 1997
RECS dataset [49], which covers additional details for building heights, was utilized.
The 1997 RECS data source indicates that multi-family buildings with 2–4 units in
Missouri are grouped into low rise buildings. Figure 6 shows the percentage of resi-
dential buildings within two seismic levels and three height levels for Missouri.

Finally, the PEF model parameters for ignition source E2 were utilized to evalu-
ate the probability of fire occurrence for ignition sources E2. Using the model
parameters for Datasets A and C results in two fragility curves for estimating
probability of PEF, as shown in Fig. 7. The red dashed line represents the proba-
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bility of PEF using the model calibrated using Dataset A, in which zero ignitions
were included in the dataset. The green line indicates the probability of PEF due
to equipment failure using the model calibrated using Dataset C when zero igni-
tions are removed from the dataset. The bound between these two curves illus-
trates the probability of PEF due to equipment failure in St. Louis.

6.4. Evaluation of the Probability of PEF for St. Louis City

By substituting the conditional probability of PEF due to equipment failure
(rather than the probability of PEF as shown in Eq. 5) and probability of NCI
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into Eq. 5, the conditional PEF probability is calculated. Substituting this value
along with the probability of earthquake occurrence in a year into Eq. 10, the
total frequency of PEF within St. Louis City is determined to be between 2.79E-
06 and 2.81E-06 ignitions per household per year. Utilizing the average number
of households in St. Louis between 2010 through 2015 (175,854 households), it is
found that 25 households are expected to experience fire following earthquakes
over a 50 years period.

6.5. Significance of Data Uncertainty in Fire Estimates

The model presented herein uses a probabilistic approach in estimating the proba-
bility of fire following an earthquake. The probability of fire is then translated
into an estimate for potential number of fires expected in a given time period.
Several sources of uncertainties enter the process including those from (1) data
sets utilized for model calibration; (2) modeling of equipment failure; and (3) esti-
mation of the residential building stock in the area. While the probabilistic formu-
lation in estimating the fire probability incorporates the significance of
uncertainties in the results, the estimates for the number of potential fires, to a
great extent, will depend on the uncertainty in the values obtained for the stock of
residential buildings. HAZUS data, Census data, and RECS data are used in
obtaining these values. However, they are subject to variations because of a vari-
ety of reasons including uncertainty in classification of units, non-reported cases,
missing data on new construction, etc. Estimates of indicators such as populations
and energy consumptions are also suggested and used as measures for determining
the stock of buildings [59]. Census data on population and other indicators pro-
vided by the American Community Survey are subject to margins of error that
can be sizeable [60]. The 2015 data on housing by the American Housing Survey
of the United States Census Bureau for sixteen major metropolitan areas indicates
the margin of error in the data ranging between 1.8 and 5.4% with an average of
3.3%. Using the upper bound value of 5.4%, will result in the estimated number
of fires over a 50-year period at 25 ± 1.4.

7. Broader Applications

To increase the resiliency of, and develop mitigation strategies for, urban commu-
nities, the estimation of multi hazard conditions is critical. In order to alleviate
the impact of PEF within residential buildings, it is necessary to estimate the
probability of PEF. In this regard, the proposed model offers several broader
applications as described below.

(1) To urban planners and developers, the prediction of the likelihood of fire initi-
ation and identification of common ignition sources are useful information
when appropriate response strategies (in terms of facilities and manpower) are
considered in urban planning and development projects.

(2) To local code authorities, the model presented in this study can be used in
investigating the impact of fire prevention equipment, such as emergency shut-
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off valves, and equipment damage mitigation technologies, such as using water
heater straps, in mitigating the risk. As such, local codes and regulations may
advise on implementing and enforcing certain measures to enhance building
safety.

(3) To insurance companies, the results from the model can be incorporated in an
overall regional risk analysis in identifying populated areas prone to higher
levels of property losses and damage.

8. Conclusions

To mitigate the impact of post-earthquake fire in residential buildings, the identifi-
cation of dominant ignition sources and estimation of increased probability of
each ignition source given an earthquake occurrence is necessary. Since most PEF
risk estimation models have been developed using data from previous earthquake
records, a new methodology is proposed for an area with no or little historical
record of PEFs. In this paper, the development of a framework for PEF probabil-
ity assessment using the normal condition ignition probability as a basis is dis-
cussed. The findings of this study indicate that the vulnerability of residential
buildings to post-earthquake fires can be approximated using the likelihood of
normal condition ignitions as a baseline and then modifying this baseline based
on parameters such as the potential seismicity of the study area, the geographical
concentration of residential buildings, and the common ignition sources within a
building during an earthquake. These factors were determined by reviewing previ-
ous NCI and PEF models and identifying the frequency of NCI and PEF model
parameter usage. In addition to the effect of equipment failures during an earth-
quake on the probability of PEF occurrence, the impacts of potential human
errors and consideration of the occupant behavior on fire initiation are high-
lighted. That is, ignition sources in a residential building are categorized into two
groups: those related to the occupant interference and behavior and those related
to the equipment failure and malfunction. The results of the analysis show greater
agreement between the calibrated proposed PEF probability estimation model and
historical data at lower PGA values.

Based on the proposed model, the probability of failure for two types of equip-
ment based on their responses during an earthquake will be determined. The
probability of normal condition ignition is estimated and considered as an input
in the developed model. By using the proposed model, the increased probability of
ignition following an earthquake over the probability of NCI will be determined.
To highlight the applicability of the proposed model to estimate the probability of
PEF for an area with limited or no record of recent PEFs, the likelihood of PEF
for St. Louis City was determined as a case study. Further research is necessary to
improve the model by more directly modeling the impact of occupant behavior on
ignition occurrence during an earthquake.Publisher’s NoteSpringer Nature
remains neutral with regard to jurisdictional claims in published maps and institu-
tional affiliations.
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