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Abstract. Understanding evacuations of high-occupancy buildings presents a major
challenge in fire safety science. The total time individuals require to exit a building

includes the time it takes them to respond to an alarm and decide to evacuate (pre-
movement) and the time it takes them to walk along their chosen exit route (move-
ment). Previous work has shown that variation in pre-movement times is responsible
for substantial evacuation delays, but few controlled experiments on this have been

conducted. Here, we present a virtual experiment that investigates the level of risk
individuals take by collecting virtual objects before evacuating. We determine how
over 1200 participants, who were recruited from visitors to the London Science

Museum, respond to three factors: a reduction in their knowledge of a building, a
change in the behaviour of other simulated evacuees and a change in how they are
attached to the objects they can collect (potential gain versus loss). We confirm that

collecting more objects is risky, as it affects evacuation success. In our experiment,
44.6% of participants choose extreme strategies by collecting either all or none of the
available objects before evacuating. While the adoption of extreme strategies is affec-
ted by all three factors we investigate, the only factor that significantly increases the

average number of objects participants collect, regardless of extreme strategies, is loss
aversion. Our work shows the potential of virtual experiments to safely, quickly and
cheaply scope processes causing pre-movement time delays in crowd evacuations.

This provides a starting point for further research.

Keywords: Virtual experiment, Emergency evacuation, Risk-taking, Pre-movement time,

Crowd behaviour, Decision-making

1. Introduction

An important aspect of fire safety practice is to facilitate the fast and safe evacua-
tion of high-occupancy buildings. This requires infrastructure solutions, such as
the provision of exit routes. Crucially, it also relies on understanding human
behaviour in fire emergency evacuations. For example, the design of fire alarms or

* Correspondence should be addressed to: Nikolai W. F. Bode, E-mail: nikolai.bode@

bristol.ac.uk

Fire Technology, 55, 595–615, 2019

� 2018 The Author(s)

Manufactured in The United States

https://doi.org/10.1007/s10694-018-0744-9

1

http://orcid.org/0000-0003-0958-5191
http://orcid.org/0000-0001-5124-3334
http://crossmark.crossref.org/dialog/?doi=10.1007/s10694-018-0744-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10694-018-0744-9&amp;domain=pdf


exit signs should be tested for their efficiency in alerting or guiding evacuees (e.g.
[1, 2]) and the safe passage of pedestrian crowds through evacuation routes should
be guaranteed (e.g. [3, 4]). Fire evacuations are typically studied in terms of two
main components [5]: the time delay before movement towards an exit is started
(pre-movement time) and the time taken to travel to safety (movement time). To
better understand the second component, the motion of pedestrian crowds and the
movement decision of individuals within them have been studied extensively (see
[4] for a review). However, observations in real emergencies and fire drills have
shown that individual behaviour in the pre-movement phase is responsible for
substantial delays in evacuation times that can exceed the movement time [5–11].
For example, in unannounced fire drills from large retail stores, the pre-movement
time contributed 30-50% to the total evacuation time [9] and a survey of evacuees
after a fire in a multi-storey office building indicated a broad range of pre-move-
ment times, reaching values of over 10 min [6].

A variety of causes for pre-movement delays in evacuations have been identified
(see e.g. [12]). They include difficulties in hearing fire alarms, attempts to obtain
more information and other deliberate preparatory actions, such as collecting per-
sonal belongings, putting on warm clothes or waiting for others [5–11]. How and
when these different aspects affect evacuation times depends on a variety of fac-
tors including warning systems, occupant characteristics, building use, training of
any staff involved, time of day and type of building [5–11]. Despite this complex-
ity, it has been suggested that pre-movement times are predictable, based on
observational data showing that their mean and variation can be estimated for
given contexts [13]. To make predictions, researchers have developed theoretical
models based on decision-theory or have used empirically determined distributions
to compute pre-movement times [2, 14–17]. In this paper, we focus on individual
decision-making and how pre-movement delays may be risked if individuals
choose to collect objects before they attempt to move to safety. Collecting objects
prior to leaving is not a necessary step in evacuations and such behaviour should
thus ideally be prevented with the use of adequate training or other interventions.

Many authors report that individuals stop to collect objects, such as keys, wal-
lets, electronic items or clothes before evacuating in fire drills and even in real
incidents [5, 6, 10, 18, 19]. This is an acknowledged problem, as indicated by the
recommendation for airlines to include into passenger safety briefings the instruc-
tion to leave all carry-on baggage behind during an evacuation [20]. However, few
authors have investigated what causes individuals to potentially take this risk. One
exception is an evacuation experiment with university students that revealed a
positive correlation between the degree to which individuals are attached to their
belongings and their pre-movement times in fire drills [18]. In this contribution,
we use a virtual experiment to undertake a systematic investigation of how the
level of risk individuals take by collecting objects before evacuating is influenced
by three factors: a reduction in evacuees’ knowledge of a building, a change in the
behaviour of other evacuees and a change in how evacuees are attached to the
objects they can collect (potential gain versus loss).

Different techniques have been used to study pre-movement delays in fire evacu-
ations. Early work focusses on questionnaires and observations after real incidents
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or fire drills [5, 9], but increasingly researchers turn to controlled experiments [21]
and computer simulations [15]. An additional approach that has been growing in
popularity, and that we employ here, is to conduct fully controlled experiments
with human participants using a virtual experiment (see [22] for a review). This
experimental paradigm has been used widely in evacuation research to study the
efficacy of exit signage [1], the occurrence of helping behaviour [23], social influ-
ences on movement [24], or exit route choice [12, 25], to name a few examples.
Virtual experiments allow unparalleled control over the experimental setting, they
are often time and cost effective and they make it possible to study stressful sce-
narios that cannot be simulated in other experiments for ethical reasons [22, 26].
However, it has rightly been recognised that great care needs to be taken when
interpreting findings, as behaviour in virtual environments may not extend directly
to real-world contexts [22, 26]. In other words, the ecological validity of experi-
ments in virtual environments is typically untested and any interpretation or use
of findings needs to consider this. We cover this issue in more detail in the Discus-
sion.

This paper addresses two main objectives. First, our experiment provides
insights that may potentially lead to an increased understanding of risk-taking
related to collecting objects in the pre-movement stage of evacuations. Second,
our contribution showcases the potential of simple virtual experiments and we
make suggestions for how this technology and findings from it could be used to
explore other evacuation and fire safety scenarios.

2. Methods

2.1. Experiment

Our experiment uses an established virtual experiment framework to test decision-
making and behavioural responses of individual human participants in simulated
crowd evacuations [23, 26, 27]. Participants are presented with a top-down view of
a building floor plan that contains one simulated pedestrian that they can control
via mouse clicks, as well as seventy-four computer-controlled pedestrians that are
evenly distributed across the entire environment (Fig. 1). The virtual environment
comprises a central room with two doors that are connected via corridors to a
single exit from the building (Fig. 1). In addition, the central room contains ten
objects participants can collect (yellow disks or ‘coins’ in Fig. 1). Participants can
see the layout of the virtual environment, but they can only see the content of the
corridor or room in which they are located. For example, in Fig. 1 the content of
the central room is visible, but the content of the corridors is hidden and coloured
in grey. In our experiment, we assess the level of risk participants take by record-
ing how many coins they collect prior to leaving the virtual environment after an
evacuation is initiated. Our experiment consists of a training phase and a test
phase that we describe below. We investigate how three factors affect the level of
risk participants take by using different controlled experimental conditions (also
explained below). Full details on the underlying pedestrian movement simulation
are presented in previous work [27]. Briefly, the movement of pedestrians is mod-
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elled in continuous space. Interactions between pedestrians and between pedestri-
ans and walls are implemented via force vectors acting on simulated pedestrians.
The way individuals move towards targets and respond to the built environment
(e.g. walls) is encoded in a discrete floor field.

The training phase of the experiment is designed to familiarise participants with
the virtual environment and controls, to train them in steering the pedestrian they
control and to introduce the coins to them. It is composed of three separate train-
ing rounds that are followed by the test phase (Fig. 2). We use popup windows to
provide contextual information and instructions as participants advance through
the experiment. The only verbal instructions provided in addition to these written
messages relate to moving in the virtual environment (e.g. ‘‘This is you and if you
click somewhere, you will move there in a straight line’’.). Supplementary video S1
shows a complete run through the experiment including all instructions provided
and the length of time they are shown for. In the first training round, participants
practice steering the pedestrian they control by following the direction of arrows

Figure 1. Snapshot of simulated virtual environment at the start of
the evacuation task. Participants steer the pedestrian marked in
grey, labelled (1). They can collect a maximum of ten coins (2) before
exiting the central room through either of the two exits (3) and
moving to the final target exit (4). Simulated pedestrians shown in
white exit the central room at the start of the evacuation task. The
remaining time units and the number of coins collected are indicated
in the top-left and bottom-left corners of the central room,
respectively. Supplementary video 1 shows a video of the virtual
environment.
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from a starting location to a target location. In the second training round, partici-
pants are introduced to the concept of collecting coins and are alerted to a timer
that counts down the time available for the task. They receive the following
instructions: ‘‘You can now collect money by walking onto the yellow disks. But
the available time counts down (top left corner)’’. Two coins are displayed in this
training round. Whenever participants collect a coin, they cannot perform any
other actions for 2 s while the timer continues. In this way, we ensure that there is
a time cost to collect coins. In the third training round, participants are instructed
to look for exits on the floor plan. The location of the final exit is highlighted
with a green exit sign. At the end of this round, participants are informed that
this is the end of training. They are reminded of the coins and the limited time
available: ‘‘This was the last training round. Now you have to exit the building.
You can still collect coins. The more you collect, the better. BUT, you only have
a limited time to evacuate and will lose all coins if you don’t evacuate’’.

The test phase of the experiment is initiated immediately after the end of the
training phase with a message that shows a standard green emergency exit sign
and reads: ‘‘There has been an accident. Leave the building!’’ The popup window

Figure 2. Schematic flow chart of the training phase (white boxes)
and test phase (grey boxes) of the virtual experiment.
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is displayed for 5 s; immediately after the window closes the ten available coins
are then displayed and the computer-controlled pedestrians start to leave the vir-
tual environment, as shown in Fig. 1. Participants must decide how many, if any,
coins to collect before leaving the virtual environment through the final exit. The
time available to evacuate is 4000 simulated time units which equates to 45 s. This
time limit is set to make it difficult, but possible, to collect all coins and evacuate
in time. Figure 1 shows the final exit in the bottom-left corner of the virtual envi-
ronment. For each participant, we randomly place this exit in the top or bottom
left corner and we also randomly alternate the direction of the arrows in the first
training round to avoid introducing a directional bias in our experiment.

From our virtual experiment, we collected data on the age and gender of partic-
ipants, as well as the on-screen locations of all simulated pedestrians over time,
the mouse click locations of participants, the number of coins collected by partici-
pants and whether participants evacuate in time.

2.2. Experimental Treatments

Each participant completed our experiment once. To test what might affect the
level of risk-taking by participants (in terms of the number of coins they attempt
to collect), we use several different experimental conditions. The scenario descri-
bed in Sect. 2.1 and shown in Fig. 1 is our baseline or control condition. We
implement three further experimental treatments that present participants with
scenarios that deviate from the control condition. Each experimental treatment is
inspired by realistic factors that could influence the behaviour of evacuees.

The first treatment considers the scenario when people are not familiar with the
building layout (labelled treatment ‘V’). This situation has previously been identi-
fied to cause delays in evacuations [5]. We implement this treatment by not reveal-
ing the full floor plan and location of the final exit from the virtual environment
in the third training round (see Fig. 3a and compare to Fig. 1).

With the second treatment, we investigate how participants respond to changes
in the movement of the simulated crowd, inspired by the established notion of
evacuees responding to the behaviour of others (e.g. social influence [2, 10]). In
this treatment, labelled ‘C’, the evacuation of the simulated crowd is delayed and
only occurs half-way through the available time (Fig. 3b).

Previous work has suggested that the level of attachment to objects is important
in evacuations [18]. To extend this concept, we investigate the widely-studied phe-
nomenon of loss-aversion in human decision-making in our final treatment (la-
belled ‘L’). Prospect theory suggests that people are less sensitive to the possibility
of gaining objects or money than to the possibility of losing the same objects [28].
We study the effect of this loss aversion on the level of risk participants are will-
ing to take by changing the instructions relating to the coins that participants can
collect. In the second training round, the instructions given in treatment L are:
‘‘You have accidentally dropped two coins. You can recover them by walking
onto the yellow disks’’. After the last training round, the instructions are changed
to: ‘‘This was the last training round. Now you have to exit the building. You
have accidentally dropped 10 coins. The more you can recover, the better! BUT,

600 Fire Technology 2019



you only have a limited time to evacuate and will lose all coins if you don’t evac-
uate’’. Note that all coin rewards are entirely virtual; participants receive neither
performance-related nor general monetary or other rewards for taking part in our
experiment.

By considering the control condition and all possible combinations of treat-
ments, we obtain a total of eight possible experimental conditions (i.e. control, V,
C, L, V + C, V + L, C + L and V + C + L, where ‘V + C’ implies that both
treatments V and C are applied). To ensure a balanced distribution of participants
across each of the experimental conditions, we select the condition for each partic-
ipant in the following way. We assign a unique integer number to each participant
and increment this number by 1 between consecutive participants (e.g. the first
participant has number 1, the second has number 2, etc.). We label the eight
experimental conditions 0 to 7 and assign participants to the condition with the
label equal to modulo 8 of their unique number (e.g. participant number 8 implies
condition 0). Participants are not allowed to watch others before taking part in
the experiment or to talk to others who have already completed the experiment
and are therefore not aware of this procedure.

2.3. Data Collection

During a public engagement project at the Science Museum in London that ran
between the 2nd and 11th of September 2014, we recruited a total of 1229
museum visitors as participants for our experiment. We removed the data of par-
ticipants that were too young to complete the experiment without the help of their

Figure 3. Simulated virtual environment close to the start of the
evacuation for different experimental treatments (the time counter
starts at 4000 time units). (a) Treatment V in which the final target
exit is not visible and (b) treatment C in which the simulated crowd
does not exit straight away, but only half-way through the evacuation
task (2000 time units after the evacuation is initiated).
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parents (9 participants younger than 7 years—age was recorded anonymously via
the computer program and only accessed during analysis). A total of 139 partici-
pants did not report either their gender or their age or both. The data from these
participants is not included in statistical analysis that requires this information,
but we do include it in all other analysis. Reported genders are split evenly
between 597 men (50.8%) and 578 women (49.2%). The first quartile, median and
third quartile of reported ages were 20, 23 and 29 years, respectively (mean
25.95 years). Ages ranged from 7 years old to 77. We report the distribution of
participants over experimental conditions below.

2.4. Statistical Analysis

We perform three separate statistical analyses on our data in the R programming
environment, version 3.2.2 [29].

First, we seek to confirm that the number of collected coins is a determinant for
risk-taking in our experiment. Rather than investigating evacuation times that are
strongly affected by the virtual experiment design (limited time available), we test
the relationship between the binary measure of whether participants evacuated
within the time limit (response variable) and the number of collected coins (ex-
planatory variable) using logistic regression. Details for this analysis are included
in Appendix A. We use a Likelihood-ratio test to assess if the number of coins
participants collect has a non-zero effect on their evacuation success. The Likeli-
hood-ratio test is an appropriate hypothesis test to assess if the fit of a statistical
model, measured via the likelihood, improves significantly when an additional
parameter is included in the model. After this initial test, we investigate how par-
ticipant risk-taking behaviour varies across experimental treatments, as follows.

The second analysis of our data is motivated by the observation that many par-
ticipants adopted extreme strategies by collecting all or no coins. We use logistic
regression to investigate how the occurrence of extreme coin collection strategies
depends on our experimental treatments, as well as age and gender. Details for
this analysis can be found in Appendix B. To avoid having to fit multiple statisti-
cal models, as required for the Likelihood-ratio test, we use Wald tests to assess if
parameters associated with explanatory variables have a non-zero effect. The
Wald test assesses the same null hypothesis as the Likelihood-ratio test and for
infinite sample sizes the two tests are asymptotically equivalent. Considering the
substantial number of data points in our analysis, the Wald test will therefore
provide negligibly different results to the Likelihood-ratio test.

Finally, we investigate how the total number of coins collected by participants,
the main numerical measure for the level of risk participants take, depends on the
experimental treatments, as well as gender and age. This analysis establishes how
participants’ risk-taking behaviour depends on the three factors included in our
experiment. We use negative binomial regression for this analysis and include
additional details in Appendix C. We initially perform this analysis on all data,
including participants who adopt extreme strategies (number of coins collected
between 0 and 10). Subsequently, to establish the influence of extreme strategy
adoption on our findings, we repeat this analysis after removing all participants
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who adopted an extreme strategy from the data (number of coins collected
between 1 and 9). For the same reasons as above, we use Wald tests to assess if
parameters associated with explanatory variables have a non-zero effect.

We include data from all eight experimental conditions in this analysis and do
not consider interactions between explanatory variables, as we focus on the iso-
lated effect of treatments, age and gender.

3. Results

We find clear evidence that collecting coins incurs a cost (in terms of evacuation
success) in our experiment. The more coins participants collect, the smaller the
proportion of participants that evacuate in time (Fig. 4). The observed negative
correlation between collected coins and the fraction of escaped participants is
stronger than expected by chance (Likelihood-ratio test on logistic regression, see
Sect. 2.4; V1

2 = 667.07, p< 2 9 10-16). Thus, these findings confirm that partici-
pants are taking a risk by collecting coins and justify our subsequent analysis that
focusses in more detail on the number of coins collected by participants.
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Figure 4. Coins collected plotted against the fraction of participants
who reached the final exit within the time limit. Error bars show one
standard deviation over 10,000 bootstrap samples of the data. The
blue dashed line shows the fit of a logistic regression model (see
Methods and Appendix A). The observed negative correlation
between collected coins and the fraction of escaped participants is
stronger than expected by chance (Likelihood-ratio test on logistic
regression, see Sect. 2.4; V1

2 = 667.07, p<2 3 10216).
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Our data collection protocol means that participants are evenly spread across
the eight experimental conditions (number of participants indicated in Fig. 5). The
distributions of the number of coins collected in the different experimental condi-
tions reveals that 44.6% of participants adopt an extreme strategy by either col-
lecting all (18.1%) or none of the available coins (26.5%; Fig. 5). Considering the
mean number of coins collected, experimental conditions that include treatment L
(implied loss of coins, Fig. 5e–h) appear to result in higher values than in the
remaining experimental conditions (Fig. 5a–d). In the following, we first investi-
gate how our experimental treatments affect the prevalence of the two extreme
strategies. Then, we test how the average level of risk-taking (mean number of
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(b) final target not visible, treatment V; (c) crowd leaves late,
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collected coins) changes with experimental treatments and establish to what extent
these effects can be explained by participants adopting the extreme strategies.

We find that participant age, as well as all treatments have significant effects on
the fraction of participants who collect none of the available coins (all p val-
ues £ 0.05, see Table 1). Older participants are more likely not to collect any
coins. Similarly, treatment C (crowd leaves late) leads to an increase in the frac-
tion of participants who do not collect any coins. This is particularly visible in the
absence of treatment L (compare Fig. 5a–c and b–d). One possible explanation for
this result could be that when the crowd evacuates late (treatment C), there are
initially no queues at the exits. This contrasts with the other experimental condi-
tions when queues forming at the exits might deter participants from leaving
immediately (see Fig. 3a, b). Rather than waiting in a queue, they may prefer to
collect coins. Treatments V (lack of environment visibility) and L (implied loss)
cause a decrease in the fraction of participants who collect no coins. While not
very pronounced in Fig. 5 for treatment V, this trend is clearly visible for treat-
ment L (compare Fig. 5a–d to e–h).

For the other extreme strategy in which participants collect all available coins,
only treatments V (lack of environment visibility) and L (implied loss) have effects
with p values £ 0.05 (Table 2). Both treatments lead to an increase in the fraction
of participants adopting the strategy. The low and comparatively high effect sizes
for treatments V and L, respectively (Table 2), suggest and Fig. 5 confirms, that
this effect is not very clear for treatment V, but very pronounced for treatment L
(compare Fig. 5a–d to e–h).

Having established that our experimental treatments affect the prevalence of
extreme coin collection strategies, we next investigate the average level of risk par-
ticipants take. Considering all data, including participants who adopt an extreme
strategy, we find that only age and treatment L (implied loss) have significant

Table 1
Effect of Age, Gender and Experimental Treatments on the Proportion
of Participants Who Collect No Coins

Explanatory factor

Parameter esti-

mate ± s.e.

Wald test

statistic p value

Effect size against

baseline

Intercept - 1.53 ± 0.23 - 6.73 1.65 9 10
211 NA

Age (years) 0.03 ± 0.01 4.71 2.47 9 10
26 0.07

Gender (male) - 0.06 ± 0.14 - 0.38 0.70 - 0.01

Treatment V (visibility) - 0.34 ± 0.14 - 2.35 0.02 - 0.07

Treatment C (crowd

movement)

0.36 ± 0.15 2.47 0.01 0.08

Treatment L (implied

loss)

- 0.74 ± 0.15 - 5.02 5.12 9 1027 - 0.13

Results from logistic regression using the Boolean response variable indicating whether participants collect no coins

(value 1) or not (see Appendix B). Effect sizes are shown against a baseline proportion of 0.30 of participants who

collect no coins for a female aged 23 years (median age) with no experimental treatments present. The age effect size

is shown for an age increase of 10 years. Analysis includes 1081 data points (for 139 participants age and/or gender

information was missing). p values £ 0.05 are shown in bold
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effects on the average number of coins participants collect (both p values £ 0.05;
Table 3). With increasing age, participants collect fewer coins, but treatment L
leads to an average increase of about 2 coins that are collected (Table 3). The
effects of treatments V and C on the average number of coins collected is insignifi-
cant. This suggests that for these treatments, the effects on the proportion of par-
ticipants who adopt extreme strategies discussed above are not strong enough to
result in significant changes in average levels of risk-taking.

Table 2
Effect of Age, Gender and Experimental Treatments on the Proportion
of Participants Who Collect All Coins

Explanatory factor

Parameter esti-

mate ± s.e.

Wald test

statistic p value

Effect size against

baseline

intercept - 2.38 ± 0.29 - 8.26 < 2.0 9 10216 NA

Age (years) - 0.01 ± 0.01 - 1.78 0.07 - 0.01

Gender (male) 0.30 ± 0.17 1.82 0.07 0.02

Treatment V (visibility) 0.33 ± 0.17 1.99 0.05 0.02

Treatment C (crowd

movement)

0.17 ± 0.16 1.01 0.31 0.01

Treatment L (implied

loss)

1.36 ± 0.18 7.59 3.25 9 10
214 0.14

Results from logistic regression using the Boolean response variable indicating whether participants collect all coins

(value 1) or not (see Appendix B). Effect sizes are shown against a baseline proportion of 0.06 of participants who

collect all coins for a female aged 23 years (median age) with no experimental treatments present. The age effect size

is shown for an age increase of 10 years. Analysis includes 1081 data points (for 139 participants age and/or gender

information was missing). p values £ 0.05 are shown in bold

Table 3
Effect of Age, Gender and Experimental Treatments on the Number of
Coins Collected by Participants, Including Data on Participants Who
Collected All or No Coins

Explanatory factor

Parameter esti-

mate ± s.e.

Wald test

statistic p value

Effect size against base-

line (coins)

intercept 1.33 ± 0.10 12.77 < 2.0 9 10
216 NA

Age (years) - 0.01 ± 0.003 - 3.42 6.28 9 10
24 - 0.29

Gender (male) 0.10 ± 0.06 1.51 0.13 0.30

Treatment V (visibility) 0.10 ± 0.06 1.51 0.13 0.30

Treatment C (crowd

movement)

- 0.01 ± 0.06 - 0.17 0.87 - 0.03

Treatment L (implied

loss)

0.53 ± 0.06 8.22 < 2.0 9 10216 2.05

Results from negative binomial regression using the number of coins collected by participants as the response

variable (see Appendix C). Effect sizes are shown against a baseline of 2.97 coins for a female aged 23 years (median

age) with no experimental treatments present. The age effect size is shown for an age increase of 10 years. Analysis

includes 1081 data points (for 139 participants age and/or gender information was missing). p values £ 0.05 are

shown in bold
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To establish how influential the adoption of extreme strategies is on the
observed trends in average risk-taking levels, we repeat our analysis after remov-
ing all data from participants who collect all or no coins (the extreme strategies).
We find that in this data set age has no significant effect, but as for the full data
set, treatment L (implied loss) leads to a significant effect by increasing the num-
ber of coins collected by about one coin, on average (Table 4). This suggests that
age-related effects are mainly attributable to the adoption of extreme strategies,
whereas the effect of treatment L is robust and occurs for extreme and intermedi-
ate strategies.

4. Discussion

In summary, we present the results of a virtual experiment with over 1200 human
participants in which we explore how three key factors (reduced knowledge of
building layout, crowd evacuation behaviour, and loss-aversion) influence the level
of risk evacuees take by collecting objects (virtual ‘coins’) and thus causing a
delay in the pre-movement phase of simulated evacuations. We find that many
participants display extreme strategies of complete risk aversion (no coins col-
lected, 26.5% of participants) or taking the highest risk possible (all coins col-
lected, 18.1% of participants). While the movement of the simulated crowd
(treatment C) and the information participants have about the location of exits
(treatment V) affect the adoption of these extreme strategies, only the suggestion
that participants can recover lost objects rather than gaining them (treatment L)
has a robust effect on the mean level of risk-taking regardless of extreme strate-
gies. Gender has no effect, but older participants are on average more risk averse.

Table 4
Effect of Age, Gender and Experimental Treatments on the Number of
Coins Collected by Participants, Removing Data from Participants Who
Collected All or No Coins

Explanatory factor

Parameter esti-

mate ± s.e.

Wald test

statistic p value

Effect size against base-

line (coins)

intercept 1.35 ± 0.07 19.77 < 2.0 9 10
216 NA

Age (years) - 0.001 ± 0.002 - 0.57 0.57 - 0.05

Gender (male) 0.04 ± 0.04 0.87 0.38 0.15

Treatment V (visibility) - 0.02 ± 0.04 - 0.36 0.72 - 0.06

Treatment C (crowd

movement)

0.06 ± 0.04 1.49 0.14 0.25

Treatment L (implied

loss)

0.22 ± 0.04 5.07 4.02 9 1027 0.92

Results from negative binomial regression using the number of coins collected by participants as the response

variable (see Appendix C). Effect sizes are shown against a baseline of 3.76 coins for a female aged 23 years (median

age) with no experimental treatments present. The age effect size is shown for an age increase of 10 years. Analysis

includes 610 data points (for 66 participants age and/or gender information was missing). p values £ 0.05 are shown

in bold
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However, this age-effect appears to be largely caused by differences in adopting
extreme strategies.

It would be interesting to further investigate why participants adopt extreme
strategies. It is possible that people who collected no coins take the evacuation
context seriously, remember instructions on not collecting personal belongings in
evacuations and therefore disregard the coins. The other extreme strategy might
be caused by participants viewing the experiment as a game causing them to
approach collecting all coins as a challenge. Asking participants about their moti-
vation after completing the experiment could help to explain this finding. While
we did not perform such a survey systematically, we anecdotally observed that
some participants commented on wanting to win the coin collection challenge
after the experiment.

Previous work suggests that there are gender differences in the level of risk-tak-
ing in pedestrians [30] and earlier virtual experiments also show gender effects but
suggest these could be related to differences in exposure to computer games [23].
In contrast, we find no effect of gender on risk-taking in our experiment. The age
effects we find are interesting, but we suggest that a better understanding of
extreme strategy adoption is needed before interpreting them further. For exam-
ple, participants’ exposure to computer games could explain differences in strategy
adoption. Frequent users of computer games may be more confident in their abil-
ity to collect all coins. Computer games may be played more frequently by
younger participants and this could thus explain the age effects we observe. Simi-
lar factors could also explain the absence of a difference in risk-taking between
genders. Since we recruited participants in a science museum, our participant pool
may not be fully representative of society, although it is likely to be representative
for museum visitors. We did not collect data on such confounding factors or on
how frequently participants play computer games. As such, we suggest that while
the relationship of age with risk-taking and the lack of a link between gender and
risk taking we found are interesting and could be investigated further, they should
only be considered directly within the context of our participant pool and virtual
environment.

One approach to test or account for behavioural differences across individuals
(e.g. related to gender, age or computer literacy) would be to ask participants to
complete our experiment in multiple or even all experimental conditions. On the
one hand, this should ensure that the distribution of individuals’ characteristics is
similar across experimental conditions which would facilitate assessing the effect
of our experimental treatments, as well as differences in individual-specific respon-
ses to treatments. On the other hand, in this approach we would have to account
for participants becoming habituated to the experiment which could itself depend
on individuals’ characteristics. We suggest that with over 150 participants per
experimental condition, our data set is sufficient for the preliminary findings we
present here.

Social influence occurs when individuals respond to the behaviour of others and
it is an important factor that needs to be considered in research on pre-movement
times in evacuations [10, 21]. In our experiment, altering the behaviour of the sim-
ulated crowd (treatment C) has no robust effect on the mean level of risk-taking.
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This could have different causes. The scenario in our experiment means that there
is no ambiguity on when the evacuation starts. This contrasts with other scenar-
ios, where social influence mainly occurs when responding to others whilst inter-
preting an alarm [10] or deciding on where to go [21]. In addition, the simulated
crowd only provides information on the evacuation timing. Social influence may
affect the level of risk-taking more strongly if others provide direct examples of
risk-taking behaviour that can be copied. Our experiment simulates a situation
that may be unusual in real life, where only one person, the participant, can col-
lect objects. People may be more likely to collect objects if they observe others
doing it and vice-versa. One strength of our experimental paradigm is that it
could easily be adapted to systematically test such additional scenarios. However,
it is important to keep in mind that the realism of human social responses to sim-
ulated agent’s behaviour is unclear, despite promising indications [31].

Even though previous work has identified familiarity with buildings as a deter-
minant for pre-movement delays [5], in our experiment providing less information
on the location of the final exit (treatment V) only affected the adoption of
extreme strategies, but not the mean level of risk-taking. The layout of our virtual
environment is simple and participants view it from a top-down perspective. In
reality, a similar level of information would only be available if evacuees had
familiarised themselves with the room layout by (for example) studying a floor
plan. For these reasons, we suggest that our findings with regards to treatment V
should be treated with care. Familiarity with buildings is likely to include cogni-
tive processes that we cannot capture with our experimental setup [32].

The most robust effect on the level of risk-taking of participants in our experi-
ment is caused by altering the quality of attachment to the objects that can be col-
lected (treatment L). Motivated by prospect theory [28], we imply to participants
via the instructions given to them that rather than being able to gain objects, they
have lost objects they can recover. This extends previous work which suggests that
the level of attachment to objects is crucial for determining the delays evacuees
are willing to accept to collect them [18]. We find a loss-aversion effect for
abstracted objects (‘coins’). If this effect is not an artefact of our virtual experi-
ment, it is certainly possible that it will be considerably stronger in reality for
objects that evacuees are personally attached to. Current solutions to this problem
aim to train (e.g. announcements on planes [20]) or to inform (e.g. wearable devi-
ces warn evacuees of delays [18]). It may not be possible to alter the quality of
attachment people feel to objects in all cases, because of objects’ emotional or
other significance, but in some circumstances targeted interventions could be pos-
sible. For example, an additional measure could be to ensure that people in high-
risk environments always carry with them important small items such as wallets,
phones, passports and keys, therefore removing the urge to collect them and cause
possible evacuation delays. In workplace environments, insurance and data
backup policies could remove employees’ need to collect laptop computers, data
storage devices or work phones.

The level of attachment to objects, such as phones, wallets or house keys may
differ across individuals. In our experiment, we deliberately include abstracted
objects, virtual ‘coins’, that participants can collect, to avoid such differences
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across individuals in attachment to more realistic items. While we intend to study
the effect of treatment L against a less variable baseline with this approach, it also
makes our experiment more abstract and may also contribute to participants
treating the experiment as a game. For more life-like experiments, it would be
advisable to consider more realistic objects that evacuees can collect.

The result that treatment L in our experiment leads to participants collecting
more virtual coins and therefore to an increase in average pre-movement delays is
an important proof of principle in its own right. This could have implications for
how pre-movement delays are implemented in evacuation models. Typically, these
delays are either modelled by approximations of empirically derived distributions
or mechanistically by modelling individual-level decision-making [2, 14–17]. Based
on our findings, we suggest that the global mean of pre-movement delay distribu-
tions in such models should routinely be varied over a range of values. In this
way, the consequences of potential systematic effects based on occupant character-
istics or targeted interventions could be assessed.

All controlled experimental studies on behaviour present abstractions of reality
to participants. Ecological validity, or the extent to which findings from such
studies extend to behaviour in the real world, is therefore a key issue. It is likely
that our virtual environment experiment has lower ecological validity than high-fi-
delity unannounced evacuation drills undertaken in a real environment with a real
crowd of people. Thus, our findings provide new insights into risk-taking beha-
viour in evacuations, but we cannot guarantee that they apply immediately to
real-world contexts. Rather than employing them to directly study human beha-
viour in fire evacuation scenarios, we suggest virtual experiments can be used in
different ways before their real-world validity is established. Our study demon-
strates that virtual experiments make it possible to quickly, cheaply and safely
conduct studies on human behaviour in crowd evacuations with large numbers of
participants. Conducting experiments online, potentially using mobile devices,
could make these cost and time savings even more dramatic [33] and our experi-
ment can easily be extended to test additional scenarios. Based on this, we suggest
a key use for virtual experiments lies in quickly and cheaply scoping behavioural
responses in a broad range of scenarios to efficiently identify contexts that should
be investigated further in more life-like experiments or evacuation drills. This is
particularly relevant for scenarios that are difficult to study due to ethical or
safety concerns (e.g. stressful evacuations [26] or ones under limited visibility con-
ditions [1]).

The level of engagement provided by interactive virtual experiments, could also
be used in education or health and safety training. Current education and training
for evacuations is often limited to auditory, textual or video-based information
(e.g. on planes [20]). Virtual environments would make it possible for people to
interactively experience evacuation scenarios and to make mistakes they can learn
from in a safe environment. Research on education techniques suggests that such
gamification could lead to better engagement and improved learning [34].

In addition to exploring these uses of virtual environments for human beha-
viour in evacuations, future work could also investigate the decision-making pro-
cess in more detail. For example, an interesting question is whether evacuees
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decide on the number of objects to collect at the start of the evacuation, or if they
adapt their decision dynamically based on new information received from the
environment. Individuals may trade-off the utility of different actions [28] or use
simple heuristics [35], such as ‘leave when I have collected half of the objects’, to
decide when and how to evacuate. While our experiment focusses on individual-
level decisions, many evacuation scenarios involve more than one person and
reciprocal actions. For instance, in the context of collecting objects, individuals
may only collect another item if someone else does the same or if they are com-
peting with others. Helping behaviour in evacuations could also include reciprocal
actions, such as people opening doors for each other [23]. Such reciprocal actions
that are based on trading off perceived costs and benefits for outcomes could be
approached using concepts from game theory and exploring the potential links of
behaviour in evacuations to game theory could be an interesting avenue for future
research.

5. Conclusions

Our study is one of the first to experimentally investigate pre-movement delays in
evacuations. As our experiment is set within a virtual environment and because it
presents a substantial abstraction of real-life situations, we suggest throughout
that the findings from our work should not be over-interpreted and applied
directly to real-world contexts. Therefore, we suggest our work and findings on
the role of loss aversion, social influence, familiarity with buildings, age and gen-
der on the level of risk people take by collecting objects before evacuating, act as
a starting point with testable quantitative hypotheses that can be used to inform
further studies. Despite these caveats, we suggest virtual environment experiments
are a useful tool for studying human behaviour in evacuations. They facilitate a
highly controlled, safe and cheap approach to research that is ideal for prelimi-
nary investigations, such as ours. Furthermore, it may be possible to adapt such
virtual environment experiments for use in fire safety training, as they offer an
engaging and interactive experience.
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Appendix A: Logistic Regression on Participants
Evacuating on Time

Here, we describe the logistic regression model used to investigate the relationship
between the number of collected coins and whether participants evacuated within
the time limit.

Let Wi be a Boolean variable that indicates whether participant i evacuates
within the time limit (Wi ¼ 1) or not (Wi ¼ 0) and let ki denote the number of
coins collected by this participant (ki 2 0; 10½ �). In logistic regression, we assume

W follows a binomial distribution, such that Wi � Binom 1; lAi
� �

. The quantity lAi
is linked to the linear predictor, a0 þ a1ki, where a0 and a1 are model parameters,

via the inverse of the logit link function, such that: lAi ¼ 1
1þexp a0þa1kið Þ. In effect, we

model the probability for participants to evacuate within the time limit

P Wi ¼ 1ð Þ ¼ lAi . We fit this model to our data using a standard and well-estab-

lished Maximum Likelihood approach (as implemented in the R programming
environment [29]).

To assess if the number of coins collected has a non-zero effect on P Wi ¼ 1ð Þ,
we perform a Likelihood ratio test on the null Hypothesis H0 : a1 ¼ 0 (see also
Methods, Results and Fig. 3).

Appendix B: Logistic Regression on Extreme Strategy
Adoption

Here, we describe the logistic regression model used to investigate the factors
influencing participants’ adoption of one of the extreme strategies in which they
either collect all coins or no coins.

We measure the Boolean variable Yi that indicates whether participant i collects
no coins (Yi ¼ 1) or some coins (Yi ¼ 0; Table 1). We also repeat the following
analysis using Yi to measure whether participant i collects all coins or not
(Table 2).

We assume Y follows a binomial distribution, Yi � Binom 1; lBi
� �

. The quantity

lBi is linked to the linear predictor, Xib, of the model via the inverse of the logit

link function, such that: lBi ¼ 1
1þexp Xibð Þ. Here b is a 6 9 1 vector of parameters

and Xi is a 1 9 6 matrix containing the values of the explanatory variables, as evi-
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dent from Eq. 1 below. The linear predictor of the model includes the additive
effects of the explanatory variables we consider in our model:

Xib ¼ b0 þ b1x1;i þ b2x2;i þ b3x3;i þ b4x4;i þ b5x5;i ð1Þ

Here, b0 is the intercept and b1 . . . b5 are the parameters capturing the effects of
the different explanatory variables. Specifically, x1;i measures the age of participant

i in years, x2;i is a dummy variable that takes value 1 if participant i is male and

value 0 otherwise. Similarly, the remaining explanatory variables x3;i to x5;i are

dummy variables indicating whether a treatment is present or not. In Tables 1 and
2, we report the estimates for b0 . . . b5 obtained from Maximum Likelihood Esti-
mation. As explained in the Methods, we use Wald tests to separately test for
each parameter the null hypothesis that the parameter is equal to zero. Model fit-
ting and statistical tests were performed using the default implementation in the R
programming environment [29].

Appendix C: Negative Binomial Regression on Number
of Coins Participants Collect

Here, we describe the negative binomial regression model used to investigate the
factors influencing the number of coins participants collected in our experiment.

For this analysis, we use ki, the number of coins collected by participant i, as
the response variable. We perform negative binomial regression on all data
(ki 2 0; 10½ �, Table 3) and on data from which participants who adopt extreme
strategies have been removed (ki 2 1; 9½ �, Table 4).

We assume ki follows a negative binomial distribution and use the log link func-

tion to compute the mean lCi of this distribution from the linear predictor Xic,
such that lCi ¼ exp Xicð Þ. We use the same linear predictor as in Appendix B,

Eq. 1:

Xic ¼ c0 þ c1x1;i þ c2x2;i þ c3x3;i þ c4x4;i þ c5x5;i ð2Þ

The explanatory variables are same as in Appendix B and we report the estimates
for the parameters c0 . . . c5 obtained from Maximum Likelihood Estimation in
Tables 3 and 4. We refer the reader to the detailed documentation of the R pro-
gramming environment (function ‘glm.nb’ [29]) and to [36] for details on the
model structure and fitting procedure for negative binomial regression.
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